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Efficient Reconstruction from Non-uniform Point Sets

Abstract We propose a method for non-uniform recon-
struction of 3D scalar data. Typically, radial basis func-
tions, trigonometric polynomials or shift-invariant func-
tions are used in the functional approximation of 3D
data. We adopt a variational approach for the recon-
struction and rendering of 3D data. The principle idea
is based on data fitting via thin-plate splines. An ap-
proximation by B-splines offers more compact support
for fast reconstruction. We adopt this method for large
datasets by introducing a block-based reconstruction ap-
proach. This makes the method practical for large data
sets. Our reconstruction will be smooth across blocks.
We give reconstruction measurements as error estima-
tions based on different parameter settings and also an
insight on the computational effort. We show that the
block size used in reconstruction has a negligible effect
on the reconstruction error. Finally we show rendering
results to emphasize the quality of this 3D reconstruction
technique.

Keywords Non-uniform Reconstruction · Variational
Approximation · B-splines · 3D Object Modeling

1 Introduction

Regular (Cartesian) grids represent one of the most com-
mon data types in volumetric rendering. Although Carte-
sian grids are the standard for a wide variety of situa-
tions, many applications, including fluid dynamics, weather
modeling, Doppler measurements etc. use non-uniform
(irregular) grids. In such cases the use of non-uniform
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grids is feasible because we can represent regions of space
having little variation with fewer voxels, and regions with
rapid changes with more voxels.

While the reconstruction of Cartesian grids is well-
understood and can be solved via a convolution of tensor-
product kernels, the reconstruction of non-uniform data
is more expensive. In this paper we pursue the strategy
to build a regular Cartesian grid out of the non-uniform
grid before rendering the data. Therefore we can apply
standard, fast volume rendering algorithms for the dis-
play of the data. A list of previous work is provided in
Section 2.

We build our technique on previous work of Arigovin-
dan et al. [4], [5]. An overview of this approach is given
in Section 3. Although their results are very good, the
straightforward implementation of their technique for 3D
non-uniform data is often not feasible and introduces
problems regarding reconstruction errors and memory
requirements. In our work we propose to break-up the
reconstruction data into axis-aligned blocks to use this
method even for large data sizes.

The main contribution of this paper is the application
of the variational reconstruction approach of Arigovin-
dan et al. to volumetric data. In order to make this fea-
sible, we divide the non-uniform point cloud into an as-
sembly of blocks, so that each block can be reconstructed
separately. In order to deal with discontinuity problems
we overlap the blocks by a 2 voxel margin. The details are
found in Section 4. Therefore, we can work on datasets of
different sizes without memory constraints. A number of
results for various data sets are detailed in Section 5.
Since this paper presents a feasibility study, we have
not yet applied our work to actual non-uniform data.
It would be difficult to measure the error with respect to
the ”ground truth” for such data. Instead we have been
following the approach of Arigovindan et al. and pro-
duced non-uniformly sampled test cases given a Carte-
sian representation of the data set. This is achieved by
thresholding the gradient data after applying a Lapla-
cian filter.
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In Section 6 our work is summarized and ideas for
future research are given.

2 Related Work

Recent technological advances have improved the pro-
cess of 3D data acquisition. The amount and size of such
data is increasing steadily. This brings the necessity of
sampling such data adaptively, requiring more sophisti-
cated reconstruction and processing algorithms. Various
research in this area can be divided into several groups.

A common approach for dealing with non-uniformly
sampled data is (a finite element style approach) by first
polyhedralizing the given set of points and then ren-
dering the polyhedra through specific volume rendering
techniques. A seminal work in this direction was intro-
duced by Garrity [9], who used raytracing as a technique
for rendering the convex cells structured as tetrahedra. A
problem that arises is the proper visibility sorting. This
was addressed by a number of researchers, including Silva
et al. [21] and Weiler et al. [25]. However, visibility sort-
ing tends to be computationally expensive in terms of
time and memory.

Radial Basis Functions (RBFs) are another widely
used method for approximating non-uniform data by ap-
plying an implicit representation. Several RBF-based ap-
proaches have been proposed for applications related to
surface fitting, geometric modeling and visualisation of
3D scattered data [10], [12]. However these methods suf-
fer from high computational costs and also from smooth-
ing [10], [12]. Jang et al. [12] introduce an RBF approx-
imation technique for non-uniformly sampled data. The
centers and weights of the RBFs are found through an
iterative PCA-based clustering technique and truncated
Gaussians are used as basis functions. In their work it
is stated that the method has very high fitting times
and has best results for spherical structures. In order
to overcome these problems researchers have proposed
the use of ellipsoids instead of RBFs for sparse data fit-
ting [11], [18]. Jang et al. [11] improve on their previous
work by introducing non-uniformly sampled data encod-
ing via axis-aligned or arbitrary-aligned ellipsoids. Al-
though this method improves the results and the fitting
times, these issues are still not fully solved. Juba and
Varshney [13] propose a hierarchical RBF-based method
for uniform data fitting. Their technique is based on
Maximum Likelihood Estimation and since it is non-
iterative, it does not suffer from high fitting times. Their
method works on regular grids and its extension to non-
uniformly sampled data is non-trivial. Most of the above
mentioned approaches use truncated Gaussian functions
as basis functions, leading to artifacts in the regions
where the truncations occur. In our work we use com-
pact basis functions such as B-splines instead.

Several approaches using point-based approximation
techniques have been introduced in recent years. One

motivation behind this recent trend is that a point prim-
itive offers greater simplicity and detail than a small tri-
angle [27]. Most papers in this domain are related to sur-
face approximation and surface rendering [3], [8]. Alexa
et al. [3] introduce a ”lighter” point set, which is a sub-
set of the original data, obtained by a downsampling
technique based on moving least squares approximation.
They use this ”new” representation for accelerating and
improving their surface rendering algorithm. Our tech-
nique is similar to their approach with regard to the fact
that we initially also find a point subset from the origi-
nal data. As it will be shown next, this point subset gives
very good results with our approximation technique.

Welsh and Mueller [26] introduce a frequency-sensitive
point hierarchy where high frequency points are found
by means of a frequency-space analysis based on Ga-
bor wavelets. Our work is similar in the sense that we
also downsample the dataset by selecting high frequency
points, but for this we use a 3D Laplacian filter.

Lee et al. [15] use multilevel B-splines to compute
a C2 continuous surface from a set of irregularly sam-
pled data. Their algorithm is comparable to the one pre-
sented in this paper with regard to the use of a coarse-
to-fine two-scale relation of odd degree B-splines. Since
they do surface reconstruction they use bicubic B-spline
basis functions, opposite to the tricubic functions used
in this paper. Rössl et al. [20] introduce volumetric data
approximation using piecewise cubic polynomials. They
reconstruct uniform type-6 tetrahedra partitions of volu-
metric data. While their method is applicable only after
tetrahedra partitioning of the volumes, they report low
fitting times and their focus is mainly on iso-surface ren-
dering.

The decomposition of volumes into blocks and pro-
cessing them independently is a well-known technique in
signal processing, visualisation and computer graphics.
Tuncer [23] proposes a block-based signal reconstruction
from band-limited non-uniform samples using an inter-
polation based on the Discrete Fourier Transform. Ljung
et al. [16] propose an interblock interpolation technique
that enables direct volume rendering of block-based mul-
tiresolution volumes. Several approaches use volume sub-
divison into hierarchical blocks to accelerate volume ren-
dering [6] or to improve rendering quality by blending
renderings of blocks with different representations [14],
[17].

3 Variational Reconstruction - Overview

In this section we give a short introduction to the varia-
tional approximation approach via B-splines. For a deeper
insight into the method we refer the reader to Arigovin-
dan [4].

Non-uniform sampling and reconstruction techniques
have received special attention in recent years especially
for two dimensional image and signal data. Aldroubi and
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Gröchenig [2] and Aldroubi and Feichtinger [1] introduce
several mathematical concepts related to reconstruction
from non-uniform data in shift-invariant function bases.
Generally, if there is no restriction on the distribution
of the samples, the reconstruction is not uniquely de-
fined and hence is ill-posed. In such cases a variational
approach is used and the reconstruction routine is for-
mulated as an minimization of two terms: a) the sum of
squared errors, and b) the regularization term that con-
trols the smoothness of the solution. The first part guar-
antees that the solution is close to the sample points,
while the second part ensures that there are no discon-
tinuities in the reconstruction. In variational theory the
best results with regard to approximation accuracy are
given by RBFs, and particularly by a specific class of
basis functions known as thin plate splines [7]. While
thin-plate splines are one of the preferred approaches to
deal with multi-dimensional non-uniform data, they tend
to be computationally expensive when the number of
points increases significantly. To overcome this problem
it is proposed to discretize the thin-plate splines using
uniform B-splines attached to the reconstruction grid.
While this theory holds mathematically for one dimen-
sional signal reconstruction, for higher dimensions there
are no compactly supported B-splines that span the same
space as the thin-plate splines. However cubic B-splines
are very good candidates for the reconstruction process.

As described by Thévenaz et al. [22], B-splines have
several properties which make them very suitable for sig-
nal approximation. We mention properties such as easy
analytical manipulation, several recursion relations, the
m-scale relation, minimal curvature, easy extension to
quasi interpolation, simplicity of their parametrization
etc.. One basic feature, which makes B-splines very suit-
able in applications related to signal approximation, is
that they enjoy the maximal order of approximation for
a given integer support, providing the best quality for a
given computational cost.

Given a set of sample points, pi = (xi,yi,zi), i =
1,2,...,M, let fi be the scalar value associated with pi.
We define the B-spline approximation through the form

S(x, y, z) =

N−1
∑

k=0

N−1
∑

l=0

N−1
∑

m=0

ck,l,mβ
3
(x − k)β

3
(y − l)β

3
(z − m) (1)

where β3(x) is the cubic B-spline basis function. In order
to find the coefficients ck,l,m the following cost function
is minimized

C(S) =

∑

i

‖S(xi, yi, zi) − fi‖
2

+ λ

∫ ∫ ∫

‖D
p
S‖

2
dxdydz (2)

where λ is a parameter that together with the regular-
ization term DpS controls the smoothness of the solu-
tion. The crucial part of the variational technique is to
express the second term in equation 2 by means of the
first term. This can be achieved using Duchon’s semi-
norms which are represented by the second term in Eq.
2. These norms are a combination of the sum of partial

derivatives of a degree chosen respectively to the recon-
struction technique and in this case also to the spline
degree. We can express Eq. 2 with a simpler formulation
using the following representations:










c = [c0,0,0 . . . , cN−1,0,0, . . . , cN−1,N−1,N−1]

f = [. . . fi . . .]

Si,N2m+Nl+k = β3(xi − k)β3(yi − l)β3(zi − m)

(3)

where ck,l,m are the B-spline coefficients and N is the
size of the dataset in each dimension. The cost function
now can be rewritten as:

C(S) = ‖f − Sc‖2 + λcT Rc (4)

where R is a block-circulant filter that corresponds to a
regularization filter which is derived from the Duchon’s
semi-norm. By applying the Euler-Langrange functional
equation for variable c we have

[ST S + λR]c = ST f (5)

We denote A = ST S + λR and b = ST f for the sake
of simplicity. Equation 5 is well-posed and can be solved
through different numerical analysis methods. However,
being based on the basic feature of the two-scale relation
of odd degree B-splines Arigovindan et al. [5] proposed a
multigrid iteration algorithm for finding the solution to
the cost minimization problem. Considering the recon-
struction at different scales, we specify 2j as the scale
size and we have

Sj(x, y, z)=
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For j = 0 the reconstruction is at its full dimen-
sionality (N × N × N) and for j = 1 each dimension
is divided by two. Once we specify the desired resolu-
tion level, we can make use of the downsampling and
upsampling of the signal related to the two-scale rela-
tion of B-splines. The idea is to downsample the signal
to a coarser resolution, then solve equation 6 iteratively
and then upsample the signal for getting a finer resolu-
tion. The upsampled signal will serve as initialization for
the B-spline coefficients at a finer level of resolution. At
each level of resolution an error refinement scheme is ap-
plied. The multigrid scheme ensures the fast convergence
of Eq. 2 to its solution in each dimension. At the end this
scheme of course will give our desired reconstructed sig-
nal. The resolution coarsening can be defined through
the following equations:










Aj+1 = UT
j AjUj

Rj+1 = UT
j RjUj

bj+1 = UT
j bjUj

(7)

where U is a matrix representing the downsampling op-
eration which is achieved by convolving the signal with a
circulant matrix corresponding to the filter kernel of the
B-spline two-scale relation formula ([19] and [24]). Once
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Fig. 1 Rendering of the CT-Head dataset: a) original dataset, b) reconstructed dataset with no overlap between blocks, c)
reconstructed dataset with 4-voxel overlap between blocks. 20% of the original dataset points were used in b) and c). The
block size used is 128x128x128.

a coarser resolution signal is obtained the equation 5 is
solved through a Gauss-Seidel iterator. The advantage of
this multigrid interscale technique is that the solution in
the lower resolution is more efficient and faster. At the
end the upsampling operation is applied for getting the
target resolution.

4 Block Structure

A custom solution to the variational method with thin-
plate splines as basis functions would require the calcu-
lation of the weights as well as the centers of the ba-
sis functions. The linear system to find such a solution
is mostly ill-posed and has a poor numerical behavior.
For solving such a system, when M non-uniformly sam-
pled points are given, we have to deal with an O(M)
complexity. Once the weights are specified, the next step
would be to resample the thin-plate splines on a regular
grid, which will require an additional O(MN3) opera-
tions where N is the dataset resolution [4].

The method that we present in this paper has sev-
eral advantages over the thin-plate spline solution. Since
B-splines have a compact support the system is better
conditioned. Thanks to the multigrid interscale relation
the solution of the system is very efficient and the com-
plexity is reduced to O(N3). Furthermore, there is no
need for a resampling step since the samples at the grid
positions can be obtained by a simple filtering of the
B-spline coefficients. Hence, the reconstruction time is
dependent not on the number of non-uniform points but
on the size of the dataset.

One of the main problems of the variational method
is memory requirements. For each grid position we es-
timate the B-spline basis functions (β3(x), β3(y), β3(z)),
that vary in accordance with the point coordinates. Each
grid point is represented by four values (estimated from
the basis functions) for each dimension, hence we are
dealing with 4N × 4N × 4N data. Assuming floating
point numbers, for a dataset of size 256 × 256 × 256 we
will need 4GB of memory.

This bottleneck brought us to the idea of reconstruct-
ing the point set in blockwise fashion. One important
issue we faced in the straightforward implementation of
block-based reconstruction was the discontinuity prob-
lem between neighboring blocks. To overcome this prob-
lem we decided to extend the blocks in each direction
by a certain number of voxels. Taking into consideration
the local support of a cubic B-spline and also the recon-
struction results, we extended each block by two voxels
in each direction, having thus a 4-voxel overlap between
blocks. In Fig. 1 we show the rendering of the CT-Head
dataset with and without block-overlap. No visual dis-
continuities are present when we apply a 4-voxel block
overlap.

In order to improve performance, the implementation
of the variational method is based on reconstruction of
blocks with sizes that are a power of two. The size of a
block along each dimension for which the lowest recon-
struction time is required can be found through the fol-
lowing reasoning. If we denote with Nx one of the dataset
dimensions, e.g. its width, and 2Q is the maximum block
size dimension due to memory constraints, then the op-
timal block-size is 2Q−k where k minimizes the following
function:

f(k) =

⌈

Nx − L

2Q−k − L

⌉

∗ 2−k (8)

L is the overlap between blocks, ⌈x⌉ is the smallest inte-
ger greater or equal to x and (2Q−k − L) > 1.

5 Results

In order to create non-uniformly sampled data, we used
Cartesian data sets and adaptively sampled them, sim-
ilar to the approach of Arigovindan et al. [5]. For the
adaptive sampling of the data we used a 3D Laplacian
kernel (see Equation 9). After convolving the data with
this 3D filter we sorted the values according to their mag-
nitudes and retain only the ones that have the biggest ab-
solute values (i.e., 20% of all points in our experiments).
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Table 1 Reconstruction timings (in minutes) and RMS(%) errors for different block sizes applied to several datasets.

Dataset Timings(min) and RMS(%)

Name Size 16x16x16 32x32x32 64x64x64 128x128x128

Engine 256x256x128 4.23 — 2.20 2.40 — 2.26 2.88 — 2.24 4.97 — 2.24

Tooth 256x256x160 5.57 — 0.24 3.32 — 0.23 2.95 — 0.23 5.05 — 0.23

CT-Head 256x256x224 7.50 — 3.04 4.30 — 2.92 3.95 — 2.93 5.16 — 2.93

Carp 256x256x512 17.08 — 0.57 9.60 — 0.55 8.83 — 0.50 12.88 — 0.55

CT-Chest 394x394x240 17.78 — 1.33 10.73 — 1.31 9.65 — 1.31 9.83 — 1.32

Christmas-Tree 512x499x512 65.78 — 0.50 38.66 — 0.50 29.35 — 0.50 37.32 — 0.50

Stag-Beetle 832x832x494 177.15 — 0.32 91.36 — 0.31 79.23 — 0.31 95.56 — 0.31

This is equivalent to keeping the points on both sides
of boundary regions. Other filters could have been used,
but since the idea of non-uniformely sampled datasets is
to represent higher frequency regions with more points,
convolution with a Laplacian filter would result in a sim-
ilar effect.

L(x, y, z) =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
(9)

We have tested our method with a variety of datasets
and with different parameter settings. Since we obtained
the non-uniform representation from a Cartesian (high-
resolution) representation, we were able to measure the
error of the variational reconstruction. There are several
possible error measures. In our work we have chosen the
Root Mean Square error (RMS(%)) calculated as follows:

RMS(%) =

√

‖Vo − Vr‖

Nx × Ny × Nz

×
100

MAXV

(10)

where Vo and Vr are the original and the reconstructed
volumes, Nx, Ny and Nz are the dimensions of the vol-
ume and MAXV is the maximum value measured in the
original volume.

First we tested various block sizes in order to find
the optimal one. Here, optimal refers to minimal recon-
struction error and best timing performance. In Table
1 we show the reconstruction timings and errors of sev-
eral datasets for four different block sizes. As we found
in our results, the variation of block size has a negligi-
ble effect on the reconstruction errors. However, timings
are strongly dependent on the block size. According to
these results and the mathematical concept introduced
in the previous section, the optimal block size for most
of the datasets is 64x64x64. As we reduce the block size,
the overlap portion becomes decisive in the timing per-
formance. When 16 × 16 × 16 blocks are used the re-
construction timings are almost twice the timings of the
64 × 64 × 64 block-size cases.

The calculated errors for some well-known and widely
used datasets are given in Table 2. For each dataset we
take only 20% of the points from a Cartesian dataset af-
ter applying a Laplacian filter. Then we show the recon-
struction error and the timing (in minutes) required for

reconstructing the whole dataset from the non-uniform
point set. All the reported errors were computed with
a block-based reconstruction, except for the Neghip and
Hydrogen dataset, which have dimensions that allow non-
block-based reconstructions. The testings were done with
a Dual Core AMD Opteron 2.41GHz processor machine
with 8GB of RAM. Since our program is single threaded
we are using only one dedicated processor during the
reconstruction process.

Table 2 Reconstruction errors and timings (in minutes) for
the variational method. Each reconstruction is based on 20%
of the points of the original dataset. Optimal block size is
used in the reconstruction process.

Dataset Block size RMS(%) Timing

Neghip (64x64x64) 64x64x64 2.14 0.03

Hydrogen (128x128x128) 128x128x128 0.17 0.32

Lobster (301x324x56) 31x128x64 1.21 1.36

Statue Leg (341x341x93) 128x128x128 0.95 2.13

Engine (256x256x128) 64x64x32 2.24 2.38

Tooth (256x256x160) 64x64x64 0.23 2.95

CT-Head (256x256x224) 64x64x128 2.93 3.95

Foot (256x256x256) 64x64x64 2.16 4.80

Carp (256x256x512) 64x64x64 0.50 8.83

CT-Chest (394x394x240) 64x64x128 1.31 7.95

Christmas-Tree (512x499x512) 64x64x64 0.50 29.35

Stag-Beetle (832x832x494) 64x64x64 0.31 79.23

For the rendering of the datasets we have used Vol-
umeShop [6] which is an open source volume rendering
platform. The volumes are rendered with a GPU-based
raycaster with a sampling step of 0.25. For some of the
datasets the rendered images are shown in Fig. 2, 3 and
4.

In non-uniform reconstruction approaches which ap-
ply exact interpolation techniques, the number of points
used for reconstruction highly affects the reconstruction
error. In quasi-interpolation approaches like the varia-
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Fig. 2 Rendering of the Stag Beetle dataset (832x832x494). Original dataset (left) and reconstructed one (right) using 20%
of points. The RMS(%) error is 0.31.

Fig. 3 Rendering of the Carp dataset (256x256x512). Original dataset (left) and reconstructed one (right) using 20% of
points. The RMS(%) error is 0.5.

tional method that we have presented here there is al-
ways a certain limit where even if we increase the num-
ber of points the reconstruction error will remain stable.
This is strongly connected to the regularization parame-
ter which controls the smoothing. In our experiments we
concluded that we can achieve a stable reconstruction
rate when using 15%-20% of the points.

Smoothing is another factor that affects the recon-
struction error. Smoothing lowers the noise levels but
it also eliminates details in the data. A compromise is
required between accuracy and smoothness. In Fig. 5
we display the CT-Chest dataset for different levels of
smoothing. In the first reconstructed image there is too
much visual noise due to low smoothing. In the rightmost
image the high frequencies are removed due to the high
smoothing operator. Although we do not aim for a com-
pression technique, our method achieves a reduction of
up to 60% of the original dataset size when 20% of points
are kept for reconstruction. We do not apply any com-
pression technique, but just save the coordinates and val-
ues in a slice/row basis. The reconstruction error varies
with the dataset and the worst case scenarios were in the
range of 2-3%, which is comparable to other techniques
[11], [13], [26]. The reconstruction timings are difficult
to compare since previous papers have not reported tim-
ings for specific datasets. However, our method is several

orders of magnitude faster than other RBF-based recon-
struction techniques introduced by Jang et al. [11], [12].
Compared to the work of Juba and Amitabh [13] our
encoding timings are in the same range.

Fig. 4 Rendering of the Engine dataset (256x256x128).
Original dataset (left) and reconstructed one (right) using
20% of points. The RMS(%) error is 2.24.
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6 Conclusion and Future Work

In this paper we introduce a method for 3D non-uniform
data reconstruction based on a variational approach. We
present how to reconstruct on a uniform grid, datasets
that were given as point sets consisting of 20% of the
original number of points.

The algorithm is based on B-spline approximation.
B-spline coefficients are efficiently determined by mini-
mizing the approximation error at each sample point. A
tradeoff exists between the smoothness and the approxi-
mation accuracy depending on the number of points kept
for reconstruction. We also improved the variational re-
construction to overcome the memory constraints by in-
troducing a block-based approach and a simple control
over the continuity at block-boundary regions.

The next step in our research is to apply the pre-
sented technique to data originally given on a non-uniform
grid. Further research is needed to optimize and au-
tomatize the parameter settings controlling the smooth-
ness and reconstruction for different resolutions. A GPU-
implementation for fast reconstruction of non-uniform
data is another important issue we want to deal with
in our future research. All in all, we believe that this
approach opens new possible directions in the research
area of 3D non-uniform signal reconstruction and visu-
alization.
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Fig. 5 Examples of reconstructions using different levels of smoothing of the CT-Chest dataset (394x394x240). From left to
right: original dataset, data reconstructed with lower to higher levels of smoothing. The reconstruction errors (RMS(%) are,
respectively, 2.43, 1.34 and 1.76. 20% of the original data points were used.
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