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ABSTRACT

This paper presents a user study of the visual quality of an imaging
pipeline employing the optimal body-centered cubic (BCC) sam-
pling lattice. We provide perceptual evidence supporting the the-
oretical expectation that sampling and reconstruction on the BCC
lattice offer superior imaging quality over the traditionally popular
Cartesian cubic (CC) sampling lattice. We asked 12 participants
to choose the better of two images: one image rendered from data
sampled on the CC lattice and one image that is rendered from data
sampled on the BCC lattice. We used both synthetic and CT vol-
umetric data, and confirm that the theoretical advantages of BCC
sampling carry over to the perceived quality of rendered images.
Using 25% to 35% fewer samples, BCC sampled data result in im-
ages that exhibit comparable visual quality to their CC counterparts.

CR Categories: G.1.2 [Numerical Analysis]: Approximation—
Spline and piecewise polynomial approximation; H.5.m [Infor-
mation Interfaces and Presentation]: Miscellaneous; 1.4.5 [Image
Processing and Computer Vision]: Reconstruction; 1.4.10 [Im-
age Processing and Computer Vision]: Image Representation—
Volumetric.

Keywords: optimal sampling and reconstruction, perceptual im-
age quality, body-centered cubic (BCC) lattice, Cartesian lattice

1 INTRODUCTION

For sampling volumetric data, the body-centered cubic (BCC) lat-
tice possesses attractive theoretical advantages over the commonly
used Cartesian cubic (CC) lattice. Although both lattices provide
a regular sampling of 3D space, for a given number of samples,
the BCC lattice preserves more of the signal. Further, in an im-
portant sense, BCC sampling is theoretically optimal: a mathemat-
ically equivalent signal quality can be achieved with fewer BCC
samples than CC samples. In this paper, we provide empirical evi-
dence to complement these mathematical arguments, showing that
BCC sampling can provide visually comparable results using only
about 70% of the samples required for a CC lattice. A consequence
of practical importance is that, if the same number of samples are
taken on the BCC lattice, the resulting visualization provides sub-
stantial improvements in accuracy.

A detailed discussion of the mathematical similarities and differ-
ences between BCC and CC lattices is provided in the papers by
Entezari et al. [2, 3]. To summarize, the arguments focus on sig-
nals with an isotropic low-pass spectrum. The low-pass isotropic
assumption implies that the underlying data has important informa-
tion in all directions. This is a reasonable assumption when there is
no additional knowledge about the phenomenon to be sampled, and
is typically the case for visualization and rendering applications.
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For a signal with an isotropic low-pass spectrum, the densest ar-
rangement of the replicas of the spectrum in the Fourier domain
will allow for the optimal sampling rate in the spatial domain. The
optimal arrangement is to pack these replicas in a face-centered cu-
bic (FCC) lattice [S]. The FCC periodic arrangement of replicas in
the Fourier domain demands periodic sampling on the dual to the
FCC lattice, which is the BCC lattice. Thus, the BCC lattice is opti-
mal in the spatial domain for signals meeting the low-pass isotropic
assumption.

Recently, this theoretical advantage has lead to practical algo-
rithms that include high-quality reconstruction filters adapted to the
BCC lattice [2] as well as efficient implementations of those filters
that are twice as fast computationally as their CC counterparts [4].
These mathematical and algorithmic results set the stage for ad-
vocating BCC-based sampling, reconstruction, and processing of
volumetric data. It is important to point out that the arguments for
accuracy comparisons have been made on the basis of asymptotic
error behavior—the standard numerical analysis reasoning. How-
ever, our goal is to produce images for perceptual consumption.
Numerical reasoning is insufficient for this task, and a perceptual
evaluation of the effectiveness of BCC and CC lattices is required.

1.1 Research Question

Basic perception research typically restricts user studies to simply
structured stimuli in 2D images. In contrast, an image of a 3D vol-
umetric dataset can only be produced by applying a pipeline of pro-
cessing steps that includes components such as reconstruction filter,
transfer function, illumination, camera location, projection from 3D
space to a 2D image, and other effects depending on the particular
volume rendering process chosen [10]. All these components may
influence the image quality. Ideally, their effects should be mod-
eled mathematically and analyzed in a rigorous manner. However,
no one has yet been able to provide such a comprehensive model of
the volume rendering process.

Furthermore, it is extremely difficult to investigate the percep-
tual effects of these aforementioned parameters of the volume ren-
dering process. Varying these parameters would lead to a high-
dimensional parameter study that is infeasible. Therefore, we re-
strict our study to a sub-region of this vast parameter space. Ac-
cordingly, the question we are trying to answer in this paper is:
“At what relative sampling density will BCC-based and CC-based
volume data become indistinguishable for a human observer, pro-
vided we use numerically comparable reconstruction filters as well
as the same lighting conditions, transfer functions, and rendering
pipeline?”

1.2 Related Work on Visual Perception

The idea of validating reconstruction and rendering algorithms via
a user study is not new. Most related to this paper is the work by
Mitchell and Netravali [11], who showed that the numerical analy-
sis of a class of filters they studied is independent of the perceptual
variety of effects that this same class of filters achieves. Hence, they
engage in a perceptual study of 9 users to evaluate their images ac-
cording to image artifacts such as blurring, ringing, and anisotropic



behavior. By extension of their result, we cannot simply predict the
degree of visual similarity between images created by reconstruc-
tion techniques with the same asymptotic error bounds. Therefore,
even though the BCC and CC reconstruction filters we employ have
the same asymptotic error behaviour (Section 3.4.1), a user study is
still needed to investigate questions of visual similarity in the im-
ages produced.

There are also several user studies that evaluate various percep-
tual aspects in visualization. Examples include the evaluation of
textures [6], surface layers [1], flow visualization methods [7] and
shape perception [12]. However, these previous works do not di-
rectly investigate the accuracy of the underlying rendering pipeline
and the image quality related to data reconstruction.

We also considered adopting an existing 2D image metric to an-
swer our research question. Metrics for 2D images typically gauge
the blurriness, sharpness, ringiness, or related characteristics of im-
ages. In particular, the blurriness metric recently developed by
Marziliano et al. [9] seemed to have the potential to answer our
research question. Marziliano et al.’s blur metric connects average
edge width to perceptual blurriness. In our preliminary analysis, the
problem of visual comparability is related to gauging the amount
of details in two images. We further thought that “the amount of
detail” could be measured by a blurriness metric. However, this
turned out not to be the case—visual quality for 3D renderings can-
not be measured by the amount of details alone. For a 3D signal,
as the sampling resolution decreases, sharp features begin to dis-
integrate into tiny pieces upon reconstruction. This results in an
increase in details according to Marziliano et al.’s metric, when in
fact visual quality has degraded. Another problem with gauging
the visual quality of a set of 3D samplings of the same signal is
that sampling might cause some features to slightly shift. Trying to
apply a rigid-body image registration algorithm to correct the shifts
seems infeasible because features could move in opposite direc-
tions. This essentially prevents the use of any full-reference metric
that assumes feature alignment between the truth image and the test
image. To the knowledge of the authors, there is no existing visual
quality metric—in 2D or 3D—that could measure visual quality of
images while accommodating these problems.

1.3 Contribution

The main contribution of this paper is to confirm that to achieve
images of comparable visual quality, we need approximately 30%
fewer samples on the BCC lattice than the CC lattice. This is the
best we could hope for according to theoretical expectation. Our
study shows that for both synthetic and CT data, comparable visual
quality is achieved between BCC and CC sampled data at a relative
BCC resolution (relative to CC) of 65% to 75%.

2 HYPOTHESIS

We coin the term sampling comparability to describe two different
sampling patterns that represent the same amount of information of
an underlying function. As discussed earlier, signal-processing the-
ory says that a BCC lattice of approximately 70% of the samples of
a CC lattice is sampling-comparable to the CC lattice. Given sam-
pling comparability between BCC and CC sampled data, we reason
that visual comparability of these data should occur at a relative
BCC resolution of 70% (relative to CC).

We define visual comparability as perceived similarity in appear-
ance. Corresponding to our research question, the following hy-
pothesis is investigated in this paper: “Given a fixed set of render-
ing parameters, BCC and CC sampled data appear to be visually
comparable to a viewer when a relative sampling density of 70% is
used for BCC.”

£ Expariment Application
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Figure 1: Screenshot of the application used to perform the image
discrimination task. The image at the top is the ground truth (or
original) image. Images at the bottom are CC and BCC downsampled
versions of the ground truth. The participant selects the better of
the BCC/CC images by mouse-clicking within the chosen image.

We choose to test visual comparability for a small set of ren-
dering parameters. As discussed later in Section 3, a few different
rendering parameters—signal selection, sampling resolution, and
camera viewpoint—are varied one at a time with the purpose of
covering a range of typical viewing conditions. In order to yield
quantitative results, we restrict all other rendering parameters to
comparable values. In particular, lighting conditions, transfer func-
tions, and rendering algorithm are not varied. While these con-
dition are easy to enforce, the comparability of the reconstruction
techniques on CC and BCC sampled data requires closer scrutiny
(Section 3.4).

3  VISUAL COMPARABILITY EXPERIMENT

We conducted an image matching study with 12 participants to de-
termine the range of relative sampling resolutions at which human
observers find BCC images comparable to CC images.

3.1 Task Description

Participants performed an image matching task. They were shown
three images (Figure 1), comprising one ‘“original” or “ground
truth” image at the top, and a pair of BCC and CC images at the
bottom. Each image is 500x500 pixels in dimension. In this vi-
sual discrimination experiment, participants were asked to select
the lower image that “most closely resembles the image above”. If
the participant could not determine which image more closely re-
sembled the original, they were instructed to choose arbitrarily. A
choice was made by clicking on one of the two bottom images.
The CC-sampled image was randomly assigned to be the left or
right lower image, and the BCC image was placed in the other slot.
In case the participant made a choice inadvertently, the applica-
tion provided an undo button that would return to the previous trial.



However, no participant used this undo feature.

Participants were first informed of the nature of the task and
signed a consent form. The experiment began with a training phase,
designed to give the participant practice with the application and
the image matching task. Image pairs for the training phase pre-
sented a sequence of 13 gradually more difficult choices. As with
actual trials, each pair contained a CC and a BCC image, and par-
ticipants were not given feedback about the correctness of their
choices. Training images were taken from the set used in the main
experiment, and consisted of 9 images of the synthetic signal and 4
images of the CT scan, using different rendering parameters.

The main phase of the experiment consisted of 8 blocks of 24
trials each, for a total of 192 trials per participant. Trials alternated
between blocks of the synthetic signal and blocks of the CT scan.
Within each block, images were presented for all resolutions and
views of that signal. Participants were shown each CC/BCC image
pair 4 times. Trials within blocks were randomized. Participants
were encouraged to rest between blocks if they wished, to help al-
leviate boredom and maintain focus on the task. Each participant
took between 30 minutes and an hour to complete the experiment.

3.2 Image Selection

The goal of image selection is to prepare a representative sample of
images. In the selection process, we consider such secondary prop-
erties as signal selection, sampling resolution, and camera view.

3.2.1 Signal Selection

We chose two signals. The first is the Marschner-Lobb function [8],
a synthetic dataset commonly used in the volume graphics literature
as a benchmark for testing reconstruction algorithms. Hereafter, we
refer to this signal as “ML” (Figure 2a and Figure 2b). This signal is
attractive since the local frequencies increase as we move out from
the center. Hence, within one image, the impact of the rendering
algorithm on widely varying frequencies can be observed.

|

(a) ML View 1 (b) ML View 2 (c) Fish Tail

Figure 2: To account for the effect of different signal properties, both
the synthetic ML signal as in (a, b) and a real-life Fish Tail signal as
in (c) were presented. To account for possible bias due to camera
view, the 3D ML was presented from both a “straight on” view, or

View 1 as in (a), and a “tilted” view, or View 2 as in (b).

The second signal is a subset of the CT scan of a carp. We fo-
cused on the back half of the fish, including the tail fin. We refer to
this signal as “Fish Tail” (Figure 2c). Compared to ML, Fish Tail
is a real-world signal obtained through a CT scan reconstructed at
a resolution of 256 x 256 x 256. Fish Tail was chosen to represent
non-synthetic data typical for many applications. Fish Tail also rep-
resents non-abstract signals with some “meaning” to participants.

Both of these signals exhibit high frequency features along dif-
ferent orientations and hence constitute viable candidates for testing
our hypothesis.

The ground truth image of the ML signal was rendered directly
from the analytic function definition [8]. Since ML is analytic, it
can be thought of as an infinite-resolution ground truth. The ground

ML, CC80 Fish Tail, CC140 Fish Tail, CC180

BCC47 41% BCC87 48% || BCC105 40%
BCC52 55% BCCI1 55% || BCC113 49%
BCC54 62% BCC95 62% || BCC118 56%
BCC55 65% BCC97 67% || BCC122 62%
BCC56 69% BCC98 69% || BCCI125 67%
BCC57 72% BCC99 71% || BCC128 72%
BCC58 76% || BCC100 73% || BCC130 75%
BCC59 80% || BCC102 77% || BCC132 79%
BCC60 84% | BCC103 80% || BCC136 86%
BCC62 93% || BCC105 84% || BCC140 94%
BCC64 | 102% | BCC111 | 100% || BCC143 | 100%
BCC66 | 112% || BCCI114 | 108% || BCC147 | 109%

Table 1: For each CC sampling as indicated by heading, selected BCC
resolutions are shown with their relative resolutions as a percentage
of the CC sampling.

truth image for the Fish Tail signal was the 256> CC reconstruction
from the CT scan.

3.2.2  Sampling Resolution

Another secondary property of interest is the sampling resolution of
the signals used in the discrimination task. As we are interested in
the visual comparability of BCC samplings relative to a single CC
sampling, one possible confounding variable is the CC sampling
resolution used in the experiment.

The ML signal is a ripple-like pattern with an infinite series of
concentric rings. The further a ring is from the center of the ML
signal, the higher its frequency content. Traditionally, only a few
of the rings of the ML signal that are confined to the domain of
[~1,1]® were sampled at the rate of 40 x 40 x 40 for testing pur-
poses. This was inadequate, since we wanted to have a broader
mixture of high and low frequency content in our sampled data.
Therefore, we chose to sample more rings of the ML up to the in-
terval of [—2,2]3. To maintain the same sampling rate on the CC
lattice, we therefore cast 80 x 80 x 80 samples. This will be de-
noted as CC80 in the remainder of this paper. Using a single CC
resolution allowed us to feature two views of the ML samplings.
To keep the number of trials manageable within the one hour limit
of our user experiment, we did not include a second CC sampling
of the ML. For the ML signal, both the CC and BCC datasets were
sampled directly from the analytic function.

For the Fish Tail, we used two CC resolutions: 140 x 140 x 140
and 180 x 180 x 180. We denote these samplings as CC140 and
CC180. When downsampling the original dataset to non-dyadic
CC resolutions, we applied a proper rational resampling by zero-
padding in the Fourier domain followed by a downsampling in the
spatial domain. The BCC-sampled versions were created in a simi-
lar way. After a Fourier zero-padding step, downsampling from CC
to BCC in the spatial domain is achieved by keeping all datapoints
of the CC dataset that have the same parity in their coordinates.

We denote BCC samplings using the notation BCCn for a BCC
resolution of n x n x (2n) samples. For the ML and the Fish Tail,
the chosen BCC resolutions along with their relative percentages to
the CC resolutions are enumerated in Table 1.

Figure 10 illustrates ML and Fish Tail signals rendered at various
CC and BCC resolutions. It offers intuition that BCC 70% (relative
to CC) is where visual comparability occurs. Note that the diagonal
artifacts apparent in the ML images are due to the lighting direction;
if the lighting direction were straight-on, the two diagonals would
appear symmetric.



3.2.3 Camera View

Due to the nature of the sampling patterns used by CC and BCC,
the position of the camera used to create an image can be a signifi-
cant secondary property. For example, a CC sampling may be visu-
ally comparable to BCC when it is displayed using an axis-aligned
view, but appear different from a second, non-aligned camera view.
Therefore, we used two views of ML: one straight-on view and one
from a tilted viewpoint (Figure 2a and Figure 2b). To keep the
number of trials manageable within the one hour limit of our user
experiment, a second view of the Fish Tail was not used.

3.3 Rendering Pipeline

We used a raycaster to render the images for this study. The ray-
caster uses an opaque transfer function in order to extract isosur-
face information from the volumetric data. The isosurfaces pro-
vide an appropriate level of detail from the volumetric data for the
users to make comparisons. The isovalue was chosen so that mean-
ingful isosurfaces with sufficient visual information were shown.
Transparent volumetric renditions would clutter the images with too
much detailed information and would make the judgement process
unduly difficult.

3.4 Numerical Comparability of Reconstruction Techniques

A precondition in our hypothesis is that the reconstruction tech-
niques we employ for CC and BCC are numerically comparable.
Failing to meet this precondition may confound the independent
variables. Therefore, we ensure that the precondition is met from
two fronts.

3.4.1 Theoretical Inference of Numerical Comparability

Our volume-rendered images are produced using asymptotically
comparable BCC and CC reconstruction filters in the rendering
pipeline. For CC reconstruction, we chose the widely used tri-cubic
B-spline filter. The tri-cubic B-spline produces approximations to
an original function f which are twice differentiable (i.e. CZ). For
BCC reconstruction, we chose the box s%)line proposed in [2], which
also allows for a C? reconstruction. C? reconstruction is a typical
requirement for volume rendering, since it results in a smooth re-
construction of the gradient field which is in turn used to compute
the lighting in the rendering process.

The approximation order for both of the above-mentioned re-
construction methods is four [4]. This is an asymptotic measure of
approximation. When we scale the sampling lattices (BCC or CC)
by the scalar 7 < 1 so that the sampling points become closer to
each other, we take a higher number of samples from the original
function. Therefore, our reconstructions figcc and fhce provide a
better approximation to the original function f as the L, norm of the
error in the approximation decays to zero. The approximation order
determines the rate at which the error in approximation decays to
zero. Given the original, unknown function f:

I.f = Fuscell € O(h*) (1)

1 = Fuccll € O(*) . )

Based on the asymptotic comparability of the chosen CC and BCC
filters, we infer that the two filters are roughly numerically compa-
rable.

3.4.2 Heuristic Evaluation of Numerical Comparability

To validate our inference of numerical comparability of the filters,
we assume that numerical comparability is primarily characterized
by comparable L, errors, and designed a heuristic accordingly. In
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Figure 3: Relative L, error for BCC and CC reconstruction methods
when applied to ML samplings where the CC resolution is set at
CC80. BCC resolution relative to CC is plotted along the x axis,
while L, error relative to CC is plotted along the y axis. Error bars
indicate a 95% confidence interval for BCC. The 95% confidence
interval for CC is too narrow to be plotted.

brief, we measure L, errors of BCC samplings with respect to the
ground truth signal, and the L, errors of CC samplings with respect
to the ground truth signal. We then determine at what relative BCC
resolutions the L, error becomes comparable to that of CC.

Computing the L, error involves the integration of 3D func-
tions. Analytic integration is complicated in this case, and typi-
cal deterministic quadrature rules are computationally expensive.
Therefore, we use a stochastic approach by Monte-Carlo integra-
tion. We base each L, computation on 10,000 points randomly
positioned within the domain according to a uniform probability
density function. Twenty of these L, computations are evaluated
for each dataset.

The mean L, errors across the trials are plotted with respect to
each signal under study (Figure 3 and 4). A 95% confidence interval
(CD) is overlayed on each data point to show the variability of the
Monte-Carlo results. The mean L, errors, along with the 95% CI,
give an accurate approximation to the range within which the true
L, errors are found.

The light grey (straight) lines in the plots denote the L; errors
recorded for CC samplings, whereas the dark grey lines denote
the L, errors recorded for the BCC samplings. The vertical axis
has been normalized with respect to the CC L, error and therefore
demonstrate relative L, errors. The point at which the light and dark
grey curves intersect in each plot tells us the relative BCC sampling
resolution at which the BCC L, error is comparable to that of CC.
However, due to the approximate ranges afforded by the 95% CI’s,
we need to consider the intersections of the CI’s instead.

In the plot for ML with a CC resolution of CC80 (Figure 3), the
CTI’s are so narrow that they are invisible given the limited resolution
of the plot. The afore-described intersection occurs between BCC
69% and BCC 72%. This means that we are 95% confident that
the point of numerical comparability for ML resides somewhere
between BCC 69% and BCC 72%.

In the plot for Fish Tail with a CC resolution of CC140 (Fig-
ure 4), the CI’s are wider than in the ML plot. Repeating the CI
intersection analysis, we determine with a 95% certainty that the
point of numerical comparability resides between BCC 69% and
BCC 75%.

Since the sampling comparability result summarized in Section 2
suggests that CC and BCC are sampling-comparable at a relative



2.75
25
2.25

1.75
1.5
1.25

Relative L2 Error

0.75
0.5

025 BCC Error —+—
L. CCEmor s
30 40 50 60 70 80 90 100 110 120
BCC % of CC

Figure 4: Relative L, error for BCC and CC reconstruction methods
when applied to Fish Tail samplings where the CC resolution is set
at CC140. BCC resolution relative to CC is plotted along the x axis,
while L, error relative to CC is plotted along the y axis. Error bars
indicate a 95% confidence interval for BCC. The gray dotted lines
mark the 95% confidence interval for CC.

resolution of BCC 70%, we deduce that applying numerically com-
parable reconstruction filters would result in numerically compara-
ble reconstructions at a relative BCC resolution of 70%. We adopt
this result to the signals in our user study; since the ranges of com-
parability in both plots include the theoretical prediction of BCC
70%, we have a strong indication that the reconstruction filters we
employ are indeed numerically comparable.

3.5 Experimental Setup and Administration

The experiment was conducted in a small room that was gener-
ally insulated from outside distractions. Participants sat at a desk
with images displayed on an LCD screen. The experimental soft-
ware ran on a desktop computer connected to the screen. During
pilot runs, an illusion of motion was sometimes observed when im-
ages changed. To eliminate this effect, blank rectangular regions
were displayed between trials for 0.25 seconds, and flashed over
the spaces where the new images were to appear.

To minimize the possibility of influencing participant choices,
the experiment administrators had minimal exposure to and mini-
mal knowledge of the CC and BCC image generation process. Ad-
ministrators assumed a passive role, and did not interact with partic-
ipants, except to record participant comments regarding the image
discrimination task.

3.6 Participant Selection

A total of 12 participants were selected. All were graduate stu-
dents from the Computing Science department or the Engineering
department of Simon Fraser University. Age and gender were not
considered to affect a person’s ability to detect relative differences
in images, so no attempt was made to balance for these variables
across experimental conditions.

We required that participants be unfamiliar with the process of
BCC sampling and reconstruction, and not involved in the gener-
ation of CC or BCC images. Individuals with expertise in color
science, medical imaging, and computer graphics in general were
also excluded due to their expertise in visual quality and imaging
artifacts. Participants were also required to have sufficiently good
eyesight to allow them to perceive the signal reconstructions clearly.

This was evaluated by asking participants to read a short sentence
displayed on the LCD screen prior to the experiment.

3.7 Expected Results

The primary dependent measure was the participant’s choice of the
CC or BCC sampling as being closer in appearance to the original
image. During the study, participants were also asked to discuss the
image features that motivated their choice.

We anticipated that if a given image pair exhibited visual com-
parability, a participant would choose BCC as the better image
roughly 50% of the time. The region of visual comparability be-
tween BCC and CC should be characterized by regions of uncer-
tainty and variability in participant preference. We expected these
regions to occur near a relative resolution of BCC 70%. In addi-
tion, we expected that if the relative resolutions of BCC to CC were
lower than 70%, CC would be the preferred choice, and for rela-
tive resolutions higher than the point of visual comparability, BCC
would be the preferred choice.

In terms of secondary properties, we expected that different sig-
nals with different secondary properties would exhibit different
ranges of visual comparability, but that these ranges would contain
the ideal of BCC 70% described in our hypothesis. In particular,
we anticipated that the ranges of visual comparability should be
similar across the different settings for signal selection, sampling
resolution, and camera view.

4 RESULTS AND DISCUSSION

4.1 Quantitative

We collected the image preferences for our 12 participants and sep-
arated them according to signal, CC resolution, and camera view.
BCC resolution as a relative percentage of CC resolution was calcu-
lated as the ratio of the total number of samples on the BCC lattice
over the total number of samples on the CC lattice, rounded to the
nearest percentage.

Aggregate plots for all participants were created for data analy-
sis (Figures 5 - 9). Mean user preferences for BCC resolutions are
plotted with 95% confidence intervals. Individual plots of partici-
pant preferences were also examined to check for statistical outliers
and ensure consistency with the aggregate analysis. No significant
problems were identified in the results of any individual participant,
and the results from all 12 participants are fully incorporated into
the aggregate plots.

When the user preference confidence interval for a particular
BCC resolution crosses the 50% user preference line, we say that
visual comparability occurs at that particular BCC resolution with
respect to the fixed CC resolution. We further define the range of
visual comparability as all relative BCC resolutions falling between
the two visually incomparable resolutions immediately before (af-
ter) the first (last) visually comparable resolutions.

Figure 5 and Figure 6 describe the results for ML View 1 and
View 2, respectively. These plots show a general trend of increasing
participant preference for BCC with respect to increasing relative
resolution. The point at which participant preference passes the
range of visual comparability is between 65% and 84% for View
1, and between 55% and 72% for View 2. Aggregating over both
views for ML, Figure 7 indicates a range of comparability between
65% and 72%.

Visual comparability for the BCC-sampled Fish Tail signal falls
between 62% and 71% for CC140 (Figure 8), and between 56% and
75% tor CC180 (Figure 9). Variability in participant preference, as
measured by the calculated confidence intervals, increases as rela-
tive resolution approaches the range of visual comparability. These
results are in excellent agreement with our hypothesis that visual
comparability occurs at a relative resolution of BCC 70%. Also in
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Figure 5: Mean BCC preference calculated from the 12 participant
results for ML View 1, at a resolution of CC80. Error bars represent
a 95% confidence interval about the mean.

Figure 7: Mean BCC preference calculated from the 12 participant
results for ML aggregated over views, at a resolution of CC80.
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Figure 6: Mean BCC preference calculated from the 12 participant
results for ML View 2, at a resolution of CC80.

agreement with our expectations, variability in participant prefer-
ences decreases as relative resolution moves away from the range
of visual comparability.

As discussed above, the plots for both ML views (Figure 5 and
Figure 6) exhibit a general upward trend. Figure 6 exhibits one un-
expected feature: a “dip” in preference around 65%. The dip is
not statistically significant because the large confidence intervals in
that region still allow us to fit a monotonically increasing user pref-
erence curve. However, a close investigation of the corresponding
BCC images of ML revealed a wave interference pattern that is par-
ticularly pronounced at the resolution at which the dip occurred. A
more advanced evaluation of this interference pattern as part of a
more detailed user study could be future work.

Another discrepancy was observed with regards to camera view.
For the ML signal, the ranges of visual comparability were deter-
mined to be between 65% to 84% for View 1 and between 55% and
72% for View 2. The two ranges do not appear to coincide. This
indicates that camera views may have an effect on perceived visual
quality. Further work is required to fully explore the significance of
this disparity.

BCC % of CC

Figure 8: Mean BCC preference calculated from the 12 participant
results for Fish Tail, at a resolution of CC140.

4.2 Qualitative

During the experiment, participants were encouraged to discuss
the criteria they used to discriminate between images. Participants
commented on a number of aspects of the discrimination task.

For both the ML and the Fish Tail signals, a few participants
noted that the shading effects were different across different image
pairings, but that they did not use this as the primary criterion for
their discrimination. The majority of participants also remarked
that the discrimination task was easier when Fish Tail images were
presented.

While examining the ML images, participants remarked that they
found curvature, symmetry, and the degree of distortion along edges
to be important characteristics for comparison. One participant
noted that the task could be difficult in some cases: sometimes the
two images were clearly different, but neither image was “better”
than the other.

Specific to the Fish Tail images, participants mentioned focusing
on the ribs of the fish and evaluating their connectivity compared to
the ground truth. In addition, participants commented that the shape
of the fish’s larger solid fin sections provided a useful criterion.
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Figure 9: Mean BCC preference calculated from the 12 participant
results for Fish Tail, at a resolution of CC180.

5 CONCLUSIONS AND FUTURE WORK

The results of this experiment provide strong evidence in support
of our hypothesis that it takes the BCC lattice 30% fewer samples
than the CC lattice to achieve comparable visual quality. For the
conditions examined, BCC sampled data exhibit visual compara-
bility to CC sampled data at a relative sampling density around the
hypothesized 70%.

It is important to note that although the results here are encourag-
ing, generalization from these results must be done carefully. Visual
comparability, even for simple images, may be different for differ-
ent applications. Domain specific applications must be examined
on a case by case basis. The important features of volume data, and
by extension the criteria for visual comparability, are determined
by the application. We hope to have provided a guideline for those
who wish to pursue domain specific extensions of our work.

It should also be noted that the parameter space of signals, sam-
pling resolutions, and camera positions examined in this study was
relatively small. It is our belief that in the general case, the re-
sults of this study are applicable. That is, we believe that the visual
comparability results we obtained in this paper will hold so long
as we employ BCC and CC reconstruction filters that are numeri-
cally comparable. Other parameters of the rendering pipeline such
as lighting or transfer function are not believed to have a significant
perceptual effect on the images rendered.

Due to the high number of parameters involved in a volume ren-
dering process, our general belief encompasses a vast parameter
space. The experiment described in this paper only investigated a
small sub-region of this vast space. One direction for future work
then, is to continue exploring this vast space of parameters. For
example, the effect of camera placement could be more thoroughly
investigated. As another example, the effect of varying iso-values
could be evaluated. As the research community develops a better
understanding of this parameter space, a metric may be developed
that predicts the region of BCC/CC visual comparability for a given
signal. Until then, the L, error analysis presented in Section 3.4.2
may act as a reliable heuristic.

Based on this user study and previous theoretical and algorith-
mic results [2, 4], we now have evidence that BCC sampling is sub-
stantially more accurate, more computationally efficient, and per-
ceptually better than the traditionally popular Cartesian sampling
technique. This study is a milestone, completing the argument that
BCC-sampled data is preferable in every aspect relevant to volume
rendering. If these perceptual results are confirmed for a variety of

other signals and rendering pipelines, it will make a strong case for
BCC as the sampling method of choice for volume rendering.
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Figure 10: Illustration of ML and Fish Tail signals rendered at various resolutions. In each table, resolution percentages are relative to a fixed
CC resolution. The CC image is duplicated three times in the top rows of each table. The tables offer intuition that BCC 70% (relative to CC)
is where visual comparability occurs for both the ML and the Fish Tail (compare the middle columns to the other columns).




