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Abstract. We develop a segmentation technique for dynamic PET in-
corporating the physiological parameters for different regions via kinetic
modeling. We demonstrate the usefulness of our technique on fifteen
[ C]Raclopride simulated PET images. We show qualitatively and quan-
titatively that the physiologically based algorithm outperforms two clas-
sical segmentation techniques. Further, we derive a formula to compute
and visualize the uncertainty encountered during the segmentation.

1 Introduction

Positron emission tomography (PET) is a functional imaging technique that
measures local concentration of a radioactive tracer inside the body. In dynamic
PET imaging, a series of 3D images are reconstructed from list-mode data ob-
tained by Gamma coincidence detectors. Kinetic modeling is the process of ap-
plying mathematical models to analyze the temporal tracer activity, in order
to extract clinically or experimentally relevant information [I]. A set of kinetic
parameters, resulting from the solution of the inverse problem described by the
kinetic model, can describe the tracer behavior in a homogeneous region of a
tissue, such as the myocardium, or quantify the densities of the neuroreceptors
in the brain. Traditionally, the kinetic modeling process begins by marking a
region of interest (ROI) around different functional regions. The PET activity
is then averaged over the ROI at each time frame, and a single set of kinetic
parameters is estimated by fitting a single kinetic model to the time sequence of
average activities.

ROI delineation of functional regions is a tedious, time-consuming, and error-
prone task. Further, these delineations may vary depending on the quality of the
PET image data and suffer from inter- and intra-operator variability, which may
lead to inaccuracies in the estimated average time activity curve (TAC) and the
estimated kinetic parameters.

Several approaches have been proposed to identify various functional regions
in dynamic PET images. Barber extracted the principal components of a Gamma
camera dynamic study followed by factor analysis to identify the fundamen-
tal functional changes [2]. Di Paola et al. extended Barber’s work by applying



oblique rotation for the loading factors in order to be physiologically relevant [3].
Lin et al. used a Markov random field (MRF) model to differentiate cancerous
from normal tissues. They calculated the diagnostic hypoxia fraction and applied
spatial constrains to reduce the effect of noise in 2D images [4]. Gou et al. uti-
lized the activity histogram of the last frame, or the time-integration of TACs,
in order to remove inactive TACs prior to performing hierarchical TAC cluster-
ing [B]. Liptrot et al. used cluster analysis in order to extract the blood vessel
TAC as an alternative to blood sampling [6]. Recently, Kamasak et al. simulta-
neously clustered and estimated each cluster’s TAC directly from the projection
(sinogram) data, without the need for tomographic reconstruction [7].

All the previous methods consider the PET segmentation and the kinetic pa-
rameter estimation as two independent processes, although, in reality, they are
very tightly coupled. In other words, the dynamic PET data is first clustered into
different homogenous regions and then the kinetic modeling is performed based
on the average TAC for each region. Ideally, the segmentation of the dynamic
PET data into different functional regions should be based on the physiological
processes underlying each region. However, since the physiological processes are
captured via the kinetic parameters, and the estimation of kinetic parameters
relies on first defining the regions, this creates a dilemma: accurate kinetic param-
eter estimation requires a segmentation; ideal segmentation requires knowledge
of the underlying physiological parameters.

In this paper, we simultaneously segment the PET data and estimate the
physiological kinetic parameters in each region. An iterative procedure allows
us to deal with the dilemma stated above, where, upon convergence, the seg-
mentation will indeed be based on the underlying kinetic parameters and the
kinetic parameters will model the physiological process of each segment. Further,
an uncertainty visualization technique is presented to validate the segmentation
process.

We first briefly review kinetic parameter modeling (Section [2)) and the basic
building blocks for clustering TAC data (K-means, MAP-MRF) (Section [3). We
then detail our approach for simultaneous PET segmentation and kinetic param-
eter estimation (Section [4)) followed by the uncertainty visualization technique
(Section . In Section We describe the dataset used in our experiment. We
validate our approach and compare it to other standard approaches in Section [7]
In Section [8] we conclude with a discussion and future directions.

2 Kinetic Modeling

The PET tracer kinetics can be described using compartmental models [1]. Each
compartment describes a different state of the tracer molecule inside the body.
In brain PET imaging, the tracer molecule is injected through the blood and
then binds to brain receptors specific to this tracer, or metabolizes inside the
tissue. Once tracer paths between compartments are specified, the mass balances
between compartments are modelled using a set of ordinary differential equations



(ODEs). The ODEs for a corresponding two-tissue compartmental model are
described in Figure[I]
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Fig. 1. Two-tissue compartmental model described by 2 ODEs: dCy(t)/dt = ksC(t)—
ksCy(t); dCy(t)/dt = K1Cp(t) — k2Cy(t) — k3Cy(t) + kaCy(t).

Cp, Cy and Cy, are the plasma, intracerebral non-displaceable and specifically
bound receptor compartments, respectively. K; is the delivery rate constant
(mL/min/g), and ks, k3 and k4 are the first order kinetic rate constants (min=1!).
Since there is no radioactivity prior to scanning, the initial conditions Cf(0) =
Cy(0) = 0 are used. The estimated kinetic parameters (K; and ks, s € {2,3,4})
are the solution of the inverse problem capturing the relationship of the output
function (Cf(t) + Cy(t)) to the input function (Cp(t)) through the unknown
parameters [§]. The most common parameter estimation method is least-squares
estimation, which seeks the ks that, when inserted in the model’s ODEs, produce
the best fit to measured data. This can be obtained by minimizing the following
objective function:

T
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where T is the number of time activity measurements at a particular voxel
location. u(t) is the mean TAC for the functional region under consideration(i.e.,
mean Cf(t)+Cy(t) for each functional region). 114+ (t) is the model’s prediction of
tissue activity. i (t) can be estimated using an ODE solver based on numerical
differentiation formulas [9].

3 TAC clustering: K-means and MAP-MRF

We base our proposed methods on two basic techniques for segmenting TAC
into functional regions: Kd tree-based K-means (KMN) [10] and Maximum a
Posteriori MRF [I1]. The KMN algorithm iteratively minimizes the following
energy function
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where z; is the TAC at each voxel i (e.g. a time-sampled Cy(t) + Cp(t)). The
time index t is dropped for clarity. N is the number of voxels, L is the number of
classes and p; is the mean TAC for class j. The initial values of y; are provided
by user-defined seeds into different classes. We use the Lo norm as the similarity
metric between TACs.



In MRF, beside the image likelihood term in Equation [2] a regularizer for
contextual information can be added to discourage assigning different labels to
neighboring pixels. This can be done in the MRF paradigm by the following
energy function:
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where z,. is a TAC neighboring x; and R is the size of the neighborhood set. The
parameter 3 determines the influence of the regularizer. A is a binary function,
returning zero if its arguments belong to the same class and one otherwise.

4 Simultaneous Segmentation and Estimation of the
Kinetic Parameters

By applying the kinetic modeling process for the means p; of all L classes prior
to solving Equation [2| or we ensure that the resulting means will be the
means capturing the physiological phenomena under consideration, and not the
observed TACs from the PET data. To this end, we replace Equations [2] and
with two new objective functions described by Equations [f] and [5] respectively,
taking into consideration the kinetic model, as follows.
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terie is the activity TAC produced by solving the kinetic model for each region
mean activity p using Equation [I} The ks, resulting from the solution of the
model’s ODESs, are the kinetic parameters for each region. The original versions of
the KMN and MRF algorithms Equations[2]and [3|are extended to KMN-KM and
MRF-KM Equations [4 and [5} where the suffix ‘KM’ indicates the incorporation
of the kinetic model. The algorithm is summarized in Alg]T]

5 Uncertainty visualization

In order to qualitatively evaluate our method, we visualize the uncertainty en-
countered during the segmentation. We highlight regions where the measured
TAC is dissimilar from the kinetic model-based activity. The result of the seg-
mentation technique is assigning each TAC z; to a certain cluster j, each of which
has a class mean p;. For each z;, we consider ¢;; as a measure of uncertainty:
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Algorithm 1 KMN-KM and MRF-KM

Initialize p; , j = 1..L.
prit; <= find ks producing pgi¢; that is closest to p; in the LS sense Equation
repeat
new labels for each z; < applying KMN-KM Equation [ or MRF-KM Equa-
tion[f]V ;.
new jj , j = 1..L < recalculate each region activity means with the new
labeling.
wgit; < find ks producing prit; that is closest to p; in the LS sense Equation
until Convergence(No significant change in the ps;¢;)
Report the final values k2 , s = 1.4 and j = 1..L.

i = p51?
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This uncertainty measure ¢;; satisfies the two requirements:

ij

— if x; is 100% certain to belong to class j with mean p;, then we expect
x; = p; and therefore d;; = 0, which gives €;; = 0, i.e., no uncertainty, as
desired.

— if ; has equal probability to belong to all the clusters we would expect the
distance ||z; — p;|| to be equal, independent of the cluster j. Therefore d;;

= %, which gives ¢;; = 1, i.e., completely uncertain, as desired.

6 Materials and Implementation

We used the publicly available simulated PET dataset PET-SORTEO [12]. It
provides the ground truth labeling for each TAC. Fifteen [!C]Raclopride simu-
lated PET Brain studies accounting for inter-subject anatomical variability have
been used. Each data set has dimensions of 128 x 128 x 63 with 26 time steps: 6
with 30s interval, 7 with 60s interval, 5 with 120s interval and finally 8 with 300s
interval with voxel size of 2.11x2.11x2.42 mm?. Each dataset is clustered into 6
different regions (i.e. L = 6): Background BG, Skull SK, Grey matter GM, White
matter WM, Cerebellum CM, Putamen PN. We used a two-tissue compartmen-
tal model for its suitability for the modeling of ['!C]Raclopride datasets [13].

The implementation of our algorithms relies on the Insight Toolkit (ITK) E
The kinetic modeling process is based on the compartment model kinetic analysis
tool (COMKAT) [9].

7 Results and Discussion

Figure [2]left shows the input function simulated with PET-SORTEO which rep-
resents Cy(t) in Figure[1} Figure 2lmiddle shows the average TAC for each region
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Fig. 2. Left: Input function. Middle: Average TAC for each functional region in the
ground truth. Right: Average TAC for each functional region after applying the kinetic
modeling process to the ground truth.

calculated using the ground truth labeling. Figure[2lright shows the model fitting
average TAC for each region after applying the kinetic modeling process to the
ground truth. The difference between Figure 2lmiddle and Figure [2]right is due
to the physiological assumptions about the interaction between the tracer and
different tissues in the kinetic modeling process. We used the same initial seeds
for each functional region and the same (8 matrix in Equations [3] and [f] when
evaluating each of the four methods KMN, MRF, KMN-KM and MRF-KM.

Figure [3] shows qualitatively the comparison between the four algorithms for
slice #40 for patient01. It can be clearly seen that the WM is totally missing
in the KMN and MRF algorithms, but KMN-KM and MRF-KM were able to
capture it. Further, we see that PN is totally misclassified as WM but it is better
captured using the physiological information in KMN-KM and MRF-KM. In or-
der to compare between the algorithms quantitatively for the whole volume, we
applied the Dice metric [I4] to measure the overlap between different regions as
shown in Figure 4] It shows how the KMN-KM and MRF-KM algorithms out-
perform the classical algorithms KMN and MRF especially in the WM and PN
regions. The BG region is excluded from Figure [4]in order to compare between
the rest of the active regions, as all the algorithms perform quite well to capture
that region as seen in Figure 3]

It can be seen from the Dice metric that the physiological based algorithms
can capture the PN region, but the value is still low (~0.21). The reason for that
can be shown using the uncertainty visualization technique. Figure [5|left shows
the result of applying an uncertainty threshold value of ¢ = 0.5 to the ground
truth labeling after normalizing € for each region between 0 and 1. Voxels with
e < 0.5 are selected as “certain” and are rendered in normal colors (as in Fig-
ure(3). The remaining “uncertain” voxels are rendered in black. The area around
the PN region in the ground truth image is completely uncertain which explains
why it is completely misclassified in the classical algorithms and partially mis-
classified in the physiologically based algorithms. The uncertainty visualization
guides the user to regions of high uncertainty in the segmentation process as
shown in Figure [Blright. It shows the uncertainty image of the KNM-KM algo-
rithm with 50% uncertainty. Doctors are then able to intervene, utilizing their
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Fig. 3. Comparison between the four algorithms after 10 iterations, from left to right:
Slice # 40 from the axial view of the last time frame of the original PET dataset,
ground truth labeling, KMN, MRF, KMN-KM, MRF-KM.
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Fig. 4. Performance evaluation between the four algorithms using the Dice metric.

expert knowledge, to provide corrections and iteratively improve and validate
the results. The uncertainty metric failed to explain why there is higher confi-
dence in the PN voxels in the main arteries region in our segmentation result
in Figure [B]right. It resulted from the fact that the PN and main arteries have
very similar activities based on the TAC Lo distance used.

8 Conclusion and Future work

In this paper, we showed qualitatively and quantitatively that incorporating the
physiological model that describes the kinetics of the radioactive tracer into the
segmentation techniques produces better results over the classical segmentation
techniques. We also showed how we can visualize the uncertainty encountered
during the segmentation process. This provides an efficient way to incorporate
the user interaction and validate the segmentation results.

Our algorithm depends on the presence of the input function which describes
the amount of tracer into the plasma to fully solve the kinetic modeling process.
In clinical settings, invasive methods of extracting the input function are the
golden standard [I]. We plan to include the non-invasive kinetic models into
the segmentation technique. Further, we need to investigate the performance
of our algorithm with real datasets with different noise levels. Our uncertainty
visualization technique needs to be incorporated into an efficient user interaction
model for editing the segmentation results instead of the standard relabeling on
a per-voxel basis.
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Fig. 5. Uncertainty visualization. Left: Uncertainty image for the ground truth with
50% uncertainty showing complete uncertainty around the PN. Right: Uncertainty
image for the KMN-KM algorithm with 50% uncertainty. The background voxels are
colored in white to emphasize the uncertainty values in black.
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