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Abstract

We define a Delaunay mesh to be a manifold triangle mesh
whose edges form an intrinsic Delaunay triangulation or iDT
of its vertices, where the triangulated domain is the piecewise
flat mesh surface. We show that meshes constructed from a
smooth surface by taking an iDT or a restricted Delaunay
triangulation, do not in general yield a Delaunay mesh.

We establish a precise dual relationship between the iDT
and the Voronoi tessellation of the vertices of a piecewise
flat (pwf) surface and exploit this duality to demonstrate
criteria which ensure the existence of a proper Delaunay tri-
angulation.

CR Categories: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface,
solid, and object representations

Keywords: Delaunay triangulation (DT), intrinsic DT,
restricted DT, Voronoi diagram, Delaunay mesh

1 Introduction

The Voronoi diagram of a point set P in R
2 is a partition of

the plane into cells, one for each point, often called a site,
in P . The Voronoi cell of a site p ∈ P is the collection of all
points in the plane that are closer to p than to any other site
in P . The dual of the Voronoi diagram is obtained by con-
necting sites in P if and only if they lie in adjacent Voronoi
cells. If the sites in P are in general position, i.e. no four of
them are cocircular, then the resulting tessellation is a trian-
gulation of the point set, called the Delaunay triangulation,
and it is unique (see [de Berg et al. 1998]).

The concept of Delaunay triangulations can be extended
to higher dimensions, e.g., in R

3 we are concerned with a
Delaunay tetrahedralization (see [Shewchuk 1997]). Under
certain conditions it can also be extended to non-Euclidean
geometries. In particular the intrinsic Delaunay triangula-
tion or iDT of a sufficiently dense set of points on a Rieman-
nian manifold is well defined in terms of geodesic curves [Lei-
bon and Letscher 2000]. In this paper, we focus on the case
presented in [Bobenko and Springborn 2005]: Delaunay tri-
angulations of the vertex set of piecewise flat surfaces [Alek-
sandrov and Zalgaller 1967; Bobenko and Springborn 2005].
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Definition 1 (piecewise flat surface). A piecewise flat
surface or pwf surface (M, dM ) is a 2-dimensional differ-
ential manifold M , possibly with boundary, equipped with a
metric dM which is flat except at isolated points, the cone
points, where dM has cone-like singularities.

We show that the empty circumdisk property of Delaunay
triangulations can be used to establish a Voronoi-Delaunay
duality on pwf surfaces, which, to the best of our knowl-
edge, has not been done before. In general, the dual of the
Voronoi diagram will not be a proper triangulation (simpli-
cial complex). However, we observe that a proper Delaunay
triangulation is guaranteed if and only if the Voronoi dia-
gram satisfies the so-called closed ball property defined by
[Edelsbrunner and Shah 1994] (see Section 3.3).

A manifold triangle mesh is an example of a pwf surface
of practical interest. In general, the Delaunay triangulation
of the vertex set of a triangle mesh does not coincide with
the physical triangulation inherent in the mesh. We define a
Delaunay mesh to be a manifold triangle mesh whose physi-
cal triangulation is also its Delaunay triangulation. We show
that a mesh obtained from a smooth surface via an iDT or
as a restricted Delaunay triangulation is not in general a
Delaunay mesh. However, we argue that applying an edge
swapping algorithm to a mesh so produced is an effective
means of obtaining a Delaunay mesh.

1.1 Motivation

Intrinsic Delaunay triangulations of surfaces have made
recent appearances in the geometry processing literature.
Most notably, Bobenko and Springborn [Bobenko and
Springborn 2005] observed that the linear finite element dis-
cretization of the Laplace-Beltrami operator (the cot oper-
ator [Meyer et al. 2003]) has no negative edge weights on
a Delaunay triangulation. This is desirable, e.g. for con-
structing an injective parameterization [Floater 1998]. They
advocate constructing an iDT of the mesh surface and defin-
ing the cot operator in terms of that. Such a construction
was implemented and described in a later paper [Fisher et al.
2006], and it was shown that the condition number of the
operator can be significantly improved in most cases. This
improvement is beneficial to any application that involves
the numerical evaluation of elliptic PDEs on triangle mesh
surfaces. Examples include parameterization [Desbrun et al.
2002] and reaction diffusion textures [Turk 1991].

It was primarily these results that sparked our interest in
the notion of Delaunay meshes. As explained in [Fisher et al.
2006], constructing an iDT of a triangle mesh requires main-
taining a data structure to record the connectivity describing
the intrinsic triangulation in addition to the data structure
describing the triangle mesh itself. This implementational
burden would be unnecessary if the triangle mesh were itself
an iDT of its vertices: a Delaunay mesh.

We show that many modern surface reconstruction and
remeshing algorithms produce meshes that are quite close to



being Delaunay, thus only small adjustments need be made
in order to obtain a Delaunay mesh as a final product.

1.2 Contributions

In this paper,

• we establish the duality between the Voronoi diagram
and the Delaunay tessellation of a pwf surface (Sec-
tion 3.2);

• using this duality, we characterize, in terms of the
Voronoi diagram, meshes that admit a proper iDT (Sec-
tion 3.3);

• we present a natural definition of a Delaunay mesh
and show that it differs from meshes produced from a
smooth surface via the iDT or as a restricted Delaunay
triangulation (Section 4).

2 Related Work

In addition to the work of [Bobenko and Springborn 2005]
on iDTs of pwf surfaces, [Leibon and Letscher 2000] had ear-
lier studied the same problem on general Riemannian man-
ifolds. Both works relied on the empty circumdisk property
to define Delaunay triangulations whose edges are given by
appropriate geodesic arcs. In contrast to the planar case,
sampling density of the point set becomes relevant to en-
sure that the Delaunay triangulations are well-defined over
a manifold. To this end, [Leibon and Letscher 2000] resorted
to the notion of strong convexity radius as a means of con-
straining sampling density. Weak bounds on the number of
samples required to obtain a well-defined Delaunay triangu-
lation are presented in [Onishi and Itoh 2003], but the utility
of this work in practical applications seems limited.

Although many works exist that employ Delaunay con-
cepts and describe algorithms which produce meshes that
are close to being Delaunay, to the best of our knowledge, no
previous work has investigated Delaunay meshes as defined
here. There are two well-known mesh constructions that
have been referred to as Delaunay meshes: restricted De-
launay triangulations as studied by [Edelsbrunner and Shah
1994] and meshes obtained from an iDT of a surface, e.g.,
in [Peyré and Cohen 2003].

A remeshing algorithm from the first category was pre-
sented by [Chew 1993] where a Delaunay refinement tech-
nique was adapted to curved surfaces. This algorithm pro-
duced an approximate geodesic triangulation of the surface
with a guaranteed angle bound of [30◦, 120◦]; intersections of
the surface with a sphere are used in place of geodesic disks.
The resulting mesh turns out to be a restricted Delaunay
triangulation of the surface [Edelsbrunner and Shah 1994].
Restricted Delaunay triangulations have played an impor-
tant role in surface reconstruction. A prominent example
was presented by [Amenta and Bern 1998].

More recently, remeshing algorithms have appeared that
are based on geodesic distances on a surface. [Peyré and Co-
hen 2003] described a farthest point sampling method based
on geodesic distances. By taking the dual of the Voronoi dia-
gram of the sampled points, a triangulation is produced that
is a good approximation to the iDT of the sample points.

3 Delaunay Triangulations and Voronoi Di-

agrams on pwf Surfaces

In this section we review, in Section 3.1, the Delaunay trian-
gulation on a pwf surface as defined by [Bobenko and Spring-
born 2005] and then show in Section 3.2 that its duality with
the Voronoi diagram can be extended to this setting. In Sec-
tion 3.3, we discuss the properties of the Voronoi diagrams
of meshes that admit a proper Delaunay triangulation.

3.1 Delaunay Triangulations on pwf Surfaces

Defining a Delaunay triangulation of a discrete set P of
points, called samples, on a Riemannian surface S requires
more care than is needed in the planar setting. For example,
in the former, there may not be a unique shortest geodesic
between two points, or there may not be a unique geodesic
disk that has three given points on its boundary.

One approach is to put constraints on the density of sam-
ples on S. The idea is that in a sufficiently small neighbour-
hood a manifold is well approximated by a plane. Thus if
the samples are sufficiently close to each other, the obstacles
to defining a Delaunay triangulation will be avoided. This
is the approach developed by [Leibon and Letscher 2000].

Another approach is to constrain the types of surfaces and
samples under consideration. This is the approach that was
taken by [Bobenko and Springborn 2005] and is the one that
we will follow. This approach requires no explicit constraints
on the sampling density, but uses a weaker definition of a
triangulation than is traditional in differential geometry.

Definition 2. A tessellation of a compact Riemannian sur-
face S with respect to a finite discrete point set P is as fol-
lows.

Let E be a collection of curves on S, which form a con-
nected graph G whose vertex set is P , such that S − G is a
disjoint union of open subsets fi, each homeomorphic to a
disk. The elements of E are called edges of the tessellation.

The fi’s are called faces, and for each face there exists a
continuous map ϕi : γi → f̄i, where γi is a closed planar
polygon and f̄i is the closure of fi. The map ϕi is a home-
omorphism on the interior of γi, and is continuous on the
boundary and such that vertices of γi get mapped to elements
of P that lie on the boundary of fi. If γi is an n-gon, we
call fi an n-gon face, and in particular, if γi is a triangle,
then we also call fi a triangle face.

A triangulation is a tessellation in which all the faces are
triangle faces. A geodesic tessellation is a tessellation in
which all the edges are geodesics on the surface S.

Note that edges cannot cross in a tessellation. The map-
pings ϕi are not required to be injective on the boundary of
γ. In particular, two edges of γi may be mapped onto a sin-
gle edge in E. Likewise, the restriction of ϕi to the vertices
of γi is not required to be injective.

For the remainder of Section 3 we confine our attention to
a compact pwf surface M without boundary, on which the
finite set of sample points, P , includes all of the cone points
of M . We refer to the elements of P as vertices, emphasizing
that the model pwf surface we have in mind is a mesh.

On a pwf surface every point p has a neighbourhood that
is either isometric to a neighbourhood in R

2 or to a neigh-
bourhood of the apex of a single cone (if p is a vertex). A
manifold triangle mesh can be considered a pwf surface that
is isometrically immersed in R

3. However pwf surfaces are
a more general class of objects, and they do not necessarily



admit an isometric immersion in R
3; the flat torus is a well

known counter example [do Carmo 1976].
The Delaunay tessellation is defined in terms of empty

disks. An immersed empty disk is a continuous map φ : D̄ →
M , where D is an open disk in R

2 and D̄ is the closure of
D, such that the restriction φ|D is an isometric immersion
(i.e., every p ∈ D has a neighbourhood which is mapped
isometrically) and φ(D) ∩ P = ∅ (i.e., φ(D) is empty of
vertices).

We can think of φ as wrapping D on M , but it may wrap
around onto itself: φ is not injective in general. It should be
emphasized that φ is defined on the closure of D and that
only the image of D itself is required to be empty. Most of
the time we are working with empty disks that have elements
of P on their boundary, so that φ−1(P ) is non-empty.

Immersed empty disks are more convenient to work with
than geodesic disks since they allow us to work with ordinary
disks in the plane, with the caveat that the mapping φ is
not injective in general. Since M is flat in a neighbourhood
not containing cone points, we can always find an isometric
immersion φ whose image is a given empty geodesic disk and
if two immersions φ and φ′ have the same geodesic disk as
their image, then there will be a planar isomorphism T :
R

2 → R
2 such that φ = φ′ ◦ T .

Thus working with immersed empty disks is really equiv-
alent to working with geodesic disks. However, the former
allows us to place D wherever is convenient on the plane. In
particular, we have the following useful lemma, whose proof
is indicated in [Bobenko and Springborn 2005, Lemma 6].

Lemma 1. Suppose that φ : D̄ → M and φ′ : D̄′ → M are
two immersed empty disks with φ(D) ∩ φ′(D′) 6= ∅. Then

there exists a disk D̃ with D̃ ∩ D 6= ∅, an isometry T :
R

2 → R
2 with T (D̃) = D′, and an isometric immersion

φ̂ : D ∪ D̃ → M such that φ̂|D̄ = φ and φ̂| ¯̃
D

= φ′ ◦ T .

The Delaunay tessellation of P on M is defined by the
immersed empty disks φ : D̄ → M such that φ−1(P ) is non-
empty. If φ−1(P ) contains three or more points, then its
convex hull, conv[φ−1(P )], is a polygon and its image under
φ defines a face of the tessellation. If φ−1(P ) contains ex-
actly two points, then the image of conv[φ−1(P )] under φ is
an edge. It was established [Bobenko and Springborn 2005]
that these faces and edges do indeed describe a tessellation,
something that is not obvious a priori .

Note that if a face contains more than three vertices, the
diagonals of the face are not included in the tessellation.
To obtain a Delaunay triangulation, we triangulate all non-
triangular faces. A face of the Delaunay triangulation is
still contained in an immersed empty disk, but there may be
more than three vertices on the disk’s boundary.

We say that the vertices are in general position if there
exists no empty disk with more than three vertices on its
boundary. In this case the Delaunay tessellation is the
unique Delaunay triangulation of the vertices. The Delaunay
triangulation of P on M is often referred to as the intrinsic
Delaunay triangulation (iDT ) to emphasize that it is based
on geodesic distances on M and not distances in the ambient
Euclidean space.

Now, consider an arbitrary geodesic triangulation T of
the vertices of M . Since the triangles are empty of cone
points, they are intrinsically planar. Given an edge e of T ,
we can map the two triangular faces adjacent to e isomet-
rically onto the plane forming a quadrilateral with e as its
diagonal. Edge e is locally Delaunay if it is contained in a
disk that does not have the other two vertices of the quadri-
lateral in its interior. This is different from the immersed

empty disk criteria in that only two additional vertices of M
are considered. If the edge e is not locally Delaunay, we call
it NLD, as an abbreviation.

A convenient characterization of a locally Delaunay edge
is given in [Bobenko and Springborn 2005]: An edge is locally
Delaunay if and only if the sum of the two angles it subtends
does not exceed π. This follows from the fact that in a
quadrilateral whose vertices lie on a circle, opposite angles
sum to π. As in the planar case, the iDT can be obtained
by systematically swapping the geodesic edges that are NLD.
Namely, an NLD edge e is replaced by the edge e′ that is
the other diagonal (guaranteed to be locally Delaunay) of
the quadrilateral defined by the triangles adjacent to e. This
algorithm runs in O(n2) time, n being the number of vertices
in the mesh. The proof described in [Shewchuk 1997] holds
without modification to the case of a fixed pwf surface.

For our purposes, we are primarily concerned with the
iDT of the vertex set on a mesh. A triangle mesh comes
with an inherent triangulation defined by its faces and edges.
We refer to this as the physical triangulation of the mesh,
and in particular, the edges of the mesh are physical edges.
This is to distinguish it from the iDT of the mesh vertices
on its surface; we simply call it the iDT for brevity. The
iDT consists of geodesic edges that do not correspond to the
physical edges in general. We define a Delaunay mesh as
a triangle mesh whose physical triangulation coincides with
the iDT of its vertices.

3.2 Voronoi Diagrams on pwf Surfaces

In this section we examine the Voronoi diagram of a pwf
surface and its relationship with the Delaunay tessellation.
Recall that we are restricting our attention to compact pwf
surfaces without boundaries. Thus the Hopf-Rinow theo-
rem [do Carmo 1976] assures us that a minimal geodesic
exists between any two points.

The Voronoi diagram of a set of samples P on a pwf sur-
face (M, dM ) divides M into Voronoi cells, one for each p ∈
P , defined by V(p) = {q ∈ M |dM (p, q) ≤ dM (s, q),∀s ∈ P}.

Definition 3. A Voronoi vertex is a point q ∈ M that has
three or more distinct geodesics realizing the minimum dis-
tance from q to P . A Voronoi edge is a curve C terminating
at Voronoi vertices and such that every point q on C has ex-
actly two geodesics realizing the minimum distance from q to
P . C is called an internal Voronoi edge if both the minimal
geodesics connect with some common vertex in P .

Note that a point q in the interior of V(p) is characterized
by having a unique minimal geodesic connecting it with p.

An equivalent view of Voronoi edges and vertices is via
the immersed empty disk property: If φ : D̄ → M is an
immersed empty disk with centre c and with φ−1(P ) con-
taining three or more points, then φ(c) is a Voronoi vertex.
If φ−1(P ) contains exactly two points, p and q, then c lies
on a Voronoi edge, and it is an internal edge if φ(p) = φ(q).

According to this view each Voronoi vertex is associated
with a face in the Delaunay tessellation via the immersed
empty disk that defines them both. Thus there is a finite
number of Voronoi vertices. However, a Voronoi vertex is not
necessarily associated with distinct samples and a Voronoi
edge may terminate at the same Voronoi vertex at both ends.

To see that Voronoi edges are geodesics between Voronoi
vertices, let φ : D̄ → M be an immersed empty disk with
{p, q} = φ−1(P ) and c ∈ D the centre. Thus φ(c) lies on
some Voronoi edge C. Since there are only two vertices on
the boundary of φ(D), we can find some ǫ and (exploiting



Lemma 1) another immersed empty disk φ′ : D̄′ → M with
centre c′, dR2(c, c′) = ǫ and with {p′, q′} = φ′−1(P ) such that
φ′(p′) = φ(p) and φ′(q′) = φ(q). Then any point c̃ on the
line segment [c, c′] will be the centre of an immersed empty

disk φ̃ : ¯̃D → M whose image is contained in φ(D̄) ∪ φ′(D̄′)
and thus has φ(p) and φ(q) as the only points of P on its
boundary. In other words, [c, c′] lies on the Voronoi edge C.

The image of [c, c′] under the joint mapping φ̂ (lemma 1) is
geodesic, since [c, c′] is a geodesic in the plane.

Lemma 2. A Voronoi cell is topologically a disk if and only
if it contains no internal edges.

Proof. Let q ∈ V(p) and assume that there are two minimal
length geodesics, α and β, connecting p with q. Suppose
that V(p) were a topological disk. Together α and β define a
closed curve contained in V(p). Let U be the region bounded
by α and β. Then there is an isometric embedding ϕ : U →֒
R

2. But then ϕ(U) would be a region in the plane bounded
by two geodesics (line segments) between ϕ(p) and ϕ(q).
Thus U must be empty and α = β.

Conversely, if V(p) is not a disk then since it is compact
it has a smallest closed geodesic through p in a non-trivial
homotopy class [Leibon and Letscher 2000]. The midpoint
on this loop then has two distinct geodesics realizing the
minimal distance to p and thus lies on an internal edge.

Since a minimal closed geodesic in V(p) must pass through
an internal edge, the interior of V(p) – that part which re-
mains when we remove all Voronoi edges – is a topological
open disk. Note also that we cannot have a Voronoi edge
that is a closed loop not containing any Voronoi vertices. If
such a loop were to exist, it would have to be the unique
boundary between two Voronoi cells that were both topo-
logically disks (otherwise an internal or other edge would
create a Voronoi vertex). Therefore M must have only two
vertices and be topologically a sphere. If such a pwf surface
exists, it certainly cannot be realized as a mesh and it will
not concern us here. These observations demonstrate that
the Voronoi diagram can be viewed as a tessellation. The
faces of the tessellation are the interiors of the Voronoi cells.

We now turn our attention to the duality relationship be-
tween the Delaunay tessellation and the Voronoi diagram.
A nice thing about pwf surfaces is that if φ : D̄ → M is
an immersed empty disk, and φ−1(P ) = {p, q}, then there
is a unique geodesic between φ(p) and φ(q) contained in the
image of φ; it is the image of the line segment between p and
q. In other words there is only one possible edge contained
in an empty disk with two samples on its boundary.

Furthermore, the image of the centre of D lies on a
Voronoi edge C. If e = [φ(p), φ(q)] is the Delaunay edge
defined by φ, then we say C is the Voronoi edge associated
with e and vise versa. The following lemmas demonstrate
that this association is exclusive.

Lemma 3. There is a unique Delaunay edge associated with
each Voronoi edge.

Proof. Suppose that e = [a, b] and e′ = [a, b] are two Delau-
nay edges associated with the Voronoi edge C. Let u and
u′ be the centres of the empty geodesic disks containing e
and e′, respectively. Now centred at every point between u
and u′ on C there is an empty immersed disk with a and
b on its boundary. Two such disks, if they are sufficiently
close to each other, must contain the same Delaunay edge
(we can appeal to Lemma 1). Thus we can push the disk
centre from u to u′ while always keeping e in the empty disk.
As a result, we must have e′ = e.

Lemma 4. Different Voronoi edges are associated with dis-
tinct Delaunay edges.

Proof. Let e = [a, b] be a Delaunay edge and suppose that
it is contained in two different empty immersed disks φ :
D̄ → M and φ′ : D̄′ → M . By Lemma 1 we can assume
that D ∩D′ contains a line segment whose image under the

combined map φ̂ is e. We have p, q ∈ ∂D∩∂D′ with φ̂(p) = a

and φ̂(q) = b. Let c and c′ be the centres of D and D′,
respectively. Then centred at any point on the line between
c and c′ there is a disk D̃ that is contained in D ∪ D′ and
touching p and q on its boundary. The restriction of φ̂ to
D̃ defines an immersed empty disk. Therefore there is no
Voronoi vertex between c and c′ and thus they must lie on
the same Voronoi edge.

The results of this section are summarized in Theorem 1,
establishing a Voronoi-Delaunay duality on pwf surfaces.

Theorem 1. Considered together with its internal edges,
the Voronoi diagram of the vertices of a pwf surface is a tes-
sellation. Further, the empty circumdisk property defines a
one-to-one correspondence between the edges of the Voronoi
diagram and the edges of the Delaunay tessellation.

3.3 Proper Triangulations

A triangulation is proper if it is the realization of a simpli-
cial complex. In general, the iDT on a pwf surface need not
be proper, however we have shown [Dyer et al. 2007] that,
if the vertices are in general position, a necessary and suffi-
cient condition for the iDT to be proper is that the Voronoi
diagram be well formed. That is, each Voronoi cell

1. is a topological disk;

2. meets each neighbour at a single contiguous edge;

3. has at least three distinct Voronoi neighbours.

In the study of restricted Delaunay triangulations, [Edels-
brunner and Shah 1994, lemma 4.1] showed that a manifold
restricted Delaunay simplicial complex (see Section 4.2 for
definitions) would result if the restricted Voronoi diagram
satisfies the closed ball property. On a 2-manifold without
boundary this yields three conditions [Amenta et al. 2000]:
(1) Each Voronoi cell is a closed topological 2-ball, (2) The
intersection of two Voronoi cells is either empty or a closed
1-ball and (3) The intersection of three or more Voronoi cells
is either empty or a closed 0-ball (a single point).

The first two conditions are identical to the first two con-
ditions of well formedness. In fact, a Voronoi diagram that
does not satisfy the closed ball property is not well formed
and vise versa: the criteria are equivalent. Indeed if V(p)
has only two neighbours, V(q) and V(r), then the intersec-
tion of these three cells will consist of two distinct points: a
violation of the third closed ball condition. If a cell has only
one neighbour then its neighbour is not a topological disk:
properties 1 and/or 2 are violated.

Conversely, if a Voronoi diagram does not satisfy the third
closed ball condition, then there are three cells intersecting
at more than one distinct point. Assuming the first two
conditions are satisfied, this means that the intersection of
any two of the cells is a topological 1-ball. So the intersection
of V(p)∩V(q) with V(q)∩V(r) is two points; they must have
common endpoints. If V(q) is a topological 2-ball, it can only
have two neighbours: V(p) and V(r).

Note that the closed ball property also implies that the
samples are in general position since if more than three



Voronoi cells are incident to a Voronoi vertex we would have
two cells whose intersection is a single point.

The iDT of a pwf surface admits edges which loop around
to terminate at a single point as well as multiple edges be-
tween two vertices. Such pathologies cannot appear in re-
stricted Delaunay triangulations where the edges are strictly
Euclidean line segments. Nonetheless, the closed ball prop-
erty is necessary and sufficient to tame them both:

Theorem 2. Let M be a pwf surface with vertex set P . The
intrinsic Delaunay triangulation of P on M is proper if and
only if the intrinsic Voronoi diagram of P on M satisfies the
closed ball property.

4 Delaunay Meshes

The restricted Delaunay triangulation and the iDT of a sur-
face are two well-known means of producing triangle meshes.
In this section, we investigate the difference between these
constructs and Delaunay meshes as defined in our paper.
Towards the end, we briefly discuss how their similarities
can be exploited so as to produce Delaunay meshes.

4.1 Relation to Intrinsic Delaunay Triangulations

We can construct a geodesic Delaunay triangulation of some
(relatively) smooth surface as a preliminary step to produc-
ing a mesh: the vertices of the geodesic triangulation will
be the vertices of the mesh, and the mesh connectivity is
implied from the edges of the geodesic Delaunay triangula-
tion. This is how the remeshing algorithm of [Peyré and
Cohen 2003] works for example. It can be expected that
most of the edges in a mesh M produced in this way will be
locally Delaunay if the sampling is adequate. However, no
matter how dense the sampling is, the final mesh M need
not be a Delaunay mesh. The transformation from a smooth
surface S to a piecewise linear mesh comes at the cost of a
geometric approximation error. This distortion can cause a
geodesic Delaunay edge on the original surface to become an
NLD edge when it is realized as an edge in M .

To construct an example of this, consider a planar quadri-
lateral puqv such that all four sides are of equal length and
the opposite angles are equal, i.e., ∠upv = ∠uqv and ∠puq =
∠pvq. Thus puqv is a diamond. Suppose further that one of
the diagonals is slightly shorter than the other. Specifically,
let |e| = |[p, q]| = ℓ and |e′| = |[u, v]| = ℓ+ǫ. For the symmet-
ric quad puqv, the longer diagonal edge e′ is NLD since it is
subtended by larger angles, i.e., ∠upv+∠uqv > ∠puq+∠pvq.

Consider a cylinder S of radius r. Allow the quadrilateral
to hinge on the diagonal e′ and place its four vertices on
the cylinder so that e′ is parallel to the axis of the cylinder
(Figure 1(a)). In the geodesic realization of the quadrilat-
eral, the geodesic diagonal corresponding to e, drawn as the
short circular arc between p and q in Figure 1(a), will have
length s = 4r arcsin( ℓ

4r
) (see Figure 1(b)). Thus its length

will be longer than that of the other diagonal e′ on the sur-
face of S, where |e′| = ℓ + ǫ, as long as ℓ

4r
> sin( ℓ+ǫ

4r
). This

is realizable for a sufficiently small ǫ, even though sampling
density requirements may constrain the size of ℓ

4r
.

Indeed, as long as ℓ

4r
> 0 and in range, we can select ǫ

such that 0 < ǫ < arcsin( ℓ

4r
) − ℓ

4r
. In practice, ǫ can be

arbitrarily small while the samples would still technically
be in general position. A small ǫ corresponds to Voronoi
vertices that are very close together. In this case, e′ is the
locally Delaunay edge on the surface of the cylinder S and
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Figure 1: The cylinder example to illustrate the discrepancy
between iDTs and Delaunay meshes. (a) In a quadrilateral
with opposing angles equal and all sides equal, the longer
diagonal edge is NLD. When the quadrilateral lies in the
plane, this is edge e′ = [u, v], but in its geodesic realization
on the cylinder, the other diagonal, the (geodesic) circular
arc [p, q], is longer and therefore NLD. (b) A cross-sectional
profile of the cylinder at edge e = [p, q].

present in the Delaunay triangulation of S. But it is NLD
in its mesh realization M , which would not be Delaunay.

Note that a similar example could be constructed if S were
a pwf surface [Dyer et al. 2007]. In other words, if we were
to take a given mesh M and produce a new mesh M ′ with
the same vertices, but with connectivity defined by the iDT
of M , then M ′ would not be a Delaunay mesh in general,
even if M has a well formed Voronoi diagram.

4.2 Relation to Restricted Delaunay Triangulations

The restricted Delaunay triangulation of a surface on a sam-
ple set is a subset of the 3D Delaunay tetrahedralization of
the sample points and is a fundamental construct underlying
many surface reconstruction algorithms. Using similar argu-
ments as for iDTs we can show that the restricted Delaunay
triangulation is not a Delaunay mesh in general.

The restricted Delaunay triangulation is defined in terms
of the restricted Voronoi diagram. Let P be a set of sam-
ples on a surface S in R

3. For p ∈ P , let V (p) = {x ∈
R

3| ‖x − p‖ ≤ ‖x − q‖ , ∀q ∈ P} denote the 3D Voronoi cell
of p. The restricted Voronoi diagram of P with respect to S
is the partition of S into the closed cells V(p) = V (p) ∩ S,
which are the restrictions of the 3D Voronoi cells to S.

The restricted Delaunay triangulation of P with respect
to S is the dual of the restricted Voronoi diagram. This
dual is made up of Euclidean simplices. Specifically, an edge
e = [p, q] belongs to the restricted Delaunay triangulation if
and only if V(p) ∩ V(q) 6= ∅. Note that e is the straight line
segment connecting p ∈ P and q ∈ P in R

3.
In order to construct an example where the restricted De-

launay triangulation yields an edge that is NLD in the result-
ing mesh, we again make use of the diamond-shaped quadri-
lateral puqv as defined in Section 4.1. Let the quadrilateral
be bent at the NLD edge e′ = [u, v] by an angle of 2α and
inscribe the vertices u, v, p, q on an ellipsoid S such that e′ is
parallel to the principle axis of S, as shown in Figure 2(a).
It is not hard to show that the circumcentre (centre of the
circumsphere) of the tetrahedron puqv, which we denote by
c, lies outside of the tetrahedron. Furthermore, c sits right
above the midpoint of e′ and let it be at a distance z away.

Simple trigonometry yields z = (ǫ + ǫ
2

2ℓ
)/(2 sin α).

Although sampling density constraints, i.e., those which
respect Amenta’s local feature size criteria [Amenta and
Bern 1998], can force α > 0 to be small, we can still make
z > 0 arbitrarily small by choosing a sufficiently small ǫ
(for fixed ℓ, α remains positive while ǫ goes to zero). Since
there is a gap between the ellipsoid surface S and edge e′, we
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Figure 2: The ellipsoid example to illustrate the discrepancy
between restricted Delaunay triangulations and Delaunay
meshes. (a) The geometry of the tetrahedron puqv inscribed
in an ellipsoid S. (b) A cross-sectional profile of the ellipsoid
perpendicular to edge e′, where c is the circumcentre of the
tetrahedron and it lies above e′ but inside the ellipsoid.

can make c lie inside the ellipsoid, as shown in Figure 2(b).
Consequently, S would pass above the circumcentre c.

Now consider the 3D Voronoi cells V (u) and V (v). The
face f which separates them lies on a plane which is a per-
pendicular bisector of edge e′. This face extends upwards to
infinity and must pass through the circumcentre c, as c is
equi-distant to u, v, p and q. Since c is inside the ellipsoid
S, the surface of S must intersect face f . It follows that
the restricted Voronoi cells V(u) and V(v) are neighbours
and the NLD edge e′ = [u, v] would appear in the restricted
Delaunay triangulation; this completes our construction.

4.3 Producing Delaunay Meshes

The examples described in Sections 4.1 and 4.2 showed that
the intrinsic and restricted Delaunay triangulations may
yield edges that are NLD when four sample points lie close
to a geodesic circle. This occurs when two Voronoi vertices
are very close together, i.e., the samples are “almost not in
general position”. A Delaunay mesh could be guaranteed if
a sampling criteria were developed that gave a lower bound
on the distance between Voronoi vertices.

Alternatively, a Delaunay mesh may be produced with
a post-processing step of edge swapping on one of these
meshes. If the sample density is constrained by the local
feature size [Amenta and Bern 1998] then the tetrahedra in-
volved in the examples of Sections 4.1 and 4.2 will be slivers
and the geometric distortion introduced by an edge swap
will be small. Such edge swaps reduce the surface area of
the mesh [Dyer et al. 2007] thus termination is assured. It is
possible however that an edge is unswappable since its coun-
terpart already exists in the mesh; such a situation occurs
only in the presence of a Voronoi diagram that is not well
formed, an indication of poor sampling [Dyer et al. 2007].

5 Discussion and Future Work

In studying the relationship between the intrinsic Delaunay
triangulations, the restricted Delaunay triangulations, and
Delaunay meshes we have shown that for a given surface S
and a set of samples P on S, these objects can differ re-
gardless of sampling density. However, suppose that S is a
Delaunay mesh and P , its vertex set, is sufficiently dense so
that the restricted Voronoi diagram is well formed. Then
in this case, the restricted Delaunay triangulation and the
intrinsic Delaunay triangulation both coincide with the tri-
angulation defined by the physical edges of the mesh.

In future work we will investigate quantitative sampling
criteria that would eliminate topological obstructions to De-

launay meshes. When such criteria are met, a Delaunay
mesh can be obtained from an initial mesh by edge swap-
ping [Dyer et al. 2007]. We are also working to develop a
robust algorithm to produce Delaunay meshes from initial
meshes which are not sufficiently well sampled.
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