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Abstract

This paper presents an empirical study of the spectral
properties of mesh Laplacian operators and how they are
affected by changes in the the connectivity or number of
vertices of the mesh. Specifically, we investigate to what
extent the eigenvalues of an operator differ when eval-
uated on different meshes representing the same object.
Our experiments compare two different types of opera-
tors, one being purely connectivity based and the other
based on discrete approximations to the Laplace- Beltramsi
operator. The spectrum of the latter operators generally
displayed more robustness.

1. Introduction

One of the motivating interests in the spectral prop-
erties of mesh Laplacian operators comes from a desire
to gain an insight into how traditional signal process-
ing theory, especially Fourier analysis, can be applied
to study the geometry of surfaces.

Taubin [24] pointed out that the eigenfunctions of
the Tutte Laplacian operator can serve as basis func-
tions which allow signals defined on a 2D-manifold to
be expanded in a series akin to the Fourier series. With-
out any formal justification, these basis functions are
simply ordered by increasing eigenvalues of the Lapla-
cian. A common belief is that these eigenvalues cap-
ture the frequencies of the various modes of vibration
of the underlying mesh graph [24, 15]

In differential geometry, the Laplacian (or Laplace-
Beltrami operator) is defined on Riemannian manifolds
and its eigenfunctions are considered analogous to the
Fourier basis functions [19]. Discrete approximations
to the differential Laplacian also exist [16, 7], but their
spectral properties have not been explicitly exploited
for digital geometry processing or analysis.

Our current work is motivated by the potential of
using spectral properties of mesh Laplacians to char-
acterise 3D shapes. This would allow us to extend the

use of Fourier descriptors [27] and related measures to
the surface setting. The spectral properties of interest
are derived from the eigenvalues and eigenvectors of a
mesh Laplacian, as well as projections of the mesh em-
bedding function along the eigenbases, i.e., the spectral
transforms.

We are interested in the extent to which the under-
lying continuous shape associated with a mesh is cap-
tured by these spectral properties. In order to qual-
ify as shape descriptors, such properties must be suf-
ficiently robust against up/down sampling, remeshing,
and other mesh transformations that keep the geome-
try intact. This robustness would also allow us to com-
pute spectral shape descriptors using a low mesh reso-
lution, resulting in a significant reduction in computa-
tional cost.

The experiments conducted in this work focus on the
eigenvalues of the Laplacians. We explain this choice in
section 3, where the operators considered and some rel-
evant theory are also presented. We test the robustness
of the Laplacian spectrum against changes in connec-
tivity and changes in sampling density, following pro-
cedures outlined in section 4. Experimental results are
given in section 5 and their implications and future
work are discussed in section 6.

2. Related Work

In the digital geometry processing literature, mesh
Laplacian operators have mostly been employed in the
design of smoothing filters [6, 25, 29]. Efficient means of
computing their spectral transforms, e.g., via mesh par-
titioning, has led to the development of spectral com-
pression [15, 22] and watermarking [17] schemes for
mesh geometry. The operator favored here is a graph
Laplacian, well-known from spectral graph theory [5],
which we will refer to as the Kirchoff operator [17] (see
section 3.1.1). It is interesting to note that both [17]
and [22] exploit the fact that small perturbations to
the low frequency components of a geometric signal
are less perceptible than corresponding perturbations
to high-frequency components.



One of the operators that is featured prominently in
our current work was presented cogently by Meyer et
al. [16], although a few of its variants had appeared pre-
viously, e.g., in [6] and [18]. It is a discrete approxima-
tion to the Laplace-Beltrami operator from differential
geometry. Several other discretisations of the Laplace-
Beltrami operator are not considered in this paper.
These include an operator developed for valid planar
mesh embedding [7] and those considered for their con-
vergence properties [26, 8].

Although mesh Laplacian operators have been used
quite extensively so far, there has been no compara-
tive study of their spectral properties. In fact, most
work to date, on the various properties of mesh Lapla-
cians, have focused on the connectivity-based opera-
tors [1, 12, 11, 28], which are simply variants of the
Kirchhoff operator. The discrete differential Laplacian
of Meyer et al. [16] has only been used to derive sur-
face flows [6, 18]. Neither its spectral characteristics nor
the related robustness issue has been addressed before.

In the vision and machine learning communities
however, some attention has been paid to spectral ro-
bustness [3]. There the focus has been on spectral
embeddings formed by selected eigenvectors, ordered
by eigenvalue magnitude, of an affinity matrix. The
affinity matrix encodes pairwise relationships between
points in a feature space and can be seen as a general-
ization of a weighted adjacency matrix, the latter being
closely related to our mesh Laplacians. These spectral
embeddings have been used for shape correspondence,
graph matching, and cluster analysis [2, 21, 3, 4]. Al-
though it has been noted that the embeddings can be
quite sensitive to point jitters and outliers [4], the pre-
cise nature of these phenomena has not been explored
further.

3. Robustness Analysis

A mesh M = (K, X) is a simplicial complex K to-
gether with an embedding X : K < R? (see for exam-
ple [13] for more details). As is typical, we will assume
the embedding function to be piecewise linear and de-
fined by its values at the vertices. Also we will only
consider manifold meshes without boundaries.

In practice a Laplacian operator is defined over a
mesh that represents some continuous surface. We are
interested in the extent to which the geometry repre-
sented by the mesh is captured by the spectral proper-
ties of the operator. It is thus necessary to identify op-
erators whose spectral properties are robust when eval-
uated on different meshes that represent the same ob-
ject. In this paper we focus specifically on the eigenval-
ues.

The convergence properties of an operator under
mesh refinement are interesting [26], but they do not
directly reflect robustness. If the spectrum of an oper-
ator converges under subdivision for example, then we
are able to assign eigenvalues associated with that op-
erator on the limit surface. Then, any fixed number of
leading eigenvalues can be made to approximate the
ideal ones as closely as we like, provided we carry out
enough levels of subdivison.

When we talk about robustness on the other hand
we are refering to a resistance to change in the eigenval-
ues with respect to different numbers of samples or dif-
ferent connectivity on the same idealised surface. Thus
although an operator displays convergence under ap-
propriate refinement, it may not be particularly robust
when compared over different coarse samplings. Con-
versely, an operator may show good robustness prop-
erties and yet not exhibit convergence.

Next, we will first discuss what we mean by a Lapla-
cian operator, and why we have chosen to focus our re-
search on these operators. Then we will introduce the
operators we have used in our experiments and the var-
ious quantities that we have studied.

3.1. Laplacian Operators

Mesh Laplacian operators are linear operators that
act on functions defined on a mesh. Functions are spec-
ified by their values at the vertices, thus if M has n
vertices, functions on M will be represented by vec-
tors with n components and a Laplacian operator will
be described by an n X n matrix.

Loosely speaking, a Laplacian operator locally takes
a weighted average of the differences between the value
of a function at a vertex and its value at the first neigh-
bour nodes. Specifically, for our purposes a Laplacian
will have a local form given by

(L)i=a™" Y wiy (fi= 1), (1)
JEN(@)
where N (i) is the set of neighbours of v; € V, and
the w;; are called the weights and they are symmet-
ric: w;; = wj;. The factor a;~! is a positive number.
Its expression as an inverse will appear natural in sub-
sequent developments.

For our purposes weights are not required to be pos-
itive, but we will impose restrictions on the allowed
weights in terms of two global properties of the opera-
tor as will be explained shortly.

An operator that is locally expressed by equation (1)
can be factored into the product of a diagonal and a
symmetric matrix

L=A"Q, 2)



where A™! is a diagonal matrix whose diagonal en-
tries are the a; ' and Q is a symmetric matrix whose
diagonal entries are given by Q;; = > JEN(G) Wij and
whose off diagonal entries are —w;;. Although L itself
is not symmetric, it is similar to the symmetric matrix
O = A7Y/2QA~1/2? and so it has the same real eigen-
values. It is easy to see that if £; is an eigenvector of O
with eigenvalue \;, then e; = A~'/2¢; is an eigenvec-
tor of L with eigenvalue A;.

The eigenvectors of O are mutually orthogonal, since
O is symmetric. This is not generally true for L. How-
ever if we define a scalar product by

(f.9)a = [T Ag, 3)

then the eigenvectors of L are orthogonal with respect
to that product:

(eivej) s = e Aej = &7 & = 3y,

For some operators, such scalar products have natural
interpretation as an approximation to integration.

Zhang [28] characterises a generalised Laplacian op-
erator, L on a connected mesh M by two essential prop-
erties:

Prop. 1 The nullspace of L is the constant vectors
(vectors all of whose coefficients are the same).

Prop. 2 All eigenvalues of L are real and non-
negative.

Operators that are described by equation (1) are called
first order Laplacians because they only involve the
one-ring neighbours at each vertex. If the weights are
all positive, such operators satisfiy the above two prop-
erties. We do not require that the weights be positive,
but we do require that the above two properties be sat-
isfied in order for an operator to be a Laplacian.

More general Laplacian operators may be defined
which satisfy these properties but cannot be described
by equation (1). In fact we will be considering one such
operator in this paper: the operator corresponding to
the linear finite element method.

3.1.1. Types of Laplacian Operators For the sub-
sequent discussion it is convenient to identify the graph
G = (V, E) formed by the vertices and edges of the sim-
plicial complex K associated with a mesh M.

An operator L on M is usually defined by specify-
ing its local form, the a; and w;; in equation (1). If the
definition of these quantities involves only the connec-
tivity information contained in G then we say that L is
a topological operator. If the embedding X is also used
in defining the operator, then we say it is a geomet-
ric operator.

The primary example of a topological operator that
we will use is the Kirchoff operator, defined by setting
a; =1 and w;; =1 in equation (1):

(Lrf)i= Y (fi=f)

JEN(3)

Another popular topological operator, the one that
was used in [24] and [15] for example, is defined by
Ly = D7 'Lk, where D is the diagonal matrix whose
it? diagonal entry is d;, the valence of the i vertex. We
refer to L as the Tutte Laplacian. In terms of equa-
tion (1) it is obtained by setting a; = d; and w;; = 1.

Geometric operators are usu-
ally modeled on the differen-
tial Laplacian operator (Laplace-
Beltrami operator) that is de-
fined on a smooth surface (a 2D
Riemannian manifold). The one
on which we have concentrated
our studies has been described in
[16]. It is defined only on manifold triangle meshes and
its local form is

1
(Lo ()i = N

S Sleota +cot i) (fi — f5), (4
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where the angles a;; and 3;; are shown in the inset to
the left. |€2;| refers to the size of the cell created by join-
ing the midpoint of each edge adjacent to x; with the
barycentre the adjacent triangles (barycentre cell con-
taining ;). It is one third the area defined by the one
ring [16]. Thus for this operator the diagonal matrix
A of equation (2) has entries that are the areas of the
barycentre cells of the associated vertex and the trace
of this matrix is the surface area of the mesh. We will
refer to this operator as the bary-cot operator.

It should be noted that Meyer et al. [16] expressed
a preference for using the Voronoi cells of each ver-
tex rather than the barycentre cells. An argument was
given for the optimality of this choice, based on the as-
sumption that the approximating functions are piece-
wise constant. In practice we have not noticed any sig-
nificant difference in the spectral properties of the op-
erator resulting from using one choice of area cell over
the other.

As a discrete approximation to the differen-
tial Laplacian, this bary-cot operator can be derived
by treating the discrete functions on M as piece-
wise linear and using the divergence theorem on a
barycentre cell.

In this piecewise linear context a natural choice of
scalar product in the function space might be integra-
tion of piecewise linear functions. However, the eigen-



functions are not orthogonal with respect to this in-
ner product. The scalar product (3) which renders Ly
self adjoint is given by a naive approximation to the in-
tegral:

(00 =3 ] = /M fods,  (3)

and so this is the one which must be employed to com-
pute transform coefficients for example. Such a scalar
product is attractive because it will tend to compen-
sate for nonuniform sampling densities.

However, we can consider a refinement of this opera-
tor where the associated scalar product on the function
space is exactly integration of piecewise linear func-
tions. This requires a refinement of the matrix A in
order to obtain the appropriate bilinear form. The ma-
trix @) remains exactly as for the bary-cot operator.

We represent the piecewise linear functions in terms
of the nodal basis (hat) functions {¢; }:

= fipi
=0

so that the scalar product induced by integration is
given by

/M fgds=>">" fig; /M pigjds = (f,9)

i=0 j=0

The matrix
A = [aij] = / QDADJ dS (6)
M

is sparse: only diagonal enteries and entries correspond-
ing to first order neighbours are non-null. The entries
on the diagonal are % the area of the corresponding one-
ring and the off diagonal entries a;; are % the area of
the two triangles adjacent to the edge [i, ] (or zero if
there is no such edge). This can be easily verified by
considering the integral (6) over a single right triangle.
A general triangle can be transformed into a right tri-
angle by an area preserving shear map. Note that the
resulting matrix A is symmetric positive definite and
so corresponds to a valid bilinear form.

To compute this new operator Ly = A~'Q would
require inverting the matrix A. However, for our pur-
poses this is not necessary because ARPACK++ is able
to solve the generalised eigenvalue problem Qe = \Ae.
We recognise this equation as the one that results from
the finite element method [23] with piecewise linear el-
ements and so we will refer to it as the fem operator.

As a third variation of an operator based on the cot
formula (4) we will look at the properties of the oper-
ator given by setting 2, = 1 in equation (4). Thus the

associated bilinear form is just the identity matrix and
the operator is just the symmetric matrix . This op-
erator is featured in the work of Polthier, see [18] for
example. We will refer it as the sym-cot operator.

Many of the properties of the differential Laplacian
operator are also enjoyed by the sym-cot, bary-cot and
fem operators in the piecewise linear setting [18]. In
particular, the formula

(fLf), = /M IV £I2 ds (7)

applies when f is considered as a piecewise linear func-
tion. This guarantees that the Prop. 1 and Prop. 2
are satisfied.

3.2. Measuring Robustness

The spectral robustness of an operator is reflected in
both its eigenvalues and its eigenvectors. If the eigen-
vectors of an operator are to be used as the basis for
a Fourier-type transform, then it is certainly desirable
that they be robust so as to ensure consistent values
for the transform coefficients.

However, it is difficult to quantify directly the ro-
bustness of eigenvectors. A starting point is to consider
the eigenvectors as discrete eigenfunctions on a con-
tinuous surface represented by the mesh. These func-
tions can be visualised by colouring the surface accord-
ing to the value of the function at each point. Quali-
tatively, robustness would be reflected by a similar ap-
pearance of the eigenfunctions over different discreti-
sations of the same surface.

A more quantitative, although somewhat indirect,
measurement can be made by considering the coeffi-
cients obtained by performing a spectral transforma-
tion on the embedding function X (typically the trans-
form coeflicients of each of the three coordinate func-
tions are computed independently).

Thus if a surface S is represented by meshes M and
M’ with embedding functions X and X' respectively,
we compare the coefficients X, and X{, arising from
the expansions X = Y, X;e; and X' = 3", X/e! where
e; and e are the eigenfunctions of an operator L on
the respective meshes.

A number of factors influence the consistency of such
measurements. The eigenfunctions must line up with
the geometry of the object in a consistent fashion. In
other words if the zero crossing curves are plotted on
the surface, they should lie in roughly the same place
regardless of the underlying mesh.

For topological operators it is easy to see that such
a criterion can never be guaranteed. Such operators
have no direct geometric information so their eigen-
functions can only align with the connectivity pattern



of the mesh. If a mesh M is viewed as an embedding of
a graph G on a surface S, then we can construct a mesh
M’ by using a different embedding of the same under-
lying graph on the same surface. The orientation of
the eigenfunctions relative to the surface will be differ-
ent in the two cases.

However, in practice we have observed that the first
few eigenfunctions of the topological operators do seem
to line up with the geometry in a consistent manner.
This brings to mind the observation that a consider-
able amount of geometric information is inherent in
the connectivity of most meshes [14]. Nonetheless, the
lack of any hope of a guarantee makes the use of topo-
logical operators less appealing.

This problem is not inherent to the geometric op-
erators. For the discrete differential operator (4), the
eigenfunctions do seem to consistently orient them-
selves with the geometry. However here we have ob-
served a different complication in the relationship be-
tween geometry and the eigenfunctions.

a) b)

c) d)

Figure 1. Eigenfunctions are visualised by colour-
ing the surface according to the sign of the func-
tion value at each point, i.e. red is positive and
blue is negative. The top row shows an ellipsoid
with a slightly shorter major axis than the one
shown in the bottom row. Both ellipsoids have a
minor axis of length 0.5 and a semi-major axis of
length 0.7. For the top row, the length of the ma-
jor axis is 1.59 (a,c) depict eigenvector number
three and (b,d) show eigenvector number four.
For the bottom row, the major axis is 1.65. The
relative ordering of qualitatively identical eigen-
vectors has changed.

If two objects are very similar in shape, we ex-
pect their eigenfunctions to be correspondingly similar.

However, we have observed that the order of the eigen-
functions, as defined by the magnitude of the corre-
sponding eigenvalue, can be sensitive to small changes
in the shape. An example of this is shown in figure 1,
where we have compared ellipsoids that are almost
identical.

This behaviour complicates any attempts to use the
spectral coefficients as part of a shape indexing scheme.

Note that this problem exhibited by figure 1 can
arise when we are considering different meshings of the
same ellipsoid if it has a principle axis of the critical
length where the fourth and fifth eigenfunctions ’swap
places’. In this case the fourth and fifth eigenvalues are
practically the same; we have a degenerate eigenvalue.

If the eigenspace &£y associated with an eigenvalue A
has multiple dimensions, then any basis for £, can rep-
resent the orthogonal eigenfunctions associated with .
Thus the spectral coefficients associated with each spe-
cific eigenfunction are not well defined. Even if £, has a
single dimension, the normalised eigenfunction is only
defined up to sign.

To get around these problems we can define our co-
efficients to be the magnitude of the projection of the
function into each eigenspace. This leads to the prob-
lem of deciding when two eigenvalues are close enough
to be considered the same. There will be sensitivity
of the coefficients in the neighbourhood of this thresh-
old. These algorithmic issues tend to eclipse the focus
of our study which is the spectral robustness of the op-
erators themselves.

The other approach, the one we take in this paper,
is to measure the robustness of the eigenvalues. This
avoids many of the complications associated with mea-
suring eigenvectors. If robustness of the eigenvalues is
not manifest, we do not expect robustness of the eigen-
vectors. If e is a normalised eigenfunction of L with
eigenvalue X\ then we have

A= (e, Le),. (8)

In particular, for the operators based on the cotangent
formula (4), we see from equation (7) that the eigenval-
ues are given by the integral of the squared norm of the
gradient of the corresponding eigenfunctions. Thus, at
least for the discrete differential operators, the robust-
ness of the eigenfunctions implies a robustness of the
eigenvalues.

In order to be able to compare eigenvalues resulting
from different meshes, we need to apply a normalisa-
tion factor. The normalisation factor we use is (1, 1) ,,
where 1 is the constant vector of all ones. In other
words we use the sum of all elements in the associated
bilinear form. For the bary-cot and fem operators this
means that we multiply the eigenvalues by the surface



area of the mesh. This makes sense because if these op-
erators are multiplied by the surface area of the mesh
then they are invariant with respect to changes of scale.

For the Kirchoff operator, A is the identity, so we
multiply the eigenvalues by the number of nodes in the
mesh. This normalisation is the same as arises in the
Nystrom approximation [2], but this theory does not
directly apply to our case.

4. Experimental setup

We are interested in the effects of changes in the
sampling density, as well as connectivity pattern among
mesh vertices on the eigenvalues of the Laplacian oper-
ators. An appropriate eigensolver also needs to be cho-
sen to compute the Laplacian spectrum.

Numerical eigensolver: As we are primarily inter-
ested in the leading eigenvalues and eigenfunctions of
the mesh Laplacians, ARPACK++ [10], a C++ inter-
face to ARPACK, proves to be a good choice. ARPACK
is a collection of Fortran77 subroutines designed to
compute a few eigenvalues and corresponding eigen-
vectors of a large, sparse matrix, making use of an al-
gorithmic variant of the Arnoldi process called the Im-
plicitly Restarted Arnoldi Method.

Change of sampling density via mesh decima-
tion: In order to obtain a family of meshes for the
same object at different resolutions, we used gslim, an
existing implementation of the quadric-based decima-
tion algorithm of Garland and Heckbert [9], as well as
our own implementation of the vertex removal algo-
rithm of Schroeder et al. [20]. In the latter case, ver-
tices are chosen randomly for removal and they are
removed only if its discrete curvature is below an ap-
propriately chosen threshold. The two decimation algo-
rithms produce rather different mesh tessellations thus
reducing the risk of interpreting artifacts of a decima-
tion as a property of an operator. In particular, since
each mesh resolution is obtained from decimating the
base mesh directly, the randomised algorithm produces
a family of meshes whose underlying graphs cannot be
described by a tower of subgraphs.

Connectivity alteration via edge flips: For meshes,
even when the locations of the sample points (vertices)
are fixed, the tessellation can be altered by changing
the underlying graph. From a given triangle mesh M,
we create a series of related meshes by performing suc-
cessive, random edge flips. An edge will not be flipped
if certain criteria are met. Specifically, we require that
the scalar product of the normals of the faces adjacent
to an edge be larger than some threshold. We also re-
quire that the angle subtended by the newly flipped

edge not be too large, so that the resulting triangles
are not close to being degenerate. Since the same edge
is never flipped twice, the connectivity of the meshes
become progressively 'more different’ from the origi-
nal model as the number of edge flips increases.

5. Experimental results

Our results are divided into three subsections. The
first two sections correspond to the two principle types
of experiments we performed. In section 5.1 we present
some of the results we obtained from experiments in-
volving mesh decimation. In section 5.2 we present the
results of experiments which changed the connectivity
of the mesh while holding the sampling points fixed.
Finally in section 5.3 we make observations about the
times required to solve the different eigenvalue systems
with ARPACK++.

The errors are presented in contour plots. In all of
these plots the errors are relative to the finest resolu-
tion mesh and the relative error scale ranges from 0 to
0.1. Contour lines are drawn at intervals of 0.01.

5.1. Changes in sample density

The difference between the error plots of the Kir-
choff operator and the Tutte operator is barely dis-
cernable. The Tutte operator can be viewed as the Kir-
choff operator multiplied by a diagonal matrix that is
a perturbation of the identity matrix times 1/6. The
effects of these perturbations do not manifest them-
selves in the low eigenvalues. Even in the case of 4-8
meshed spheres produced by the smfsphere utility pro-
vided with gslim [9], the differences were barely noti-
cable. We have therefore decided to focus our attention
on the simpler Kirchoff operator.

In figure 2 we present the results of four different op-
erators applied to the sphere. Meshes of varying reso-
lutions were produced by the smfsphere utility and we
plotted the eigenvalue curves of each mesh side by side
so that they form a surface. In this presentation the
eigenvalue curves of a robust operator will all be ap-
proximately the same so the resulting surface will re-
semble a kind of wide staircase.

These plots are shown on the left in figure 2. On the
right we show the relative errors of the eigenvalues as
compared with the highest resolution mesh. These er-
rors are displayed as a contour plot where the eigen-
value number is varied on the z-axis and the number
of vertices in the mesh is varied on the y-axis.

Each row corresponds to a different operator. On the
bottom row is the fem operator. The error plot for this
operator is not surprising: an increase in error is pro-



duced by a decrease in mesh resolution or an increase
in the eigenvalue index. This could also be claimed as
a trend in the error data for the bary-cot operator on
the sphere (third row). However the errors for the other
two operators display a more complicated structure. It
is interesting to note that the sym-cot operator (sec-
ond row) has an error structure that resembles more
the Kirchoff operator than it does the other discrete
differential operators.

In figure 2 the fem operator has the cleanest looking
error plots. However, for general meshes that aren’t de-
rived from an analytically defined surface, the fem op-
erator often displays error behaviour at course resolu-
tions that is much worse than that of the bary-cot op-
erator. An example of this is shown in figure 3. We have
not observed the fem operator to significantly out per-
form the bary-cot operator on any model, however the
converse does occur often.

Another interesting observation regarding the bary-
cot and the fem operators is the fact that the low reso-
lution eigenvalues of the fem operator are consistently
greater than the corresponding high resolution values
(as predicted by theory [23]), but for the bary-cot op-
erator they are lower. This can be observed in the left
hand plots of the last two rows of figure 2 for exam-
ple.

The sym-cot and fem operators generally have infe-
rior performance when compared with the bary-cot op-
erator. We therefor focus on this latter operator as the
best representative of the geometric operators that we
have investigated. In figure 4 we plot the average eigen-
value errors of the Kirchoff and bary-cot operators re-
sulting from different datasets. There is a clear trend
of superior performance of the bary-cot operator over
the Kirchoff operator.

An unexpected phenomenom is also apparent in fig-
ure 4. The errors of the Kirchoff operator are often
greatest for the eigenvalues with low indices. This be-
haviour is also evidenced in our connectivity experi-
ment example of figure 5 described in section 5.2. Al-
though this behaviour is much less prevalent in the
bary-cot operator, the latter is not immune from it as
can be seen in figure 3(a).

The error plots for both operators often show an in-
teresting behaviour: certain eigenvalues exhibit much
greater or much lesser stability than others so that
ridges and valleys appear in the error plots. This can
also be seen in figure 3(a). In the sphere plots of fig-
ure 2 ridges of the Kirchoff operator seem to align
with jumps between successive eigenspaces. However,
we have not observed this as a general trend.

We do not have a good explanation for this phe-
nomenum of robust eigenvalues. It is possible that it is

multiple models: average errors
0.25;

— Kirchoff

average error

0 10 20 30 40 50
eigenvalue number

Figure 4. Average eigenvalue errors for eight dif-
ferent datasets. These datasets are from six dif-
ferent models. Four of them were decimated with
gslim and four with the random vertex removal
program.

an artifact of the decimation algorithms, but we have
noticed this pattern with both algorithms. It can even
be observed to a certain extent in the connectivity per-
turbation test shown in figure 5.

5.2. Connectivity perturbations via edge
flips

The bary-cot operator consistantly and significantly
outperforms the Kirchoff operator. Figure 5 shows a
representative example. We have taken a model of a
hand with 2500 vertices and performed a series of edge
flips subject to the constraints described in section 4.
The Kirchoff operator exhibits errors an order of mag-
nitude greater than the bary-cot operator. The fem
and sym-cot operators both perform quite well in these
tests, however the bary-cot operator consistently out-
performs them.

5.3. Timing

Any algorithm that is based on an eigendecomposi-
tion is faced with the problem that it is an extremely
costly calculation. Generally the smaller the mesh, the
faster the system can be solved but the reliability of
the resulting eigenvalues is compromised if the mesh is
too coarse.

In table 6 we show the time required to solve each
of the five operators on three different meshes. The
first mesh is a hand model with 6191 vertices. The sec-
ond mesh is a sphere with 20000 vertices produced by
the smfsphere ustility [9]. The final model is a fish with
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Figure 2. Eigenvalues and their corresponding errors for four different operators on the sphere. On the left
are the eigenvalue curves plotted side by side for varying mesh resolutions. On the right are contour plots of
the errors relative to a 20000 vertex reference mesh. See the text body for discussion.
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Figure 3. Shown here are the eigenvalue errors for the bary-cot operator (a) and the fem operator (b) on
a horse model. The bary-cot operator shows greater robustness. The meshes of different resolutions were

produced with gslim.
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Figure 5. Eigenvalue errors for the bary-cot operator (a) and the Kirchoff operator (b) on a hand model
submitted to progressive edge flips. The bary-cot operator shows errors an order of magnitude smaller than

the Kirchoff operator.

6000 vertices. The fish has been decimated from a much
larger mesh using gslim [9].

For the topological operators the size mesh seems to
be the most important factor influencing the time re-
quired to solve the system. However for the operators
based on equation (4), the shape of the triangles can be
much more important. gslim can produce very thin tri-
angles which presumably result in ill conditioned ma-
trices when the cot operators are employed. Fifty FEM
eigenvalues for the fish of 6000 vertices took 11 hours
to compute whereas those of the sphere with 20000 ver-
tices were computed in 45 minutes.

One of the goals of this paper was to gain insight
into how much a mesh can be decimated before too
much of the essential spectral information of the orig-
inal mesh is lost. It seems that the quality of the dec-
imated mesh is actually at least as important as its
size when a mesh for fast spectral decomposition is de-
sired.

6. Conclusions and Future Work

We have attempted to shed light on the extent to
which the spectrum of a Laplacian operator is influ-



operator | hand | sphere | fish |

Kirchoff 27.6 237.6 24.0
Tutte 26.1 171.8 19.1
sym-cot 43.8 237.3 5968
bary-cot 65.9 404.0 20675
fem 101.5 1590 39634

Figure 6. Times (in seconds) to compute fifty
eigenvalues for various operators and mod-
els on a 2.8GHz Intel Xeon processor using
ARPACK++.

enced by changes in the number of samples or connec-
tivity of the samples of the mesh representing an ob-
ject. As expected, the topological operators are much
more sensitive to connectivity changes than the geo-
metric operators. The geometric operators also gener-
ally outperformed the topological ones with respect to
changes in sampling density.

Among the three geometric operators we investi-
gated, the bary-cot operator had the best performance.
Overall it is this operator that displayed the least sensi-
tivity with respect to changes in sampling density and
connectivity.

One striking phenomenon that we have observed is
the occurence of isolated eigenvalues that exhibit much
more robustness than the neighbouring eigenvalues. It
appears unlikely that this is merely an artifact of our
experimental procedures. It would be interesting to un-
derstand and exploit this phenomenon.

Another observation is that, especially for the topo-
logical operators, some of the small eigenvalues exhibit
much less robustness than the larger ones.

The operators based on the cotangent formula (4)
became extremely costly to solve when the quality of
the triangles in the mesh became poor. Surprisingly,
the eigenvalues, when they could be calculated, re-
mained robust under these conditions. An essential
tool for future spectral work using these operators will
be a remeshing algorithm that produces clean meshes
that allow the eigenvalue problem to be solved quickly.
We have arbitrarily confined the number of calculated
eigenvalues to 50. With a good remeshing algorithm
we will be able to effectively explore greater numbers
of eigenvalues.

Other future work will include experiments which
involve perturbations of the geometry rather than the
connectivity or number of samples. This would also be
a step towards a possible spectral shape indexing sys-
tem. Ultimately we would like to have a universal spec-
tral transform that is resistant to the problem of de-

generate eigenvalues.

References

[1] M. Ben-Chen and C. Gotsman. On the optimality of
spectral compression of meshes. preprint, 2003.

[2] Y. Bengio, J. Paiement, P. Vincent, O. Delalleau, N. Le
Roux, and M. Ouimet. Out-of-sample extensions for
LLE, isomap, MDS, eigenmaps, and spectral cluster-
ing. In S. Thrun, L. Saul, and B. Schélkopf, editors,
Advances in Neural Information Processing Systems 16.
MIT Press, Cambridge, MA, 2004.

[3] M. Carcassoni and E. R. Hancock. Point pattern match-
ing with robust spectral correspondence. In Proceed-
ings of Computer Vision and Pattern Recognition, pages
649-655. IEEE Computer Society, 2000.

[4] M. Carcassoni and E. R. Hancock. Alignment using
spectral clusters. In British Machine Vision Conference,
2002.

[5] F.R.K.Chung. Spectral Graph Theory. American Math-
ematical Society, 1997. CBMS Regional Conference Se-
ries in Mathematics.

[6] M. Desbrun, M. Meyer, P. Schréder, and A. H. Barr. Im-
plicit fairing of irregular meshes using diffusion and cur-
vature flow. In SIGGRAPH 1999 Conference Proceed-
ings, pages 317-324. ACM SIGGRAPH, 1999.

[7] M. S. Floater. Mean value coordinates. Comput. Aided
Geom. Des., 20(1):19-27, 2003.

[8] K. Fujiwara. Eigenvalues of laplacians on a closed rie-
mannian manifold and its nets. In Proceedings of the
AMS, volume 123, pages 25852594, 1995.

[9] M. Garland and P. S. Heckbert. Surface simplification
using quadric error metrics. SIGGRAPH, 31(Annual
Conference Series):209-216, 1997.

[10] F. M. Gomes and D. C. Sorensen. ARPACK++.
http://www.ime.unicamp.br/~chico/arpack++/,
1997.

[11] C. Gotsman. On graph partitioning, spectral analysis,
and digital mesh processing. In Proceedings of the Shape
Modeling International 2003, page 165. IEEE Computer
Society, 2003.

[12] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals
of spherical parameterization for 3d meshes. In SIG-
GRAPH 2003 Conference Proceedings, pages 358—363.
ACM SIGGRAPH, 2003.

[13] I. Guskov, W. Sweldens, and P. Schréder. Multiresolu-
tion signal processing for meshes. In Computer Graph-
ics Proceedings (SIGGRAPH 99), pages 325-334. ACM
Siggraph, 1999.

[14] M. Isenburg, S. Gumhold, and C. Gotsman. Connectiv-
ity shapes. In Proc. of IEEE Visualization 2001. IEEE
Visualization, 2001.

[15] Z.Karniand C. Gotsman. Spectral compression of mesh
geometry. In K. Akeley, editor, Siggraph 2000, Com-
puter Graphics Proceedings, pages 279-286. ACM Press
/ ACM SIGGRAPH / Addison Wesley Longman, 2000.



[16]

(17]

18]

(19]

[20]

21]

22]

23]

24]

[25]

29]

M. Meyer, M. Desbrun, P. Schréder, and A. H. Barr. Dis-
crete differential-geometry operators for triangulated 2-
manifolds. In H.-C. Hege and K. Polthier, editors, Vi-
sualization and Mathematics I11, pages 35—57. Springer-
Verlag, Heidelberg, 2003.

R. Ohbuchi, S. Takahashi, T. Miyazawa, and
A. Mukaiyama. Watermarking 3d polygonal meshes
in the mesh spectral domain. In Graphics Inter-
face, pages 9-17. Canadian Information Processing
Society, 2001.

K. Polthier. Computational aspects of discrete minimal
surfaces. In J. Hass, D. Hoffman, A. Jaffe, H. Rosenberg,
R. Schoen, and M. Wolf, editors, Proc. of the Clay Sum-
mer School on Global Theory of Minimal Surfaces, to ap-
pear 2002.

S. Rosenberg. The Laplacian on a Riemannian Mani-
fold. Cambridge University Press, 1997.

W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Deci-
mation of triangle meshes. In Proceedings of ACM SIG-
GRAPH, pages 65-70. ACM Press, 1992.

L. S. Shapiro and J. M. Brady. Feature-based correspon-
dence: an eigenvector approach. Image Vision Comput-
ing, 10(5):283-288, 1992.

O. Sorkine, D. Cohen-Or, and S. Toledo. High-pass
quantization for mesh encoding. In Proceedings of
the Eurographics Symposium on Geometry Processing,
pages 41-51, 2003.

G. Strang and G. J. Fix. An Analysis of the Finite Ele-
ment Method. Prentice-Hall, 1973.

G. Taubin. A signal processing approach to fair sur-
face design. In SIGGRAPH 95 Conference Proceedings,
pages 351-358. ACM SIGGRAPH, 1995.

G. Taubin, T. Zhang, and G. H. Golub. Optimal surface
smoothing as filter design. In Proceedings of the 4th Eu-
ropean Conference on Computer Vision, volume 1, pages
283-292. Springer-Verlag, 1996.

G. Xu. Convergent discrete laplace-beltrami opera-
tors over triangular surfaces. In Geometric Modeling
and Processing, pages 195-204. IEEE Computer Soci-
ety, 2004.

C. T. Zahn and R. Z. Roskies. Fourier descriptors for
plane closed curves. IEEE Transactions on Computers,
(C-21(3):269-281, March 1972.

H. Zhang. Discrete combinatorial laplacian operators
for digital geometry processing. In Proceedings of STAM
Conference on Geometric Design and Computing. Nash-
boro Press, 2004. to appear.

H. Zhang and E. Fiume. Butterworth filtering and
implicit fairing of irregular meshes. In Proceedings of
the 11th Pacific Conference on Computer Graphics and
Applications, pages 502-506. IEEE Computer Society,
2003.



