
IEEE/ EG Symposium on Volume and Point-Based Graphics (2008)
H.- C. Hege, D. Laidlaw, R. Pajarola, O. Staadt (Editors)

Smooth Mixed-Resolution GPU Volume Rendering

Johanna Beyer1 Markus Hadwiger1 Torsten Möller2 Laura Fritz1

1VRVis Research Center, Vienna, Austria
2 School of Computing Science, Simon Fraser University, Canada

Abstract

We propose a mixed-resolution volume ray-casting approach that enables more flexibility in the choice of down-

sampling positions and filter kernels, allows freely mixing volume bricks of different resolutions during rendering,

and does not require modifying the original sample values. A C0-continuous function is obtained everywhere with

hardware-native filtering at full speed by simply warping texture coordinates of samples in transition regions. Ad-

ditionally, we propose a simple but powerful, flat texture packing scheme that supports mixing different resolution

levels in a single 3D volume cache texture with a very simple and fast address translation scheme. Although this

packing constrains full scalability, it enables mixing different resolution levels in GPU-based ray-casting with only

a single rendering pass. We demonstrate our approach on large real-world data, obtaining a continuous scalar

function and shading at brick boundaries, using single-pass ray-casting at real-time frame rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms I.3.6
[Computer Graphics]: Graphics data structures and data types

1. Introduction

The sizes of volumetric data sets, as for example generated
in medical imaging, industrial scanners, or scientific simula-
tions, are increasing at a very rapid rate. Although volume
rendering approaches exploiting graphics processing units
(GPUs) achieve real-time frame rates, GPU texture mem-
ory is still limited and increasing more slowly than data
sizes. Therefore, many GPU volume rendering schemes in-
corporate multi-resolution volume bricking or data compres-
sion techniques to cope with large volumes. Multi-resolution
schemes circumvent the memory constraints of GPUs by
downsampling the volume or parts of it to a lower resolu-
tion. To reduce visual artifacts in the final image, level-of-
detail (LOD) selection techniques can be employed to steer
the selection of areas for downsampling.

Most multi-resolution schemes for GPU-based volume
rendering restrict the sampling positions of the downsam-
pled grid to a subset of the original sample positions. This,
however, restricts the choice of downsampling filters and
thus the attainable quality or smoothness of lower resolu-
tions. A major reason for this restriction is that it simplifies
the generation of a continuous function when different res-
olution levels are mixed. Most approaches use only nearest-
neighbor downsampling, and moreover require higher res-
olution samples to be overwritten with values interpolated
from lower resolution levels [WWH∗00]. This implies that
even in the highest resolution level many samples are not
identical to the original volume and thus inaccurate.

In this paper we propose a GPU-based bricked mixed-

resolution volume rendering scheme that is not restricted to
downsampling at the original grid positions and does not re-
quire modifying the original sample values. Our approach
can be used to render volumes larger than GPU memory with
ray-casting in a single rendering pass, mixing different levels
of resolution with continuous (C0) transitions between res-
olution levels. It operates on a per-sample basis and solely
modifies the coordinates of texture fetches in a thin tran-
sition region between bricks of different resolutions. Thus,
it is fast and requires only minor modifications to existing
ray-casters, and could also be applied to renderers using tex-
ture slicing. We place the sample positions of a downsam-
pled level half-way between samples of the higher-resolution
level above it. This is the natural choice for downsampling
filters that weight an even number of samples in order to
compute a lower-resolution sample. In this work, we em-
ploy a 2× 2× 2 averaging filter, but our sampling scheme
facilitates higher-order filters as well, e.g., cubic splines.

The major advantages of our approach are that: (1) bricks
of different resolutions are stored in a single 3D cache tex-
ture and can be freely mixed during rendering; (2) address
translation between volume space and the cache texture is
extremely simple; (3) the transitions between bricks of dif-
ferent resolution levels are C0-continuous, which is achieved
by simply modifying the texture coordinates of chosen sam-
ples in the fragment shader; thus (4) actual interpolation can
use the hardware-native tri-linear filtering at full speed; and
(5) downsampling positions do not need to be aligned with
the original sample positions, which allows for a wider range
of filter kernels and thus more flexibility.

c© The Eurographics Association 2008.

J. Beyer & M. Hadwiger & T. Möller & L. Fritz / Smooth Mixed-Resolution GPU Volume Rendering

2. Related Work

Multi-resolution approaches for volume rendering try to cir-
cumvent memory restrictions of current hardware usually
by breaking down a single large volume texture into several
smaller ones (i.e, bricks). For low-resolution representations
either the number of bricks are reduced (as in hierarchical
bricking schemes) or the texture size of the bricks is reduced
(as in flat bricking schemes). The breaking down of a larger
texture into several smaller ones is called bricking and usu-
ally requires duplication of texels at brick boundaries.

LaMar et al. [LHJ99] were one of the first to intro-
duce a hierarchical (octree) bricking scheme for hardware-
assisted volume rendering. They propose a selection filter
for downsampling bricks depending on their distance from
the viewpoint and the view frustum, however they do not
account for continuous transitions between different levels
of detail during rendering. Weiler et al. [WWH∗00] en-
sure continuous level transitions in their octree-based multi-
resolution scheme by adapting the brick borders of the finer
resolutions, throughout all hierarchy levels. They are, how-
ever, restricted to downsampling on the original grid points.
Other hierarchical approaches including LOD selection al-
gorithms were proposed by Boada et al. [BNS01] and Guthe
et al. [GS04], who use a hierarchical wavelet representation
and screen-space error estimation for LOD selection. En-
tezari et al. [EMBM06] use Cartesian, FCC and BCC lattices
for downsampling the data using different sampling densi-
ties. Their approach, however, does not support mixing of
different resolution levels. A method for iso-surface recon-
struction of multi-resolution volume data was proposed by
Westermann et al. [WKE99]. They create a hierarchical oc-
tree using averaging and focus on fixing cracks in the surface
at transitions between different resolution levels.

A flat bricking scheme for multi-resolution data with con-
tinuous resolution transitions was proposed by Ljung et
al. [LLY06]. Their approach does not need sample replica-
tion at brick boundaries, as they perform interbrick inter-
polation directly during rendering. This, however, requires
complex fragment shaders to manually perform the correct
interpolation. LOD selection is based on the transfer func-
tion [LLYM04].

Most multi-resolution approaches render each brick indi-
vidually, storing them in different textures. Our work, how-
ever, is based on a scheme similar to adaptive texture maps
introduced by Kraus et al. [KE02], where data bricks of dif-
ferent resolution are packed into a single texture. An addi-
tional index texture is used for address translation. In con-
trast to [KE02], however, we maintain our packed data and
index texture dynamically.

Our volume visualization framework builds on previous
research in the area of hardware assisted volume rendering
using commodity GPUs. While first approaches were based
on texture slicing [WE98, RSEB∗00], GPU ray-casting is
now a viable and very powerful alternative [KW03].

flat blocking

hierarchical

blocking

Figure 1: Hierarchical bricking (top row) vs. flat bricking

(bottom row). Culled bricks are marked in white.

3. Mixed-Resolution Volume Rendering

Most multi-resolution volume rendering methods are based
on hierarchical bricking schemes where the brick size in
voxels is kept constant from level to level, and the spatial
extent of bricks increases from high to low resolution until a
single brick covers the entire volume (Figure 1, top row).
Conversely, flat bricking schemes (Figure 1, bottom row)
keep the spatial extent of bricks constant and successively
decrease the brick size in voxels. A major advantage of flat
bricking schemes is that the culling rate is much higher, il-
lustrated by the number of white bricks in Figure 1, because
the granularity of culling stays constant irrespective of ac-
tual brick resolutions. This not only reduces the required
texture memory, as more bricks can be culled, but also al-
lows for a much more fine-grained LOD or shader selec-
tion per brick [LKP06]. However, flat multi-resolution tech-
niques have a bigger memory overhead when samples are
replicated at brick boundaries, because for decreasing brick
sizes the overhead of duplicated voxels increases. This over-
head can be removed by avoiding sample duplication, but
only at the cost of highly increased run-time filtering com-
plexity and cost [LLY06]. We employ flat multi-resolution
bricking with sample duplication, but reduce the run-time
overhead significantly by using hardware filtering and only
warping the texture coordinates of samples where necessary.

3.1. Volume Subdivision for Texture Packing

The original volume is subdivided into equally-sized bricks
of size n3 in a pre-process, where n is a power of two, e.g.,
n = 32. During this subdivision, the minimum and maxi-
mum value in each brick are stored for culling later at run
time, and lower-resolution versions of each brick are con-
structed. For the latter we compute the value of the new
sample at the center of eight surrounding higher-resolution
samples as their average, but higher-order filters could also
be used. We limit the number of resolution levels to mini-
mize the overhead of duplicated boundary voxels, and also
to allow tight packing of low-resolution bricks in the storage
space reserved for high-resolution bricks (Section 3.2). By
default we use only two resolution levels, e.g., 323 bricks
with a downsampled resolution of 163. For fast texture fil-
tering during rendering, voxels at brick boundaries are du-
plicated. In principle, duplication at one side suffices for this
purpose [WWH∗00], e.g., storing (32+1)3 bricks. However,

c© The Eurographics Association 2008.

J. Beyer & M. Hadwiger & T. Möller & L. Fritz / Smooth Mixed-Resolution GPU Volume Rendering

in the high-resolution level we duplicate at both sides, be-
cause the space for a single (32+2)3 brick provides storage
for eight (16 + 1)3 bricks. Coincidentally, this usually does
not impose additional memory overhead. The brick cache
texture (Section 3.2) always has power-of-two dimensions
for performance reasons, and a cache of size 5123, for ex-
ample, can hold the same number of 343 and 333 bricks.

Although this approach is not fully scalable, it is very
simple and a good trade-off that is not as restrictive as
it might seem. Because culling is very efficient in a flat
scheme, fewer bricks need to be resident in GPU memory.
Even without culling, if the size of the brick cache texture
is 512x512x1024 (256 mega voxels), for example, and two
resolution levels are used (brick storage size 343), 15x15x30
bricks fit into the cache. This yields a possible data set size
of about 1.7 giga voxels, e.g., 960x960x1920, if all bricks
actually need to fit into the cache. Due to culling, the real
data set size can typically be much larger. Additionally, for
very large data three levels could be used. For example, in-
creasing the allocated space for each brick from (32+2)3 to
(32 + 4)3, both 163 and 83 bricks can be packed tightly, in-
cluding boundary duplication for filtering. Using three levels
with storage for (32+4)3 bricks, 14x14x28 bricks would fit
into the cache, yielding a data set size of 10.7 giga voxels,
e.g., 1792x1792x3584, and more when bricks are culled.

3.2. Mixed-Resolution Texture Packing

For rendering, a list of active bricks is determined via
culling, using, e.g., the transfer function or iso value, and
clipping plane positions to determine non-transparent bricks
that need to be resident in GPU memory. The goal is to pack
all active bricks into a single 3D brick cache texture (Fig-
ure 2, right). In the beginning, all cache space is allocated
for high-resolution bricks. If the number of active bricks af-
ter culling exceeds the allocated number, individual bricks
are chosen to be represented at lower resolution. In this case,
the effective number of bricks in the cache is increased by
successively mapping high-resolution bricks in the cache to
eight low-resolution bricks each, until the required overall
number of bricks is available. This is possible because the
storage allocation for bricks has been chosen in such a way
that exactly eight low-resolution bricks fit into the storage
space of a single high-resolution brick, including duplication
of boundary voxels, as described in the previous section.

After the list of active bricks along with the correspond-
ing resolutions has been computed, the layout of the cache
texture and mapping of brick storage space in the cache to
actual volume bricks can be updated accordingly, which re-
sults in an essentially arbitrary mixture of resolution levels
in the cache. The actual brick data are then downloaded into
their corresponding locations using, e.g., glTexSubIm-
age3D(). During rendering, a small 3D layout texture is
used for address translation between “virtual” volume space
and “physical” cache texture coordinates (Figure 2, top left),
which is described in the next section.

3.3. Address Translation

A major advantage of our texture packing scheme is that ad-
dress translation can be done in an identical manner irrespec-
tive of whether different resolution levels are mixed. Each
brick in virtual volume space always has constant spatial ex-
tent and maps to exactly one brick in physical cache space.
“Virtual” addresses in volume space, in [0,1], corresponding
to the volume’s bounding box, are translated to “physical”
texture coordinates in the brick cache texture, also in [0,1],
corresponding to the full cache texture size, via a lookup in
a small 3D layout texture with one texel per brick in the
volume. This layout texture encodes (x,y,z) address trans-
lation information in the RGB color channels, and a multi-
resolution scale value in the A channel, respectively. A vol-
ume space coordinate xx,y,z ∈ [0,1]3 is translated to cache
texture coordinates x′x,y,z ∈ [0,1]3 in the fragment shader as:

x
′
x,y,z = xx,y,z ·bscalex,y,z · tw + tx,y,z, (1)

where tx,y,z,w is the RGBA-tuple from the layout texture cor-
responding to volume coordinate xx,y,z, and bscale is a con-
stant fragment shader parameter containing a global scale
factor for matching the different coordinate spaces of the
volume and the cache. When filling the layout texture, the
former is computed as:

tx,y,z =
(

b
′
x,y,z ·bres

′
x,y,z −ox,y,z

)

/csizex,y,z (2)

tw = 1.0, (3)

for a high-resolution brick, where b′ is the position of the
brick in the cache, bres′ is the storage resolution of the
brick, e.g., 343, and csize is the cache texture size in tex-
els to produce texture coordinates in the [0,1] range. For a
low-resolution brick, this is computed with tw = 0.5. The
offset ox,y,z is computed as:

ox,y,z = bx,y,z ·bresx,y,z · tw − tw, (4)

where b is the position of the brick in the volume, and bres

is the brick resolution in the volume, e.g., 323. The global
scale factor bscale is computed as:

bscalex,y,z = vsizex,y,z/csizex,y,z, (5)

where vsize is the size of the volume in voxels.

layout texture

cache texturevirtual volume

Figure 2: Mixed-resolution texture packing and address

translation from virtual volume space to physical cache tex-

ture space via the layout texture. Resolution levels are mixed

by packing low-res bricks tightly into high-res bricks.

c© The Eurographics Association 2008.

J. Beyer & M. Hadwiger & T. Möller & L. Fritz / Smooth Mixed-Resolution GPU Volume Rendering

4. Smooth Mixed-Resolution Interpolation

The most fundamental operation in direct volume rendering
using ray-casting or texture slicing is taking individual sam-
ples along viewing rays into the volume. This (re-)sampling
requires interpolating between the discrete samples (voxels)
at the grid positions. In order to avoid discontinuities, this
interpolation must reconstruct a continuous function. When
only a single resolution level is used, piecewise tri-linear in-
terpolation yields a continuous function, which is extremely
fast on current GPUs, where it can be performed automati-
cally when a 3D texture is sampled in the fragment shader.

However, when multiple resolution levels, i.e., bricks
of different resolutions, are mixed, obtaining a continuous
function usually requires matching sample positions and
modification of original sample values [WWH∗00]. Figure 3
shows the sample positions we are using in high-resolution
(yellow) and low-resolution (blue) bricks, respectively. In or-
der to allow a sample offset between resolution levels and
avoid modifying original samples, we employ the following
approach for (re-)sampling in the fragment shader:

• Sampling within bricks (at least 0.5 voxels away from the
boundary) is performed as usual, with hardware-native tri-
linear interpolation at the sample’s texture coordinates.

• Sampling at the boundary between bricks of different res-
olution warps the texture coordinates of samples within
0.5 voxels from the brick’s boundary in the brick of higher
resolution. Coordinates are warped according to special
interpolation primitives described in detail below.

Note that simply warping texture coordinates implies that the
actual interpolation is still carried out by the hardware at full
speed. Also, everything is performed on a per-sample basis,
i.e., no explicit vertices, vertex attributes, or actual interpo-
lation primitives are used. The primitives that ensure a con-
tinuous function in transition regions are only implicit, and
solely determine how texture coordinates must be warped.

4.1. Smooth Transition Interpolation

Figure 3 illustrates the different cases of interpolation be-
tween bricks of different resolution in 2D. The extension to
3D is conceptually straight-forward and described after the
2D case below. The actual interpolation functions that have
to be used in order to obtain a C0-continuous scalar func-
tion depends on the configuration/adjacency of low-res and
high-res bricks, all of which are depicted in Figure 3, apart
from symmetry. Samples in low-res bricks are shown as
black/colored crosses in blue bricks in Figure 3, and samples
in high-res samples as white/colored dots in yellow bricks.

When two bricks of different resolution levels are adjacent
to one another, the transition region that requires warping of
texture coordinates is a band of 0.5 voxels inside the brick of
higher resolution. A smooth function is guaranteed by mod-
ifying the texture coordinates in this band in such a way that
the hardware-native tri-linear interpolation actually carries
out a smooth warping between the two sample grids.

Consider the transition region shown in Figure 3 (2A). We
have to obtain a smooth interpolation between the high-res
samples inside the high-res brick above the brick boundary
(colored dots above the colored crosses), and the low-res
samples on the brick boundary (colored crosses). We apply
two different, smooth interpolation functions: (1) trapezoids
between two low-res and two high-res samples; and (2) tri-
angles between one low-res sample and two high-res sam-
ples. Trapezoids can be interpolated using bi-linear interpo-
lation, and triangles with linear (barycentric) interpolation.
However, for efficiency both must be mapped to hardware
bi-linear interpolation inside a square of four samples. Us-
ing bi-linear texture fetches in the transition region with the
warping of texture coordinates described below, the result
of bi-linear texture interpolation is the same as interpolating
within these trapezoids and triangles.

Figure 4 (top) depicts this mapping for a single trapezoid,
which can be used for any trapezoid in Figure 3 by using the
appropriate coordinate offsets. In order to obtain the desired
interpolation function with hardware-native bi-linear inter-
polation, coordinates within the trapezoid must be mapped
to a square in such a way that the same interpolation func-
tion results. Inside a trapezoid with the coordinate extents

1A

2A

3A

2B

3B

Figure 3: Basic configurations of mixed-resolution interpo-

lation in 2D transition regions. High-resolution bricks are

shown in yellow with white dots at the sample positions,

low-resolution bricks in blue with crosses at the sample po-

sitions. The figure focuses on the top-right high-resolution

brick (shown with its border of duplicated voxels in orange),

and the interpolation functions in its 0.5 texel border.

c© The Eurographics Association 2008.

J. Beyer & M. Hadwiger & T. Möller & L. Fritz / Smooth Mixed-Resolution GPU Volume Rendering

u = - 0.5 u = 0.0 u = 1.0 u = 1.5

v = 0.0

v = 0.5

v = 1.0

u’u

v v’

v = 0.0

v = 0.5

v = 1.0

u = 0.0 u = 1.0

u

v

u’

v’

orig high-res

low-res

orig high-res

modified high-res in
 duplicated border

Figure 4: Mapping texture coordinates within a trapezoid

(top) and triangle (bottom), respectively, to a square, such

that hardware bi-linear interpolation in the latter yields the

same result as (bi-)linear interpolation in the former.

given in Figure 4 (top left), the following mapping can be
used:

u
′ = (u+ v)/(1+2v), (6)

v
′ = 2v. (7)

The two top samples of the square in Figure 4 (top right)
are original, unmodified high-res samples. In contrast, the
two bottom samples of that square must be modified. How-
ever, these samples are duplicated voxels outside the high-
res brick, i.e., their modification does not change original
sample values. This is illustrated by the colored dots within
the orange duplication border in Figure 3. These samples
must be set to the values of the low-res grid at the bottom of
the trapezoid in Figure 4 (top left). This modification only
has to take place whenever the brick cache changes, i.e., is
performed entirely independent from the volume rendering
fragment shader. The details are explained in Section 4.3.

Figure 4 (bottom) depicts the analogous mapping for a tri-
angle, which can be used for any triangle in Figure 3 by us-
ing the appropriate coordinate offsets. Inside a triangle with
the coordinate extents given in Figure 4 (bottom left), the
following mapping can be used to map a triangle of height
0.5 to a triangle of height 1.0 embedded in a square such that
bi-linear interpolation within that square again yields the de-
sired interpolation function:

u
′ =

{

(u− v)/(1−2v) v 6= 0.5
u v = 0.5

(8)

v
′ = 2v. (9)

Again, the two top samples of the square in Figure 4 (bottom
right) are original, unmodified high-res samples, and the two
bottom samples of that square result from modification of
the voxels in the duplicated border. They are both set to the
value at the apex of the triangle in Figure 4 (bottom left).

In order to apply the two mappings above to any trape-
zoid or triangle in Figure 3, we start with texture coordinates
(ū, v̄) ∈ [0,1], where [0,1] maps to an entire brick. We then

shift the coordinates toward the center of the voxels in the
high-resolution brick and map [0,1] to the size of a single
voxel, instead of the entire brick, to obtain the local coordi-
nates (u,v):

u = fract(ū ·bw −0.5), (10)

v = fract(v̄ ·bh −0.5), (11)

where bw and bh are the width and height of the brick in
voxels, respectively.

Extension to 3D

Fortunately, the 3D case is almost a direct extension of the
2D case. In 3D, three different primitives must be used for
interpolation, which are shown on the left-hand side of Fig-
ure 5 (as top, front and side view). They fit together as il-
lustrated on the right-hand side of Figure 5 (as 3D and top-
down view). These primitives and the interpolation within
them can be computed from projections into 2D: The first
primitive (Figure 5a) is a truncated pyramid that can be
constructed from two trapezoid projections, computing the
interpolation using Equations 6 and 7. The second primi-
tive (Figure 5b) is a pyramid that can be constructed from
two triangle projections, computing the interpolation using
Equations 8 and 9. The third primitive (Figure 5c) can be
constructed from one trapezoidal projection and one trian-
gular projection, computing the interpolation using Equa-
tions 6, 7, 8, and 9. Therefore, checking the current sample’s
position in the 2D projections (front and side views in Fig-

a)

b)

c)

d)

e)

Figure 5: Smooth mixed-resolution interpolation in 3D. In

contrast to the 2D case, in 3D three different primitives have

to be used (a, b, c). However, all fragment shader computa-

tions can be performed in the 2D front and side projections

shown. In 3D, the primitives fit together as shown in d, e.

c© The Eurographics Association 2008.

J. Beyer & M. Hadwiger & T. Möller & L. Fritz / Smooth Mixed-Resolution GPU Volume Rendering

ure 5a,b,c), allows to unambiguously identify the primitive
the current sample point belongs to.

Primitive type precedence

As can be seen in Figure 3 for the 2D case, special care has
to be taken at the corners of bricks (i.e., corners and edges
in 3D). Depending on the resolution level of the surrounding
bricks different primitives have to be used for correct inter-
polation. Case 2A in Figure 3, for example, uses a triangle
at the leftmost part of the lower border, because the adjacent
brick on the left is in high resolution. In case 2B, however,
the adjacent brick on the left is in low resolution, which re-
sults in using a trapezoid at the leftmost part of the lower
border of the high-res brick. In 3D, there are even more con-
figurations how primitives can be combined in the corner of
a brick, as shown in Figure 6a,b,c. In this figure, we focus on
the lower left corner in the back of the brick, and assume that
there is a low-resolution brick directly below the displayed
brick. The figure shows the possible configuration of the dif-
ferent primitives to correctly interpolate samples at the lower
left corner, in the back. Figure 6a depicts the case where all
three surrounding faces of the corner are adjacent to low-res
bricks, in Figure 6b two faces are adjacent to low-res bricks,
and in Figure 6c only the bottom face is adjacent to a low-
res brick. If a high-res brick is only adjacent to a low-res
brick at an edge, there would be no face primitive (truncated
pyramid) needed, but an additional edge primitive instead. If
the low-res brick is only adjacent at the high-res brick’s cor-
ner, additional corner primitives would be necessary. Conse-
quently, if present, a face primitive always overrides an edge
primitive, which in turn overrides a corner primitive.

4.2. Volume Rendering Fragment Shader Modification

As described above, for smooth interpolation sampling in
the fragment shader must be modified in order to warp the
texture coordinates of samples in transition regions between
bricks of differing resolution. This is done as follows:

1. Determine whether the sample position is (1) in a high-
res brick; and (2) in from one to three of its six 0.5 texel
borders of faces adjacent to a low-res brick.

a) b)

c)

Figure 6: Different configurations of face, edge and cor-

ner primitives, depending on the adjacency configuration of

high-res and low-res bricks. Accordingly, the lower left back

corner is composed of different primitive types (a, b, c).

2. If it is, determine the primitive type the sample position
projects to via the two 2D projections (Figure 5) orthog-
onal to each relevant border. For example, for a face or-
thogonal to the z axis, the (x,z) and the (y,z) projections.

3. If the sample is contained in more than one border, e.g.,
at an edge, determine the primitive type that must be used
according to the primitive precedence described above.

4. Warp texture coordinates in the two 2D projections ac-
cording to Equations 6–9, and composite the results for
the final 3D coordinate, e.g., (x,z) and (y,z) to (x,y,z).

In order to distinguish all possible configurations of adja-
cency of high-res and low-res bricks efficiently (see Fig-
ure 3 for the 2D cases), we create a bit state of the 26-
neighborhood of each high-res brick whenever the cache lay-
out changes. A bit is set when a low-res brick is adjacent to
a face, an edge, or a corner, respectively. For simplicity, this
bit state is supplied to the fragment shader as an additional
small 3D lookup texture with one texel per brick, similar to
the 3D layout texture. This texture contains a 32-bit integer
value for each brick, encoding the 26 neighborhood bits.

4.3. Brick Cache Fixup

In addition to adapting texture coordinates for sampling in
the fragment shader, selected sample values must be modi-
fied in the brick cache in order to compute the smooth inter-
polation functions described in Section 4.1 between the cor-
rect source sample values. That is, whenever high-resolution
bricks are adjacent to low-resolution bricks in volume space,
the voxels in the duplicated border of high-resolution bricks
might need to be modified in order to perform the correct
interpolation. However, this modification solely depends on
the layout and resolutions of bricks in the cache, and thus
only needs be performed whenever the cache changes, e.g.,
due to a transfer function change. It is also completely in-
dependent from the volume rendering fragment shader and
therefore does not influence rendering performance.

Depending on the location of the low-resolution neigh-
bor, we either have to adjust the face, edge, or corner of the
adjacent high-resolution brick. Figure 7 shows the 2D case
where the left border of the high-resolution brick needs to be
modified because it is adjacent to a low-resolution brick in
volume space. Therefore, the duplicated border voxels of the
high-resolution brick have to be set to the same value as the
nearest low-resolution sample of the adjacent brick (shown
by the replicated crosses in the high-resolution brick).

Figure 7: Fixup of the high-resolution brick’s duplicated

border to the nearest sample of its low-resolution neighbor

in volume space, for smooth hardware-native interpolation.

c© The Eurographics Association 2008.

J. Beyer & M. Hadwiger & T. Möller & L. Fritz / Smooth Mixed-Resolution GPU Volume Rendering

Figure 8: Transitions between different resolution levels in an abdomen data set (512x512x1112). The upper images show the

original discontinuous transitions, whereas the respective lower images show the smooth transitions obtained by our method.

Far right: Overview of whole data set with high-resolution bricks colored in green.

To efficiently implement this fixup step on the GPU, an
additional reverse layout texture for address translation be-
tween the brick cache and virtual volume space is necessary.
Using this reverse address translation, we can look up the
volume coordinates for a given brick in the fragment shader
that does the fixup. Note that this is not the rendering frag-
ment shader, but an additional shader that is only invoked
once whenever the cache changes.

Whenever the brick cache is updated, all high-res bricks
that are adjacent to a low-res brick are marked. In order to
modify sample values in the duplicated borders where nec-
essary, we rasterize all marked bricks slice-by-slice and per-
form the fixup on each slice separately, either copying a 2D
slice buffer back into the 3D cache texture or directly ren-
dering into its slices. In the shader we check for each frag-
ment if it is located on the rasterized brick’s boundary. For
all boundary voxels, a reverse lookup is performed to fetch
the coordinates in virtual volume space. Translating those
volume coordinates back to the brick cache automatically
fetches the correct neighbor of the rasterized brick. Now we
only have to check if this neighbor is a low-resolution brick.
If this is the case, we overwrite the current sample’s value
with the sample from the low-resolution brick (using near-
est neighbor interpolation for the texture fetch in the low-
resolution brick). This simple scheme works well for frag-
ments on the brick’s border that are positioned on the brick’s
face (i.e., there is only one direct neighbor). For voxels on
the edges and corners we have to check all adjacent bricks
and perform the texture fetch on the first low-resolution brick
that we encounter. To fetch all adjacent bricks, the current
sample is first transformed to virtual volume coordinates and
then translated by one voxel in the virtual volume space, de-
pending on the adjacent brick we want to fetch. Performing
a lookup from volume space back to the cache brick yields
again the correct adjacent brick.

5. Results

We have tested our mixed-resolution volume rendering ap-
proach on large real world data. Figure 8 shows highly mag-

nified views (unshaded and shaded DVR) of a medical ab-
domen data set of size 512x512x1112 (16-bit voxels). Arti-
facts at brick boundaries of different resolution are clearly
visible using standard volume rendering (Fig. 8, upper im-
ages). Using our approach, however, a smooth and continu-
ous function can be obtained (Fig. 8, lower images).

Figure 9 shows an iso-surface rendering (first-hit raycast-
ing) of a high-resolution industrial CT scan of a metal ring
(1518x1518x232, 16-bit voxels). The magnified views show
the junction of two high-res and two low-res bricks. Again,
disturbing artifacts at the brick boundaries are visible in the
standard volume rendering (Fig. 9, left) whereas our method
(Fig. 9, right) obtains a smooth function. Table 1 lists the
framerates of both data sets, as tested on a Core 2 Duo with
3 GHz, 4 GB RAM and an NVidia Geforce GTX 280†.

Calculating the brick cache fixup step does not impose an
additional limitation of the frame rates, as this step is only
performed whenever the cache itself changes, e.g., after a
transfer function change. However, the brick cache can be
updated several times a second, if necessary.

† The framerates have been updated after paper publication time
due to shader optimizations.

Figure 9: High-resolution industrial CT scan of a metal ring

(1518x1518x232). Zoom-in: Junction of two low-res and two

high-res bricks. Discontinuous (left) vs. continuous (right).

c© The Eurographics Association 2008.

J. Beyer & M. Hadwiger & T. Möller & L. Fritz / Smooth Mixed-Resolution GPU Volume Rendering

Data set Fig. Resolution Cache Size Transition Discontinuous Smooth
Bricks unshaded shaded unshaded shaded

Abdomen 8 512×512×1112 512×512×512 29% 60 fps 41 fps 33 fps 9 fps
Ring 9 1518×1518×232 512×512×256 22% 65 fps 45 fps 35 fps 6 fps

Table 1: Frame rates of our mixed-resolution approach with and without smooth transitions between resolution levels obtained

by warping texture coordinates in the fragment shader. Measured for 512x512 viewport on a Geforce GTX 280.

6. Conclusion

In this paper we have introduced a mixed-resolution vol-
ume rendering approach for high-quality rendering of large
data. We use a downsampling scheme where the samples are
shifted by half a voxel in each dimension, permitting more
flexibility in the choice of downsampling filter kernels. Our
approach offers C0-continuous transitions between different
resolution levels by special handling of high-resolution brick
boundaries which are adjacent to low-resolution bricks. We
do this by warping the texture coordinates which are used for
hardware-native tri-linear interpolation of the sample’s value
during ray-casting. Prior to rendering, the duplicated voxels
in the border outside high-res bricks at each high-res/low-res
boundary are adjusted in the corresponding high-resolution
brick by a brick cache fixup step.

All the necessary steps to ensure continuous transitions
between resolution levels are implemented on the GPU and
offer interactive frame rates. Furthermore, we have described
an efficient texture packing scheme that allows to dynam-
ically store bricks of different resolution in the same large
3D cache texture.

In the future we want to integrate a LOD selection algo-
rithm into our system to reduce the screen-space error that
is introduced by rendering arbitrarily chosen low-resolution
bricks. Additionally, we want to perform an evaluation and
in-depth comparison of different multi-resolution schemes
for volume rendering, with the emphasis on memory con-
sumption, required overhead for sample replication at brick
boundaries, and sample placement for downsampling.

7. Acknowledgments

We thank Agfa Vienna and the Austrian Foundry Research
Institute for the data sets, and the Austrian funding agency
FFG for funding.

References

[BNS01] BOADA I., NAVAZO I., SCOPIGNO R.: Mul-
tiresolution Volume Visualization with a Texture-Based
Octree. The Visual Computer 17 (2001), 185–197.

[EMBM06] ENTEZARI A., MENG T., BERGNER S.,
MÖLLER T.: A Granular Three Dimensional Multires-
olution Transform. In Proc. of Eurographics/IEEE VGTC

Symposium on Visualization (2006), pp. 267–274.

[GS04] GUTHE S., STRASSER W.: Advanced Techniques
for High-Quality Multi-Resolution Volume Rendering.
Computers & Graphics 28 (2004), 51–58.

[KE02] KRAUS M., ERTL T.: Adaptive Texture Maps. In
Proc. of SIGGRAPH/Eurographics Workshop on Graph-

ics Hardware (2002), pp. 7–15.

[KW03] KRÜGER J., WESTERMANN R.: Acceleration
Techniques for GPU-based Volume Rendering. In Proc.

of IEEE Visualization (2003), pp. 287–292.

[LHJ99] LAMAR E., HAMANN B., JOY K.: Multireso-
lution Techniques for Interactive Texture-Based Volume
Visualization. In Proc. of IEEE Visualization (1999),
pp. 355–362.

[LKP06] LINK F., KOENIG M., PEITGEN H.-O.: Multi-
Resolution Volume Rendering with per Object Shading.
In Proc. of Vision, Modeling and Visualization (2006),
pp. 185–191.

[LLY06] LJUNG P., LUNDSTRÖM C., YNNERMAN A.:
Multiresolution Interblock Interpolation in Direct Volume
Rendering. In Proc. of Eurographics/IEEE-VGTC Sym-

posium on Visualization (2006), pp. 259–266.

[LLYM04] LJUNG P., LUNDSTROM C., YNNERMAN A.,
MUSETH K.: Transfer Function based Adaptive Decom-
pression for Volume Rendering of Large Medical Data
Sets. In Proc. of IEEE Symposium on Volume Visualiza-

tion and Graphics (2004), pp. 25–32.

[RSEB∗00] REZK-SALAMA C., ENGEL K., BAUER M.,
GREINER G., ERTL T.: Interactive Volume Render-
ing on Standard PC Graphics Hardware Using Multi-
Textures and Multi-Stage Rasterization. In Proc. of SIG-

GRAPH/Eurographics Workshop on Graphics Hardware

(2000), pp. 109–118.

[WE98] WESTERMANN R., ERTL T.: Efficiently Using
Graphics Hardware in Volume Rendering Applications. In
Proceedings of SIGGRAPH (1998), pp. 169–178.

[WKE99] WESTERMANN R., KOBBELT L., ERTL T.:
Real-time exploration of regular volume data by adaptive
reconstruction of iso-surfaces. The Visual Computer 15, 2
(1999), 100–111.

[WWH∗00] WEILER M., WESTERMANN R., HANSEN

C., ZIMMERMAN K., ERTL T.: Level-Of-Detail Volume
Rendering via 3D Textures. In Proc. of IEEE Symposium

on Volume Visualization (2000), pp. 7–13.

c© The Eurographics Association 2008.

