
Eurographics Symposium on Parallel Graphics and Visualization (2007)
Jean M. Favre, Luis Paulo dos Santos, and Dirk Reiners (Editors)

Scalable Sort-First Parallel Direct Volume Rendering with
Dynamic Load Balancing

Brendan Moloney1, Daniel Weiskopf1, Torsten Möller1, Magnus Strengert2

1GrUVi Lab, Simon Fraser University, Vancouver, Canada
2Visualization and Interactive Systems Group, University ofStuttgart, Stuttgart, Germany

Abstract
We describe a sort-first algorithm for parallel direct volume rendering on GPUs, with the intent of high scalability
in regards to both performance and data set size. We explore three novel techniques for estimating the computation
time for rendering each pixel, so that we can guarantee a good load balancing regardless of the level of frame-to-
frame coherence. A bricking technique is used to subdivide the object space, thus allowing each rendering node
to load only the bricks of data that are needed to render their respective portions of the image space. This enables
us to render data sets larger than an individual GPU’s texture memory. Wecull bricks that do not contribute to
the final image in order to reduce the data that is loaded and provide a coarse method of empty space leaping.
We introduce a novel method of eliminating the overhead of generating vertices for the proxy geometry of each
brick, by creating a single template of vertices that are used to render all bricks of the same size. Finally, detailed
performance measurements document the various aspects of our algorithm.

Categories and Subject Descriptors(according to ACM CCS): I.3.2 [Computer Graphics]: Distributed/network
graphics I.3.1 [Computer Graphics]: Parallel processing

1. Introduction

Three-dimensional texture slicing [CN93] is an easy way to
interactively perform a high quality direct volume rendering
(DVR) of small to medium sized data sets on almost any con-
sumer level PC with a GPU. However, larger data sets often
require more memory and performance than what is avail-
able on a single GPU. Using a number of GPUs to increase
the rendering speed and memory is an attractive solution
due to its price-to-performance ratio. We give an overview
of previous work on parallel GPU based DVR in Section 2.

The texture memory attached to GPUs adds another level
to the memory hierarchy (in addition to main memory, disk
storage, etc.), which makes it difficult to consistently dis-
tribute both the data set and the rendering workload evenly.
Algorithms for parallel DVR can be classified by their par-
titioning strategies. In Section 3 we compare the rendering
pipelines that are required for three different partitioning
strategies.

In Section 4 we detail our sort-first algorithm, which can

guarantee a good distribution of the rendering workload re-
gardless of the level of frame-to-frame coherence. Similar
to previous work, we brick the data set so that we can cull
based on the transfer function [MSE06, KSH03, CMCL06]
and cache only the bricks that are needed by each GPU to
render its portion of the image space [BHPB03]. With our
current caching scheme we can handle data sets up to the size
of the system RAM available to each node, but this restric-
tion could be removed by caching bricks over the network
or on local disk storage. For a detailed look at texture band-
width in this scenario, we refer our readers to [BHPB03].

Our main contribution is a novel dynamic load balancing
strategy that provides a guaranteed level of load balancing
regardless of frame-to-frame coherence. We present three
variations on how to estimate the rendering cost of a pixel.
We analyze all three methods with a series of detailed ex-
periments in Section 6. We also introduce a template based
method of rendering a bricked data set using a slice based
rendering engine, without incurring the penalty of increased
vertex computations for the proxy geometry.

c© The Eurographics Association 2007.

B. Moloney, D. Weiskopf, T. Möller, M. Strengert / Scalable Sort-First Parallel Direct Volume Rendering with Dynamic Load Balancing

2. Previous Work

A variety of methods have been proposed for distributing a
rendering workload among a number of machines. Molnar
et al. [MCEF94] classify these into groups based on where
in the rendering pipeline primitives are sorted in regards to
viewing conditions. In sort-first methods the screen space is
divided into regions and object-space primitives are sorted
into these regions and distributed before rendering. In sort-
last methods the object-space primitives are distributed, pro-
cessed, and rasterized independently. Then overlapping pix-
els are sorted in depth order and composited together. For the
special case of DVR, the object space primitives are textures.
These textures generally require little to no processing, but
they do have significant storage requirements.

The sort-last method probably is the most common for paral-
lel GPU accelerated DVR. One of the primary research top-
ics for sort-last algorithms is how to efficiently transfer and
composite the intermediate images. Binary swap [MPHK94]
and direct send [Hsu93] compositing schemes are easy to
implement and do a fair job of distributing the composit-
ing workload among the render nodes. SLIC [SML∗03]
improves direct send compositing primarily through better
load balancing and scheduling. Hardware solutions to the
compositing problem are also available [SEP∗01,LMS∗01,
NKS∗04] but they are expensive alternatives.

Sort-first methods for parallel GPU accelerated DVR gen-
erally either replicate the data set across all render nodes
[ACCE04] or transfer data over the network [BHPB03]. Al-
gorithms that replicate the full data set can only scale per-
formance, but not the maximum data set size. Algorithms
that transfer data over the network, or cache data on local
storage, can allow for data sets close to the size of the total
combined GPU memory.

Load balancing is another important research subject for par-
allel volume rendering, as the overall performance is lim-
ited by the slowest component. A common technique uses
the relative performance of each rendering node in the pre-
vious frame. This has been done with sort-last algorithms
[MSE06, MMD06] that subdivide the volume into bricks
and reassign bricks to nodes that had a higher frame rate
(less workload) in previous frames. Despite being sort last,
these methods require data to be sent over the network and/or
cached on the local hard disk. Sort-first algorithms have also
used this method of load balancing [ACCE04], redistribut-
ing the image space instead of the object space. Any such
method relies on frame-to-frame coherence and thus cannot
guarantee any tight bounds on the level of load balancing.

3. Parallel DVR Pipeline

In Figure1 we illustrate a generic parallel DVR pipeline, as
well as the paths that three representative algorithms take.
The (black) arrows along the center show the path taken by
a typical sort-last algorithm, where the data is distributed

Load Data to RAM

Data Decomposition

Texture Upload to GPU

Rendering

Compositing

Final Gather

Display and Interaction

Figure 1: A generic overview of the parallel DVR pipeline,
with the paths of three algorithms traced through it.

among the render nodes once and then the intermediate im-
ages are composited together. The (red) arrows along the left
show the path taken by a typical sort-first algorithm, where
the full data set is loaded onto each GPU. The (blue) arrows
along the right show the path taken by our algorithm, where
we assume that each node has enough system RAM to hold
the full data set although the GPU may not.

One obvious advantage to sort-first techniques is that we can
completely skip the compositing stage. The number of pixels
that need to be composited grows not only with image size
but also with the number of rendering nodes. While the com-
positing computations can be well distributed, the number of
intermediate images that must be sent over the network also
grows with the number of nodes. This is a major issue on
networks that have high-latency or are susceptible to packet
collisions.

However, sort-first algorithms are inherently bad at distribut-
ing the data set. If we want to render a data set that is larger
than the amount of memory available on the GPU, then we
must loop all the way back to the data distribution stage of
the pipeline and potentially load some data into textures be-
fore we can render the next frame. The motivation for tak-
ing this path is threefold: the overhead of loading data into
textures should decrease (rather than increase) as we add
more rendering nodes, data can be pre-cached in parallel to
the rendering process (rendering and compositing is strictly
sequential), and data redistribution is required for fully dy-
namic load balancing.

c© The Eurographics Association 2007.

B. Moloney, D. Weiskopf, T. Möller, M. Strengert / Scalable Sort-First Parallel Direct Volume Rendering with Dynamic Load Balancing

4. Algorithm

We divide our data set into a uniform grid of evenly sized
bricks. We do this once, when the data is loaded, based on a
user defined parameter for the size of the bricks. Each ren-
dering node loads only the bricks intersected by its view
frustum, as illustrated by a 2D example in Figure2. By
subdividing the data set in this manner, we can reduce the
amount of data that must be replicated among the render
nodes. We have a single level caching scheme where the full
data set is held in main memory, and bricks that are needed
are loaded from main memory into textures on the GPU. For
load balancing, we estimate the computational cost of each
pixel before rendering each frame. We then compute a kd-
tree over the image space, such that each inner node of the
kd-tree splits the image space into two portions, each with
the same total rendering cost. Each rendering node is then
responsible for rendering a portion of the image space cor-
responding to a leaf node in the kd-tree.

Our algorithm consists of three main components: the brick-
ing technique used to divide up the object space, the compu-
tation of a per-pixel rendering cost, and the dynamic distri-
bution of the image space based on this rendering cost. We
explain each component, and how it interacts with the other
components, in the following three subsections.

4.1. Object Space Bricking

By dividing the object space into bricks we can use a sort-
first algorithm to render data sets that are larger than the
memory available on any single GPU. We use an LRU (least
recently used) caching scheme to determine which textures

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
����������
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
����������

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Figure 2: The bricks with a (red) backward hatch pattern
are loaded by the node rendering the left frustum, the bricks
with a (blue) forward hatch pattern are loaded by the node
rendering the right frustum, and the bricks with a (purple)
cross hatch pattern are loaded by both.

to reuse when we run out of texture memory. We currently
assume that each rendering node has access to enough sys-
tem RAM to hold the entire data set, because we only have
a single layer of caching between local system memory and
GPU memory. This caching mechanism imposes an addi-
tional overhead as data might need to be transferred to the
GPU during the rendering. However, as mentioned in the last
section, the amount of data to be transferred should decrease
as the number of nodes increases and we could potentially
pre-cache bricks in parallel to the rendering process.

When choosing a brick size, we must balance the benefits
of having a finer granularity in object space and the in-
creased overheads from having a larger number of bricks.
A finer granularity reduces data replication between render-
ing nodes along shared planes of the nodes’ view frustums.
This replication is illustrated by a 2D example in Figure2.
However, there is a per-brick memory overhead since ad-
jacent bricks must share one data value at every point on
their border so that the trilinear interpolation is consistent
across bricks. When using a pre-integrated transfer func-
tion [EKE01], two data values must be replicated so that
you can access the values for the back sides of the slabs at
the boundary. When bricks are culled based on the transfer
function, having a finer granularity can allow us to perform
a more accurate culling, thus reducing the rendering work-
load and the amount of data that must be loaded. However,
due to cache coherence and other overheads, rendering one
large brick is always faster than rendering the same amount
of data as a number of smaller bricks.A hierarchy of brick
sizes has often been used to help balance these factors but in
turn has it’s own associated overheads (in particular memory
usage).

The most significant per-brick performance overhead (when
using a slice based rendering engine) is the increased number
of vertices that must be generated on the CPU, and sent to
the GPU, for the proxy geometry of each brick. To tackle
this issue we devise a novel technique that computes a single
vertex ’template’ for each frame, which can be used to render
every brick of the same size. This reduces the amount of
computation on the CPU as well as the amount of data that
must be transferred to, and stored on, the GPU. Without this
technique, the rendering speed is severely CPU limited when
rendering thousands of bricks.

4.2. Calculating Per-Pixel Rendering Cost

One of the advantages of sort-first techniques over sort-last
is that one can generally do a better job of distributing the
rendering cost evenly. Since we are using a slice based ren-
dering engine, good load balancing is equivalent to having
each GPU render the same number of fragments. Thus we
need an estimate of how many fragments contribute to each
pixel. This is directly proportional to the total length of the
ray through a given pixel, that lies within some brick. We
present three methods of computing the rendering cost for

c© The Eurographics Association 2007.

B. Moloney, D. Weiskopf, T. Möller, M. Strengert / Scalable Sort-First Parallel Direct Volume Rendering with Dynamic Load Balancing

the full image space, each with varying levels of accuracy
and computational cost. The methods differ in the manner
they compute the rendering cost for a single brick, but all
three methods use additive blending to sum up the contribu-
tions of individual bricks.

The first method is completely accurate. This technique
draws the back faces of the brick and for each fragment it
computes the nearest intersection between the ray from the
fragment to the eye and the front faces of the brick. This is
about twice as slow as the other two methods on our target
architecture (NVIDIA 6800 Ultra). However, on the latest
generation NVIDIA 8800GTX this method is as fast as the
two approximating methods and thus it would definitely be
the method of choice.

The second method splats a sphere for each brick, with a
diameter equal to the longest diagonal of the brick. This
method will obviously assign a rendering cost outside of the
brick’s image space footprint, and even within the brick’s
footprint the assigned rendering cost will be inaccurate. This
method is quite straightforward to implement, is much faster
than the accurate method, and actually gives good load bal-
ancing results under certain viewing conditions (see Section
6).

The third and final method we implemented draws only the
back faces of each brick, with an estimated rendering cost as-
signed to each vertex and then linearly interpolated for each
fragment. We estimate the rendering cost for vertices, both
inside the image space footprint and on the silhouette, based
on the angle between the view direction and the normals of
the brick faces. This method will obviously not assign any
rendering cost outside of a bricks footprint, unlike the sphere
splatting. Although the rendering cost will not be completely
accurate within the footprint (due to us not dealing with the
front faces accurately), it gives us better load balancing per-
formance than splatting for some viewing conditions, and
has a very similar computation time.

We also experiment with parallelizing the computation of
the rendering cost. Trying to do this in a manner that bal-
ances the computational load on each rendering node leads
to a chicken and egg scenario: we are trying to load balance
the computation of our load balancing. However, assuming
frame-to-frame coherence, we can reuse the image space de-
composition from the previous frame. This approach should
balance the computation of the rendering cost fairly well,
because the time it takes to compute the rendering cost is
proportional to the number of bricks that must be processed,
which is in turn loosely proportional to the number of frag-
ments that must be rendered for that same portion of image
space. However, if we do not have good frame-to-frame co-
herence, the best we can do is tile the image space bounding
box of the volume evenly.

4.3. Distributing the Image Space

Once we have computed the rendering cost for each pixel,
we want to use this information to update the image space
decomposition in a manner that distributes the workload
evenly. We recursively construct a kd-tree, from top to bot-
tom, over the image space to divide the rendering cost
evenly. To do this efficiently we need to be able to quickly
compute the total rendering cost for an area of the image
space. Therefore, we compute a Summed Area Table (SAT)
of the rendering cost, which allows us to query an area of the
image space for its total rendering cost in constant time. For
each inner node of the kd-tree, we perform a binary search
along the direction perpendicular to the splitting direction in
order to find the location of the balanced split.

For a parallel computation of the rendering cost, each render
node computes the SAT only for the portion of the image
space for which it computed the rendering cost. Then each
render node broadcasts its SAT to all the other nodes. The
SATs are attached to the corresponding leaf nodes in the kd-
tree (of the previous frame) for that same portion of image
space. Inner nodes of the kd-tree just hold the sum of the to-
tal rendering costs of its two children. We never fully com-
bine these results into a SAT for the full image space, but
rather we just evaluate the full SAT value for the positions
we check in the binary search. The full combined SAT value
for a specific position in image space is computed by a tree
traversal, as described in Section 5.3.

5. Implementation

Our system is written in C and C++ with GLSL for GPU pro-
gramming. We have one viewer node which interacts with
the user, dispatches render requests to one render node, and
receives render results from all render nodes, over TCP/IP.
The viewer is responsible for tiling the intermediate images
together for final display. The render nodes use MPI for com-
munication, and OpenGL for rendering. The core rendering
is based on 3D texture slicing with pre-integration [EKE01].
We describe the implementation for each of the three main
components of the algorithm in the following subsections.

5.1. Object Space Bricking

We subdivide the data set into bricks in a preprocessing step.
At the same time we compute a bit mask for each brick, cor-
responding to the scalar values that occur within that brick.
This allows us to quickly and accurately cull bricks in the
same manner as used in [CMCL06].

We found that our rendering times were heavily CPU lim-
ited when rendering several hundreds or thousands of bricks.
This was because hundreds of slice vertices were being com-
puted for every brick for each frame. Since the slices inter-
sect all of the bricks at the same angle, the only information
that is potentially different for each brick is an offset in the

c© The Eurographics Association 2007.

B. Moloney, D. Weiskopf, T. Möller, M. Strengert / Scalable Sort-First Parallel Direct Volume Rendering with Dynamic Load Balancing

Figure 3: The illustration on the left shows
how we generate the slice vertex template.
The small thin (black) box is a brick and
the large thick (blue) box is the template
bounding box, which is the size of the brick
after being extended by one slice distance
along the view direction (the green arrow).
The (red) dots mark the actual vertices of
the template. The figure to the right shows
how these templates can be made to line up
along brick boundaries, by translating them
by some offset along the negative view direc-
tion.

view direction that determines where the first slice intersects
the brick. Since the number of slices for each brick differs
by at most one, we can compute a slice template by expand-
ing the brick along the view direction by one slice distance,
and then use the vertices at the intersection points of this ex-
panded brick and the slice planes. Figure3 illustrates this
concept.

We can use this slice template to render any brick by simply
computing the offset along the view direction for the first in-
tersection, and then translating the templated slice vertices
along the direction opposite of the view direction. Since the
vertices themselves never change, they can be loaded onto
the GPU as a vertex buffer object once at the beginning of
each frame. The pre-integration texture coordinates are com-
puted in a vertex shader program on the GPU. Since the tem-
plated slices are larger than the actual bricks, we apply user
defined OpenGL clip planes to kill any fragments that lie
outside of the actual brick. In order to minimize the number
of fragments that we need to kill, we compute one template
for each brick size (at most eight, due to the data set size not
being evenly divisible by the brick size).

5.2. Calculating Per-Pixel Rendering Cost

For all three methods of computing the rendering cost, we
use a Frame Buffer Object (FBO) with one 16-bit floating
point render target and additive blending to sum up the con-
tributions of each brick.

For an initial attempt at an accurate method we tried ren-
dering the front faces’ depth into a buffer and then render-
ing back faces and taking the difference in the depths. This
was too slow for significant numbers of bricks because it re-
quires two passes for each brick. Instead, we compute the
distance between the front and back faces in a single pass by
rendering the back faces and intersecting the ray from each
fragment to the eye with the front faces. We do the intersec-
tions in object space, so dot products with the normals of the
planes is just selecting a single component.

For the second method, we generate a single texture con-
taining a spherical footprint. We choose a texture size of
322 to maximize cache coherence. For each brick we render
a quad, textured with this spherical footprint, at the brick’s
center with a width and height equal to the longest diagonal
of the brick. In order to accommodate multiple brick sizes,
the fragment shader scales the values from the texture by the
size of the brick. We do not perform any kind of perspective
correction to the texture.

For the third method, we identify the front and back faces of
each brick as well as silhouette and non-silhouette (interior)
vertices. At the same time we find the maximum dot product
between the viewing direction and the normals for the faces
of the bricks, as well as the corresponding face that yields the
maximum dot product. We use the value of the maximum dot
product to estimate the rendering cost that we attach to the
silhouette and interior vertices. An interior vertex is assigned
a smaller value when the dot product is large (looking at
the brick head on) and a larger value when the dot product
is small (looking along the diagonal). Therefore we use the
inverse of the dot product, scaled to the range of zero to one,
and scaled again by the size of the brick.

The rendering cost at the silhouette vertices is actually al-
ways zero, but since we are not taking the front faces into
account this can cause the rendering cost to drop off too
quickly when it is interpolated between vertices. If a silhou-
ette vertex is just barely outside of the front face with the
maximum dot product in image space (maximum dot prod-
uct is larger), we assign a larger value to that vertex since the
rendering cost is actually quite high near this vertex (even if
it is actually zero at the vertex). We achieve this behaviour by
using the compliment of the weight assigned to the interior
vertex (before being scaled by the brick size) as the weight
assigned to the silhouette vertices that do not lie on the face
with the maximum dot product. Silhouette vertices that do
lie on the face with the maximum dot product are assigned a
weight of zero.

c© The Eurographics Association 2007.

B. Moloney, D. Weiskopf, T. Möller, M. Strengert / Scalable Sort-First Parallel Direct Volume Rendering with Dynamic Load Balancing

5.3. Distributing the Image Space

We use an axis aligned bounding box in the image space to
reduce the number of pixels that are read back from the FBO
and processed in the SAT computation. If we are not par-
allelizing the computation of the rendering cost, then each
node computes a SAT for the rendering cost over the full im-
age space. Then we compute a kd-tree over the image space
by doing a binary search for the new split point along the
appropriate row or column of the SAT. The end result is that
each leaf node has the same total rendering cost. Each ren-
dering node is then assigned a portion of the image space
corresponding to a leaf in the kd-tree.

If we are parallelizing the computation of the rendering cost,
then after each node computes the rendering cost for its por-
tion of the image space, it also computes a SAT for that same
portion of image space. Then each node traverses the kd-tree
from the last frame and performs an MPI Bcast for each leaf
node to either send or receive the SAT for that portion of the
image space (depending on whether it is the portion of im-
age space that was computed locally). We compute the new
kd-tree in a manner similar to what we described above for
the non-parallelized case. The only difference is that when
we do the binary search, we need to query more than one
SAT for each search position. For each search point we tra-
verse the old kd-tree from top to bottom looking for inner
nodes that are completely within, or leaf nodes that are in-
tersected by the area we are querying. Nodes that lie com-
pletely within the area just report their total cost; leaf nodes
that are intersected by the area bounds report the SAT value
at the intersection point. Combining these results gives us
the total SAT cost for the search position.

Broadcasting the full SATs is actually unneccesary, as you
could just broadcast the total values and then let each node
search for the split points in their region of image space.
We did not test this method, but it should allow for better
scalability.

6. Experiments and Results

For testing we used a cluster of 8 render nodes, each with
AMD Opteron 248 CPUs and an NVIDIA GeForce 6800
Ultra GPU (256MB AGP). The interconnect was provided
by an Infiniband network. For each test we ran an animation
with 1024 frames and averaged the results.

The first experiment tests the performance impact of our
templated slice technique. Since the overhead we are target-
ing corresponds to the number of bricks, not the image size,
we use a 1282 viewport and 5 different brick sizes on the
same 2563 volume. Table1 shows that the templated slice
technique out performs the standard slicing technique by as
much as a factor of 7.

The second experiment compares the computation times for
the three methods of computing the per-pixel rendering cost.

Table 1: The performance of the templated slicing technique
compared to the standard slicing technique.

Rendering Time (ms)

Bricks Standard Templated Speed Up

1 3.78 3.77 1.00
9 9.05 5.23 1.73
25 24.21 5.84 4.15
729 46.41 9.21 5.04
6859 367.70 53.33 6.89

We did this on a single node with 4 different brick sizes and
5 different image resolutions. The graph in Figure4 shows
that the back face method for computing the rendering cost
is slightly faster than the splatting method except for when
we are rendering 5,832 bricks with a low resolution view-
port. This is as expected since the back face method has
a higher vertex cost (as many as 20 vertices per brick ver-
sus 4 for splatting), while the splatting method has a higher
fragment cost due to the fact that it draws outside of the
brick’s footprint in image space. The graph also shows that
all three methods share a linear behaviour in the number of
pixels, and differ by an offset along the y-axis that corre-
sponds to the number of bricks being processed. These off-
sets are shown in more detail in Table2. Clearly the offset
is much worse for the accurate method, with the back face
and splatting methods being rather similar. We noticed that
the splatting and back face methods’ performance increased
by almost a factor of two when using a PCI-E GeForce 6800
Ultra, which is due to the much faster framebuffer readback.

The next experiment looked at how well the performance of
our rendering cost computation methods scaled in regards to
the number of nodes. In Figure5 we show the results for
the accurate and back face methods on a data set with 5,832
bricks. For the backface method we show results for two res-

Figure 4: The performance of all three methods for com-
puting the rendering cost for various image sizes and 729
bricks. Two of the methods are also plotted using 5,832
bricks.

c© The Eurographics Association 2007.

B. Moloney, D. Weiskopf, T. Möller, M. Strengert / Scalable Sort-First Parallel Direct Volume Rendering with Dynamic Load Balancing

Table 2: Computation times for all three methods of com-
puting the rendering cost with four different brick sizes. The
viewport resolution is1282.

Rendering Cost Computation Time (ms)

Bricks Accurate Splatting Back Face

9 1.33 1.06 0.99
25 2.37 1.44 1.29
729 8.21 3.30 3.10
5832 46.79 13.42 16.92

Table 3: The deviation of render times among nodes, for all
three methods of computing the rendering cost. We use two
different types of animations, and both full resolution and
quarter resolution for the rendering cost function.

Average Render Time Deviation

Animation Accurate Splatting Back Face

Global (Full) 0.089 0.175 0.142
Global (Quarter) 0.108 0.166 0.143
Local (Full) 0.064 0.093 0.147
Local (Quarter) 0.072 0.093 0.147

olutions. We do not show the splatting results because they
are very similar to the back face results. The accurate method
benefits the most from the parallelization, with the back face
method showing almost no improvement moving from 4 to
8 nodes. Avoiding the SAT broadcast, as previously men-
tioned, should give better scaling results.

The quality of a load balancing algorithm is best character-
ized by the relative deviation in the rendering time among
different nodes; there are too many variables to give a sin-
gle FPS or speed up factor. Therefore we took the average of
the differences between the maximum and minimum render
time for each frame. Then we normalized this by the average
render time to obtain a measure of how much the rendering
times deviated on different nodes relative to the average ren-
der time. For all three methods we used 8 nodes to render
a 5123 volume with a 10242 viewport. We used two anima-
tions, a ’global’ one that rotates the volume while keeping
it fully in the view frustum, and a ’local’ one that zooms
in on the volume and then pans and rotates around. We ran
each experiment twice, once with the rendering cost com-
puted at the same resolution as the image and again with the
resolution set to one quarter of the image resolution (half in
each dimension). Our results are given in Table3. As ex-
pected, the accurate method did the best job of load balanc-
ing, and the back face method outperformed the splatting
method for the global animation. The splatting method’s re-
sults varied greatly for the different animations, which is due
to its highly approximative nature. The back face method
provided consistent results for both animations and resolu-

Figure 5: A plot of the scaling behaviour of the accurate and
back face methods of computing the rendering cost. We plot
two resolutions for the backface method.

Figure 6: A plot of the scaling behaviour of the overall per-
formance of our algorithm, using a real world data set and
transfer function. We show three image resolutions, and the
effect of loading gradients into the textures.

tions. The lower resolution did not hurt the load balancing
much for any method.

A visual comparison of the three methods for computing
the rendering cost is shown in Figure7. The corresponding
rendered image is also shown, with and without the brick
outlines displayed. The scaling of the overall performance
of our algorithm for this same data set (512x512x400) and
transfer function is shown in Figure6. We plot the perfor-
mance for three image resolutions without gradients being
loaded into the textures, and for the middle resolution we
also plot a run with gradients being loaded. The difference in
performance between the run with gradients versus the run
without, shows the effect of data loading on performance
(we are quadrupling the texture sizes). The difference be-
tween the runs with and without gradients diminishes as we
add more render nodes, confirming our prediction that the
data loading overhead grows smaller as we add rendering
nodes. Since the data set with gradients is too large for a sin-
gle GPU, OpenGL itself is swapping the textures in and out
of memory for the single node run. The global animation

c© The Eurographics Association 2007.

B. Moloney, D. Weiskopf, T. Möller, M. Strengert / Scalable Sort-First Parallel Direct Volume Rendering with Dynamic Load Balancing

was used for this test, so we picked the back face method
with a quarter resolution for our load balancing. For our tar-
get architecture, we recommend the back face method due
to its fast computation and small variation in quality of load
balancing. Using a quarter resolution for the rendering cost
lowers the overhead of the load balancing without signifi-
cantly impacting the quality. For this choice, the load bal-
ancing computation consumes between 6.5 and 13.4 percent
of the total rendering time. Therefore we achieve good load
balancing, regardless of the level of frame-to-frame coher-
ence, for an acceptable cost.

7. Conclusions and Future Work

We have presented a sort-first algorithm for parallel DVR
with a load balancing strategy that can guarantee a good
level of load balancing under all conditions. Our algorithm
scales not only performance, but also the maximum size of a
data set that can be rendered. We have shown how to elimi-
nate one of the biggest overheads incurred when using brick-
ing techniques and slice based rendering engines, using our
novel templated slice technique.

We have presented three different methods of computing the
rendering cost function that drives our load balancing algo-
rithm, each with different performance and load balancing
characteristics. We have analyzed these differences through
a detailed series of experiments, exposing each method’s
strengths and weaknesses.

As mentioned previously, adding a second layer of caching
(where bricks that are needed and not currently available in
system RAM would be fetched over the network or from
disk) would allow us to render larger data sets in distributed
memory environments. Using a sort-first partitioning allows
for certain techniques, such as early ray termination, that are
not feasible with sort-last partitioning. Exploring ways to in-
corporate such techniques into our algorithm could be an-
other avenue of future work. Our algorithm is also extremely
well fit to time-varying data since it allows for fast culling,
good load balancing regardless of temporal coherence, and
data caching is no longer a penalty since it is required. A
focus on time-varying data would certainly be interesting.

8. Acknowledgements

We would like to thank Brown & Herbranson Imaging,
Stanford Radiology, and The Rosicrucian museum for the
mummy data set. This work was funded in part by the Natu-
ral Sciences and Engineering Research Council of Canada.

References

[ACCE04] ABRAHAM F. R., CELESW., CERQUEIRAR., ELIAS

J. L.: A load-balancing strategy for sort-first distributedrender-
ing. In Proc. SIBGRAPI(2004), pp. 292–299.

[BHPB03] BETHEL E. W., HUMPHREYS G., PAUL B., BRED-
ERSON J. D.: Sort-first, distributed memory parallel visualiza-
tion and rendering. InProc. IEEE Symp. Parallel Large-Data
Vis. Graphics (PVG)(2003), p. 7.

[CMCL06] CASTANIE L., M ION C., CAVIN X., LEVY B.: Dis-
tributed shared memory for roaming large volumes.IEEE Trans-
actions on Visualization and Computer Graphics 12, 5 (2006),
1299–1306.

[CN93] CULLIP T. J., NEUMANN U.: Accelerating Volume Re-
construction With 3D Texture Hardware. Tech. rep., Chapel Hill,
NC, USA, 1993.

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-quality pre-
integrated volume rendering using hardware-accelerated pixel
shading. InProc. ACM SIGGRAPH/EG Workshop Graphics
Hardware (HWWS)(2001), pp. 9–16.

[Hsu93] HSU W. M.: Segmented ray casting for data parallel vol-
ume rendering. InProc. Symp. Parallel Rendering(1993), pp. 7–
14.

[KSH03] KAHLER R., SIMON M., HEGE H.-C.: Interactive vol-
ume rendering of large sparse data sets using adaptive mesh re-
finement hierarchies.IEEE Transactions on Visualization and
Computer Graphics 9, 3 (2003), 341–351.

[LMS∗01] LOMBEYDA S., MOLL L., SHAND M., BREEN D.,
HEIRICH A.: Scalable interactive volume rendering using off-
the-shelf components. InProc. IEEE Symp. Parallel Large-Data
Vis. Graphics (PVG)(2001), pp. 115–121.

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering.IEEE Comput.
Graphics Appl. 14, 4 (1994), 23–32.

[MMD06] M ARCHESIN S., MONGENET C., DISCHLER J.: Dy-
namic load balancing for parallel volume rendering. InProc. EG
Symp. Parallel Graphics Vis. (PGV)(2006), pp. 43–50.

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH

M. F.: Parallel volume rendering using binary-swap composit-
ing. IEEE Comput. Graphics Appl. 14, 4 (1994), 59–68.

[MSE06] MÜLLER C., STRENGERT M., ERTL T.: Optimized
volume raycasting for graphics-hardware-based cluster systems.
In Proc. EG Symp. Parallel Graphics Vis. (PGV)(2006), pp. 59–
66.

[NKS∗04] NONAKA J., KUKIMOTO N., SAKAMOTO N.,
HAZAMA H., WATASHIBA Y., L IU X., OGATA M., KANAZAWA

M., KOYAMADA K.: Hybrid hardware-accelerated image com-
position for sort-last parallel rendering on graphics clusters with
commodity image compositor. InProc. IEEE Symp. Vol. Vis.
Graphics (VolVis)(2004), pp. 17–24.

[SEP∗01] STOLL G., ELDRIDGE M., PATTERSON D., WEBB

A., BERMAN S., LEVY R., CAYWOOD C., TAVEIRA M., HUNT

S., HANRAHAN P.: Lightning-2: A high-performance display
subsystem for PC clusters. InProc. ACM SIGGRAPH(2001),
pp. 141–148.

[SML∗03] STOMPEL A., MA K.-L., L UM E. B., AHRENS J.,
PATCHETT J.: SLIC: scheduled linear image compositing for
parallel volume rendering. InProc. IEEE Symp. Parallel Large-
Data Vis. Graphics (PVG)(2003), pp. 33–40.

c© The Eurographics Association 2007.

B. Moloney, D. Weiskopf, T. Möller, M. Strengert / Scalable Sort-First Parallel Direct Volume Rendering with Dynamic Load Balancing

Figure 7: Images gen-
erated with the Mummy
data set and the same
viewing conditions. Top
row from left to right:
greyscale visualization
of the rendering cost
estimated by the splat-
ting method, accurate
method, and back face
method. Brightness is
normalized for print
quality. Bottom row:
The final volume ren-
dered with and without
the brick boundaries
shown. In the right
image, each node uses
a unique color for the
brick boundaries in its
portion of the image
space, illustrating the
kd-tree decomposition.

c© The Eurographics Association 2007.

