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Abstract—In this paper we investigate the effects of function composition in the form g( f (x)) = h(x) by means of a spectral analysis

of h. We decompose the spectral description of h(x) into a scalar product of the spectral description of g(x) and a term that solely

depends on f (x) and that is independent of g(x). We then use the method of stationary phase to derive the essential maximum

frequency of g( f (x)) bounding the main portion of the energy of its spectrum. This limit is the product of the maximum frequency

of g(x) and the maximum derivative of f (x). This leads to a proper sampling of the composition h of the two functions g and f . We

apply our theoretical results to a fundamental open problem in volume rendering—the proper sampling of the rendering integral after

the application of a transfer function. In particular, we demonstrate how the sampling criterion can be incorporated in adaptive ray

integration, visualization with multi-dimensional transfer functions, and pre-integrated volume rendering.

Index Terms—volume rendering, transfer function, signal processing, Fourier transform, adaptive sampling.
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1 INTRODUCTION

The fundamental problem in image synthesis is the evaluation of the

rendering integral [17]. In particular, volume rendering is based on the

volume rendering integral, which requires the assignment or mapping

of optical properties to given data values f (x). By slightly abstract-

ing the integrand within the volume rendering integral, this mapping

can be viewed as a composite function g( f (x)) = h(x), where g is the

transfer function assigning optical properties (i.e. opacities) to val-

ues of the data f and where h is the resulting function that is to be

rendered. It is the signal g( f (x)) = (g ◦ f )(x) that is the input to the

rendering algorithm. Besides the chosen quadrature formula for eval-

uating the integral, a crucial parameter determining the accuracy of

the numerical solution to the integral is the sampling distance. Since

it is common to use linear interpolation, it is important to use at least

twice the Nyquist rate in order to guarantee an accurate evaluation of

the integral.

Despite the common use of this approach of sampling a composited

data function it has not yet undergone a satisfactory mathematical anal-

ysis. In particular, there were no clear statements on how the mapped

function is to be sampled appropriately. The only exception known to

the authors is the previous work [4, 10, 21], which suggests that the

proper essential Nyquist rate of (g ◦ f ) is proportional to the product

of the respective Nyquist rates. However, we found this estimate too

restricted for many data models and mostly over-estimating, as demon-

strated in Figure 1. The knowledge of the proper sampling rate of the

function (g ◦ f )(x) will enable us to not only predict a proper error

behavior, but allows us to accelerate rendering algorithms by skipping

over regions that need less sampling in order to guarantee a partic-

ular error behavior. While fast, high-quality solutions for quantized

8-bit data exist in form of pre-integrated transfer functions, adequate

sampling rates for high dynamic range volumes and multi-modal or

multi-dimensional data, such as ( f , | f ′|), are yet unknown. Typical es-

timates are based on a proper sampling of f alone, which neglects the
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effect of the transfer function. In the following we present an estimate

for suitable sampling that takes the effect of the transfer function into

account.

After a summary of the related work in Section 2 we provide a rig-

orous mathematical treatment in Section 3. Section 4 will then discuss

the implications of our analysis for applications in volume rendering.

We also suggest a solution for multi-dimensional transfer functions.

We summarize our contributions in Section 5 and give some direc-

tions for possible future explorations. A brief overview of the main

point of this paper is given in Figure 1.

2 RELATED WORK

In this paper, we consider sampling in the context of volume rendering:

what is the appropriate sampling rate for the combined function (g◦ f ),
when f represents the scalar data and g the transfer function?

2.1 Fourier analysis and volume rendering

The problem of how to properly evaluate the function under the render-

ing integral has been debated since the beginnings of volume graphics.

Wittenbrink et al. [24] made the observation that it is important to in-

terpolate f in order to properly super-sample (g ◦ f ), while recently

Younesy et al. [26] pointed out that it is important to low-pass filter g

in order to sub-sample (g◦ f ).
To our knowledge, the work by Kraus [10] and Schulze and

Kraus [21] is the only previous work that investigates the sampling

of the volume rendering integral by means of Fourier analysis and the

sampling theorem. For the function models they use in their deriva-

tions, the essential Nyquist rate of (g ◦ f ) is πνgν f , where νg and ν f

are the maximum frequencies in g and f , respectively. This statement

is in accordance with a similar conjecture by Engel et al. [4].

Related work in the field of signal processing considers properties

of time-warping, which can be interpreted as a composition of a warp-

ing function with a signal. However, works by Clark et al. [3], Azizi

et al. [1], and others in that field [2] focus on invertible (monotonous)

warping functions. For that reason, their work can be used to gain

insight on the subject, yet their results are based on too restrictive as-

sumptions in order to still be applicable in our setting.

2.2 Adaptive sampling

The main benefit of understanding the required sampling rate for the

volume rendering integral is that the sampling rate can be adapted to

the lowest possible value in order to reduce the computational load.
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(d) Sampling g( f (x)) with 4 times the bounding frequency νg max | f ′|

Fig. 1. Sampling comparison. The data f (x) (a) is composed with a transfer function g(y) (b). Figures (c) and (d) show sinc-interpolated samplings

of g( f (x)). The tighter bounding frequency (d) suggested in this paper results in 5 times fewer samples for these particular f and g, still truthfully

representing the composite signal.

Various approaches to adaptive sampling are known in the literature

(see Chapter 9 in [5] for theoretical background). A simple example

is empty space skipping, which identifies regions of vanishing con-

tribution to the integral and skips those regions [9, 11, 15, 22, 25].

Other methods flexibly adapt the sampling rate to the requirements of

volume rendering. For example, adaptive sampling can be employed

for hierarchical splatting [13], GPU ray casting [19], or texture-based

volume rendering [12].

2.3 Pre-integrated transfer functions

Pre-integrated volume rendering separates the computation of the vol-

ume rendering integral for a small ray segment from the sampling of

the scalar field. Therefore, pre-integration is effective in reducing the

required sampling rate. Pre-integration can be employed for various

volume rendering algorithms. Its first uses were for the cell projection

of tetrahedra [20] (with a simpler predecessor [23]) and 2D texture-

based volume rendering of uniform grids [4]. One of the issues of

pre-integration is the need to calculate and store large tables with pre-

computed ray segments. Although there exist methods to accelerate

this pre-computation [16, 18], the required computations and mem-

ory increase at least quadratically with the number of distinct scalar

values. Therefore, pre-integration becomes less useful for data with

high-resolution quantization, such as 12-bit CT scans or simulation

data with floating-point accuracy. Today’s trend to high dynamic range

volume visualization [27] will increase the demand for appropriate

volume rendering methods.

2.4 Multi-dimensional transfer functions

Another trend in volume rendering is the use of multi-dimensional

transfer functions. Levoy [14] considers both the scalar value and

its gradient magnitude to model a transfer function that extracts

isosurface-like structures. Kindlmann and Durkin [6] and Kniss et

al. [7] extend this idea to include higher-order derivatives in transfer

function design. Unfortunately, multi-dimensional transfer functions

are difficult to use in combination with pre-integration: the larger num-

ber of parameters for the transfer function leads to impractically huge

pre-integration tables. One solution is the on-the-fly computation of

ray segments [8]. However, this approach is restricted to Gaussian

transfer functions.

3 SPECTRAL ANALYSIS

In the subsequent analysis, the data is represented by f(x), which typ-

ically maps from R
3 to R

m, with m being the number of modalities.

Our transfer function g maps R
m to a scalar value in R, which could be

one channel of the optical properties, such as opacity. The composite

function is

h(x) = g(f(x)). (1)

Considering G(l) to be the Fourier domain expansion of g(y), h(x)
results from the inverse transform of G as

h(x) = g(f(x)) =

(

1√
2π

)m ∫

Rm
G(l)eil·f(x)dl. (2)

This is the inverse Fourier transform giving g(y) for y = f(x). The

Fourier transform of h(x) can be written as

H(k) =

(

1√
2π

)m+3 ∫

R3

∫

Rm
G(l)eil·f(x)dl e−ik·xdx. (3)

Switching the order of integration yields

H(k) =

(

1√
2π

)m+3 ∫

Rm
G(l)

∫

R3
eil·f(x)e−ik·xdxdl. (4)

Noticing that the inner integral is independent of G, we give it its own

name, P(k, l),

P(k, l) =
∫

R3
ei(l·f(x)−k·x)dx (5)

H(k) =

(

1√
2π

)m+3 ∫

Rm
G(l)P(k, l)dl (6)

H(k) =

(

1√
2π

)m+3

< G(·),P(k, ·) > . (7)

This shows that forming the spectrum H(k) of the composite function

can be interpreted as a linear operation on the spectrum G(l), imple-

mented by means of the scalar product < ·, · >. In the following we

will take a closer look at the properties of P(k, l).
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(b) Frequency map of f1 (showing magnitudes thresholded at e−7)
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(d) Frequency map of f2

Fig. 2. The frequency map P(k, l) for a function f (x) determines how much a frequency l of the transfer function contributes to a frequency k

of the spectrum of the composed function g( f (x)). The examples are (a) single and (c) mixed (non-normalized) Gaussians, using B(µ,σ ,x) =

exp
(

− (x−µ)2

2σ2

)

and their corresponding P(k, l) in (b) and (d), respectively. The upper and lower slopes of the low-valued wedge (black) are given by

the reciprocal of the maximum and the minimum values of f ′, respectively, as shown in Section 3.2.

3.1 Visual inspection of the frequency map P(k, l)

The map P(k, l) is independent of the properties of g, which in our ap-

plication is the transfer function, and solely depends on f(x). Further,

in its role as a kernel of the linear operator used in Equation 7 it can

be interpreted as a map telling how a certain frequency component of

G of wavenumber l is mapped to a frequency of index k in the target

spectrum of H.

To get an intuition for the properties of this function we will first in-

spect it visually. Figure 2 shows P(k, l) for different one-dimensional

scalar functions f (x). In particular we have chosen a pure Gaussian

function and a combination of two Gaussian functions. We have com-

puted P(k, l) as the discrete Fourier transform of eil f (x), which is a

possible interpretation of a distretized Equation 5. The picture has to

be imagined periodically continued in k (horizontally), which is due

to the discretization and does not apply to the continuous case that

we deal with in the subsequent analysis. Further, the function is point

symmetric as P(k, l) = P(−k,−l), where a denotes the complex con-

jugate of a. This results from Equation 5.

A significant property apparent from Figure 2 is the low-valued

wedge in the middle, starting narrow at l = k = 0 and increasing in

size towards larger k. According to Equation 7 the spectrum of the

composite function H(k) is formed by the dot product with the spec-

trum G(l). In order to determine at which maximum wavenumber k

the function H(k) has a significant contribution, we have to figure out

for which k the main spectrum of G(l) overlaps with the outside of

the low-valued wedge to produce a non-negligible contribution. This

determines the sampling rate of H(k).

3.2 Determining the boundary of the wedge

In Equation 5 it is apparent that P(k, l) is an integral over an oscillating

function eiu(x) with unit magnitude and phase u(x) = l · f(x)− k · x.

For the following analysis we will restrict ourselves to the one-

dimensional case. This is appropriate when performing the analysis

along a single ray. Further, we assume f (x) to be a scalar-valued func-

tion.

As an introductory example, consider a linear function f (x) = ax.

This yields the integral I = P(k, l) =
∫ ∞
−∞ ei(la−k)xdx = δ (la− k). If

the phase is zero, i.e. la− k = 0, the integral is infinite. However, if

the phase is non-zero (changing constantly), the integral is zero. This

behavior is well-known as Dirac’s delta function.

For general functions f (x) it can be said that the integral in Equa-

tion 5 has significant cancellations in intervals where the phase u(x) =
l f (x)− kx is changing rapidly. The largest contributions occur where

the phase of the integrand varies slowest, in particular where its deriva-

tive u′(xs) = 0. An approximate solution for the integral can be ob-

tained by only considering the neighborhood around xs, which are the

so-called points of stationary phase.

The previous statement only applies if the term u(x) for the phase

can be split up into the product of a large scalar and a function in the

order O(1). To facilitate this split, we change the parameterization of

the integrand from P(k, l) to polar coordinates P(κ,θ). Hence, the
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phase becomes u(x) = κ( f (x)sinθ − xcosθ). The points xs of sta-

tionary phase are then given by

du

dx
=

d

dx
κ( f (x)sinθ − xcosθ) = 0 (8)

f ′(xs)sinθ − cosθ = 0 (9)

1

f ′(xs)
= tanθ . (10)

In the following approximation we replace the integrand of Equation 5

by a second-order Taylor expansion around each xs resulting in1

Ixs
∼
∫ ∞

−∞
eiκ( f (xs)sinθ−xs cosθ+ 1

2
f ′′(xs)x

2 sinθ)dx (11)

Ixs
∼ eiκ( f (xs)sinθ−xs cosθ)

(

2π

κ| f ′′(xs)sinθ |

)1/2

ei π
4

sgn{ f ′′(xs)sinθ}.

(12)

For f ′′(xs) considerably different from zero the integrand vanishes

quickly as (x− xs)
2 increases. The full integral is approximately ob-

tained by summing all Ixs
for all xs fulfilling Equation 10. This case

is relevant for points min( f ′) < 1
tanθ < max( f ′). Outside this range

we do not have any points of stationary phase and the overall integral

forming P(κ,θ) is close to zero.

This observation establishes the main insight of our analysis: the

extremal slopes of f form the boundary of the wedge observed in Fig-

ure 2. Therefore, the primary result of this paper is that the composite

function has an essential maximum frequency of

νh = νg max
x

| f ′(x)| , (13)

where νg is the maximum frequency of g. The corresponding sampling

rate should be chosen just above the essential Nyquist rate of 2νh.

3.2.1 Rapid decay at the boundary edge

An interesting case arises if one considers the boundaries of the essen-

tially band-limiting interval. They form the boundaries of the wedge.

To inspect the range around this band edge we define a critical angle θe

fulfilling tanθe = 1/ f ′(xe) and f ′′(xe) = 0 with xe being a maximum

point of f ′(x). Here, the second derivative vanishes, which requires a

third-order Taylor approximation of u(x). In the vicinity of the band

edge for θ h θe the resulting integral is

P(κ,θ) ∼
∫ ∞

−∞
exp[iκ( f (xe)sinθ − xe cosθ +( f ′(xe)sinθ − cosθ)x

+
1

6
f ′′′(xe)x

3 sinθ)]dx (14)

substituting x = α x̄ using α =
(

2
κ f ′′′(xe)sinθ

)1/3

= eiκ( f (xe)sinθ−xe cosθ)α

·
∫ ∞

−∞
exp

[

i

(

κα( f ′(xe)sinθ − cosθ)x̄+
x̄3

3

)]

dx̄ (15)

considering eis + e−is = 2cos(s)

= 2πeiκ( f (xe)sinθ−xe cosθ)α

· 1

π

∫ ∞

0
cos

[

ακ( f ′(xe)sinθ − cosθ)x̄+
x̄3

3

]

dx̄ (16)

= 2πei( f (xe)κ sinθ−xeκ cosθ)

(

2

f ′′′(xe)κ sinθ

)1/3

·Ai

(

κ( f ′(xe)sinθ − cosθ)

(

2

f ′′′(xe)κ sinθ

)1/3
)

(17)

1We do not need to consider (x − xs), because we can substitute x with

x = x′ + xs (and then rename x′ back to x).

which has a solution involving the Airy function2 Ai, whose graph is

shown in Figure 3.
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Fig. 3. The graph of the Airy function Ai(t). It decays exponentially

toward positive t with exp(−(2/3)t(3/2)). Also notice that its maximum

occurs for negative t. The value for t = 0 in Equation 17 is attained at

the band edge θ = θe.

3.3 Error analysis

The result in Equation 17 gives us an idea of how P(k, l) behaves near

the band edge3. The first factor is a complex exponential that changes

in phase with k and l and is fixed in magnitude 2π . The second factor is

decaying in O(l−1/3). The rapid decay of the third factor is indicated

in Figure 3 toward increasing κ . Important to note is that the main

contributions from Ai(t), including its maximum, occur for t < 0. That

means by choosing our cutoff to be at the location, tanθ = 1/max | f ′|,
we obtain an estimate for the band-limitedness of H. Since the result-

ing spectrum H is in the general case not band-limited at all, but will

still have most of its energy concentrated below the cutoff, we refer to

it as essentially limiting frequency or to twice the limiting frequency

as the essential Nyquist rate.

3.4 Limits of the model

Since the above derivation is based on approximations, it is important

to be aware of the limitations arising from the assumptions made to

facilitate the analysis. The most important one is that the method of

stationary phase is only applicable if the phase is amplified by a large

constant. In our case this means that the derivation does not neces-

sarily hold for small κ . This is a reasonable assumption as long as

we consider (k, l) not too close to (0,0), which is the case for the

band-limits νg = lmax of practical transfer functions and max | f ′| con-

siderably different from 0 for typical data.

3.5 Extension to multi-modal data and multi-dimensional
transfer functions

In the case of multi-modal transfer functions applied to 3D data, our

function f(x) is a mapping from R
3 to R

m with m > 1. Hence, we

cannot simplify the multi-dimensional description of P(k, l). We can,

however, assume that our analysis is along one ray (which we will use

for ray-casting) and assume a mapping from R to R
m.

In this case, the Taylor series expansion of u(x) = l · f(x)− kx is a

dot product of the Taylor series of each component, i.e.

u′(x) = l · f′(x)− k (18)

= l1 f ′1(x)+ l2 f ′2(x)+ ...+ lm f ′m(x)− k (19)

= 0 . (20)

This is indeed a description of an m-dimensional hyperplane in the

space (l,k) which goes through the origin. Given a particular direction

l, we are interested in max(|l · f′(x)|) over all x. This will again be

2Ai is defined as Ai(t) = 1
π

∫ ∞
0 cos(tx+ x3

3
)dx with Ai(0) = 0.355028 . . .

3For the interpretation recall that l = κ sinθ and k = κ cosθ .
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Fig. 4. Same sampling rates are suggested by both estimates if a single

sinusoidal function is considered (using the lower frequency of the ex-

ample in Figure 1). Both estimates have been 2× over-sampled, using

a sampling frequency that is four times the respective limit frequency.

the border of our (m+1)-dimensional wedge, where the Airy function

takes over.

If we look at just one particular direction l, this problem is analo-

gous to our 1D problem in the space spanned by the k axis and the

l axis. Let us assume that the maximum frequency of the transfer

function in this particular direction is denoted by νl. In analogy to

our 1D treatment we look for minimal k for which the length of l is

equal to the maximum frequency νl for that particular direction l, i.e.,

νl max(l · f′(x)/||l||) = k. Naturally we are looking at all possible di-

rections l and will have to pick the maximum k, since this will be the

maximum frequency of our P(k, l), denoted by νPkl . Therefore, we

get

νPkl = max
||l||=1

(νl max
x

(l · f′(x))). (21)

3.6 Relationship to π
2 ν f ·νg bounding frequency

A previous analysis [10, 21] suggests that the maximum frequency to

be expected in transfer function composition is given by π
2 ν f νg, mul-

tiplying the two band-limiting frequencies of the data and the transfer

function, respectively. Using Carson’s rule and making the assumption

that f is normalized to have values in the range [0,1] (not required in

our derivation), the statement was derived that over 98% of the energy

is preserved within the cutoff frequency.

However, this previous discussion replaces the original function f

by a single sinusoid of the maximum frequency of f . At this point we

believe that this leads to an over-estimate of the required sampling rate.

Our estimate leads to the maximum derivative of f as the key factor

determining the proper sampling frequency. Considering the example

in Figure 1, for a mixture of sinusoids where the higher frequencies

contribute less to the overall amplitude, our estimate produces a tighter

sampling of the signal. In the case of a single sinusoid our estimate

suggests the same sampling distance as the conservative one as shown

in Figure 4. Here, both examples have been 2× over-sampled and

interpolated using sinc interpolation.

3.7 Histogram features of f(x) to be found in P(k, l)

There are a few more properties of P(k, l) that we have come across

during our analysis, that we thought worth mentioning.

We can extract the histogram of f(x), using a transfer function

gy0
(y) = δ (y− y0) with frequency response Gy0

(l) = e−il·y0 . The

histogram can be determined by counting how often the value y0 oc-

curs in f(x), which amounts to the DC value Hy0
(0), which can be

obtained as a dot product of Gy0
(l) with the first column (k = 0) of

P(k,l).

Another observation is obtained when applying sifting4 to Equa-

tion 5 yielding

P(k, l) =
∫

R3

∫

R

δ (l · f(x)−k ·x− y)eiydydx (22)

P(k, l) =
∫

R

∫

R3
δ (l · f(x)−k ·x− y)dxeiydy. (23)

Using the definition

Hu(x)(y) =
∫

R3
δ (l · f(x)−k ·x− y)dx, (24)

we obtain

P(k, l) =
∫ ∞

−∞
Hu(x)(y)e

iydy, (25)

where Hu(x)(y) can be regarded as the analytic histogram of the phase

u(x).

4 APPLICATION TO VOLUME RENDERING

In the following we are investigating the implications of the above

theory when applied in volume visualization.

4.1 Adaptive sampling

A direct application is to use the maximum frequency of (g◦ f ) in or-

der to determine the sampling rate for the volume rendering integral.

Here, the maximum value of | f ′| is computed in the whole volume

to calculate a fixed, overall sampling rate. Unfortunately, a (possibly

small) region of the data set containing the maximum of | f ′| would

solely determine the sampling, even if the data set were slowly chang-

ing in other parts. A better solution is adaptive sampling: the rate is

chosen spatially varying to reflect the local behavior of the data set.

The space-varying step size can be determined by identifying the

maximum value of | f ′| in a small neighborhood around the current

sampling point. In other words, the discussion from Section 3 is ap-

plied only to a window of the full domain of f . The step size in this

window region is equal or greater than the step size for a global treat-

ment. Therefore, we typically obtain fewer sample points, without de-

grading the sampling quality. By working within a given window our

implementation actually is a space-frequency technique using the re-

sults from a the frequency analysis within a local neighborhood around

a sample.

There are numerous previous papers on adaptive volume render-

ing, a few of which are mentioned in Section 2. Most of the adaptive

approaches need some kind of data structure that controls the space-

varying steps size. Our approach also follows this strategy. The dis-

tinctive feature of our approach is not the fact that an adaptive step

size is used, but that we provide a mathematically based criterion for

choosing the step size. In fact, most of the existing adaptive rendering

methods could be enriched by this criterion.

Our implementation consists of the following parts. First, a volume

of gradient magnitudes is computed for the scalar data set. Second,

the gradient-magnitude volume is filtered using a rank-order filter that

picks out the maximum in a given neighborhood around a grid point.

The size of the neighborhood is user-defined; its shape is a cube. The

size of the neighborhood is a 3D version of the ray-oriented window

size that is used to derive the step size criterion. By using the max-

imum gradient magnitude in a 3D neighborhood, the isotropic step

size is chosen conservatively in this neighborhood. The third step is

the actual volume rendering. We currently use a CPU ray caster that

selects the sampling distance at a point based on the filtered gradient-

magnitude volume. The maximum step size is clamped to the size of

the neighborhood to avoid sampling artifacts that may arrive through

the construction of the gradient-magnitude volume. If the sampling

rate were to exceed a certain user-defined threshold (e.g., a hundred

4Sifting refers to the property r(s) =
∫ ∞
−∞ δ (s− t)r(t)dt.
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(a) (b)

Fig. 5. Examples of hipiph data set sampled at a fixed rate (0.5) (a) and sampled with adaptive stepping (b). The adaptive method in (b) uses about

25% fewer samples than (a) only measuring in areas of non-zero opacity to not account for effects of empty-space skipping. The similarity of both

images indicates that visual quality is preserved in the adaptive, reduced sampling.

times the frequency of the data grid), it will be artificially clamped to

that threshold value to avoid excessive sampling.

Note that, for a fixed transfer function, steps one and two of the

above pipeline are pre-processing steps that do not have to be re-

computed during rendering. To speed up the change of transfer func-

tion, additional acceleration data structures should be considered. For

example, ideas for the efficient computation of space-leaping (see

[11]) could be explored.

Results of our technique are shown in Figure 5. Using adaptive

sampling visually similar results are obtained with 25% fewer samples

than in the uniform stepping. Note that adaptive sampling based on

gradient magnitude automatically performs empty space skipping if

these regions are homogeneous in value with low gradient magnitude.

To allow for a fair comparison to uniform sampling stepping we only

count samples taken in ranges of the volume having non-zero opacity.

That way the empty space in the images does not skew the statistics.

For a more quantitative evaluation we have repeated several experi-

ments (using different sampling distances) for fixed and adaptive sam-

pling and have compared the resulting image against a ground-truth

image, computed at a fixed sampling distance of 0.06125 relative to a

unit grid point spacing of 1. The result of the evaluation is shown in

Figure 6. The error plot is based on the signal to noise ratio (SNR),

computed as SNR(x,y) = 10log10

(

||x||
||x−y||

)

. We have conducted the

image comparison with several different error metrics, including nu-

meric and perception-based ones. For all metrics the adaptive sam-

pling clearly outperforms uniform sampling in terms of the number

of samples needed to achieve a given image quality, just like in the

SNR-based example given in Figure 6.

For the illustration in Figure 7 the adaptive sampling is manually

adjusted by multiplying a constant (amount of oversampling) onto the

suggested sampling distances to match the number of samples of the

uniform sampling Figure 7a. This time the numerical error of both

images just matches (both at SNR of about 63). Still, the adaptive

sampling shown in Figure 7b has much less visually prominent arti-

facts near the surface transition. In case of noisy data, such as it is

possible with medical data sets, the gradient magnitude based adjust-

ment of the sampling distance might be less efficient than it would be

for smooth data sets.

4.2 Relationship to pre-integration

The rationale for pre-integration is to separate the influences of the

transfer function and of the scalar data field on the sampling rate of the

0 1 2 3 4

x 10
6

0

10

20

30

40

50

60

70

80

90

# samples

S
ig

n
a
l 
to

 N
o
is

e
 R

a
ti
o

Quality vs. Performance

 

 

adaptive

uniform

Fig. 6. Quality vs. performance, where quality is measured using signal

to noise ratio (SNR) and performance is indicated by the number of

samples taken along all rays cast into the volume. Adaptive sampling

clearly outperforms the uniform (fixed) sampling. Only samples in areas

of non-zero opacity are taken into account, i.e., both sampling schemes

equally make use of empty space skipping.

complete volume rendering integral [4]. The separation is achieved by

pre-computing the contributions of small ray segments to the rendering

integral. Typically, a linear interpolation of scalar values is assumed

within a ray segment. In this way, the pre-integration table absorbs

the effects of the transfer function, while the actual volume rendering

process only needs to reconstruct the scalar field faithfully.

Our derivation of the essential Nyquist rate for sampling (g ◦ f ) is

another support for the usefulness of pre-integration. We have shown

that the essential Nyquist rate for the volume rendering integral is pro-

portional to the Nyquist rate of the transfer function. Therefore, pre-

integration is especially useful for high-frequency transfer functions

(see, e.g., the extreme case of a random transfer function [4]).

In fact, we would like to demonstrate how the computation of pre-

integration tables can be related to our description of sampling rates.



BERGNER et al.: A SPECTRAL ANALYSIS OF FUNCTION COMPOSITION AND ITS IMPLICATIONS FOR SAMPLING IN DIRECT VOLUME VIS.

(a) (b)

Fig. 7. Visual comparison of two renditions of the tooth data set (CT scan) both using about the same number of samples: (a) uniform sampling

distance 1, (b) using adaptive sampling (2% fewer samples than (a)). The artifacts near the surface transitions are considerably less prominent in

(b), which is also due to the fac that non-uniform sampling replaces structured aliasing with noise.

The volume rendering integral can be expressed as

x1
∫

x0

c( f (x))e
−

x
∫

x0

τ( f (x̃))dx̃

dx , (26)

with emission c, extinction coefficient τ , the start point x0. The scalar

field f is assumed to be linear within a single ray segment. If f0 and

f1 are the scalar values at the start and end points of that segment of

length L = x1 −x0, the corresponding first derivative is constant in the

segment: f ′(x) = ( f1 − f0)/L. Therefore, the number of sample steps

should be given by Equation 13. Equation 26 can be re-written as an

integral in the scalar-value domain by using a substitution of variables:

f1
∫

f0

c( f )e
−

f
∫

f0

τ( f̃ ) L
f1− f0

d f̃ L

f1 − f0
d f . (27)

In this domain, the sampling distance is indirectly determined by

Equation 13 and depends only on the characteristics of the transfer

function, not on f ′, because the f ′ terms cancel. As expected, the

generation of pre-integration tables is independent of the behavior of

the scalar field. In fact, it has been common practice to compute 2D

pre-integration tables with a constant step size in the scalar-value do-

main (e.g., for the original version [4] and the subrange integration

approach [16]). For an accurate computation, the frequency of the

transfer function should be taken into account to determine the inte-

gration step size.

The main issues of pre-integrated volume rendering are the com-

putational and memory costs for generating and storing the pre-

integration tables. Even with accelerated pre-computation [16], the

computational and memory requirements for a 2D table increase

quadratically with the number of distinct scalar values. Therefore,

pre-integration is not suitable for data sets with finely quantized scalar

values. An extreme case is floating-point scalar data, which can for

example be visualized by high dynamic range volume rendering [27].

Another problem is caused by the increase of parameters in multi-

dimensional transfer functions, which makes the use of pre-integration

prohibitive in these applications. In general, the problem can be

viewed as an imbalance between the number of pre-computed ray

segments and the actually used segment information during volume

rendering: for high-resolution data, most of the ray segments are pre-

computed without using them for volume rendering. Therefore, we see

an increasing demand for direct sampling of the full volume rendering

integral without any pre-integration. Here, adaptive on-the-fly sam-

pling might see a revival as a most important acceleration mechanism

(see Section 4.1).

5 DISCUSSION AND OUTLOOK

This paper closes a gap in understanding and accuratly estimating of

the volume rendering integral. Namely, it closes perhaps the most

important theoretical gap still existing – the proper sampling rate to

be used during the rendering step. Hence, the main contribution

of this paper is an analysis of the frequency behavior after a trans-

fer function has been applied to spatial data. The resulting rule is

that the essentially band-limiting frequency of the composite function

h(x) = g( f (x)) is given by νh = νg maxx | f ′(x)|. This is not a strict

band-limit, but frequency components decay exponentially beyond νh.

Because of the tight estimate of this limit, we suggest a slight over-

sampling. For most practically used interpolation methods twice the

critical sampling rate (four times the limiting frequency) should suf-

fice.

Further we have demonstrated an extension to multi-dimensional

transfer functions. In this case a similar band-limit is computed by

νPkl = max|l|=1(νl maxx(l · f′(x))). This is again very simple to com-

pute in a preprocessing step.

The treatment in this paper is independent of the application and

hence can be applied in other fields of signal processing and applied

mathematics. However, the focus of our application has been render-

ing. In addition to the theoretical findings we have applied the result

to a method for adaptive sampling based on the maximum gradient

magnitude. We have been able to apply our theoretical results for an

adaptive rendering algorithm that achieves the same quality in the ren-

dered images by reducing the number of samples needed significantly.

5.1 Future work

The above analysis and discussion has considered g(f(x)) from the

perspective of applying a transfer function to given data. Another in-

teresting interpretation is to view f as a change in parameterization of

g, where P(k, l) reflects the change in the spectrum of g. This might

be of use when investigating the effect of a change in parameterization

of a function defined on a surface.

A possible further application is photo-realistic Fourier-domain ren-

dering. Knowing the Fourier domain decomposition of f and g we can

now apply the slicing theorem to P(k, l) and only have to recompute G
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whenever the user changes the transfer function. However, represent-

ing P(k, l) for a 3D volume is non-trivial and is left to possible future

work.
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