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Business processes describe and implement the business logic of companies, control
human interaction, and invoke heterogeneous services during runtime. Therefore, ensur-
ing the correct execution of processes is crucial. Existing work is addressing this challenge
through process verification. However, the highly dynamic aspects of the current pro-
cesses and the deep integration and frequent invocation of third party services limit the
use of static verification approaches. Today, one frequently utilized approach to address
this limitation is to apply process tests. However, the complexity of process models is
steadily increasing. So, more and more test cases are required to assure process model
correctness and stability during design and maintenance. But executing hundreds or
even thousands of process model test cases lead to excessive test suite execution times
and, therefore, high costs. Hence, this paper presents novel coverage metrics along with
a genetic test case selection algorithm. Both enable the incorporation of user-driven
test case selection requirements and the integration of different knowledge sources. In
addition, techniques for test case selection computation performance optimization are
provided and evaluated. The effectiveness of the presented genetic test case selection
algorithm is evaluated against five alternative test case selection algorithms.

Keywords: Process modeling and design; process testing; test case selection; genetic
algorithm; optimization.

1. Introduction

The application and implementation of process technology provides enterprises with
substantial advantages, as it has been recently shown by Reijers et al.1 Over the past
years, processes have risen to deeply integrated solutions connecting organizational,
functional, and operational aspects.2 Moreover, an increasing portion of the current
processes tend to become fully automated, see Ref. 3. This leads to an increased
dependence on the correct execution of current business process models. A critical
failure in the execution of an arbitrary automated process can, for example, remain
undetected for a long time. This can cause negative effects on the fragile bond of
trust between customers and cooperations.4
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K. Böhmer & S. Rinderle-Ma

Hence, ensuring the stability and correctness of processes during design and exe-
cution time is a crucial challenge.5 Several approaches for process verification exist,
that focus on structural and behavioral correctness of process models.6 Specifically,
when implementing process models, testing has proven a valuable complement to
capture the process behavior at runtime, for example, with respect to process data.7

Testing concentrates on creating and executing test cases on the tested process
model.8 At minimum, a test case consists of input data, which is used to initial-
ize a new instance of the process under test, and an expected execution path. The
expected path should be followed by the process model instance when executing the
test case.7 A fault can be detected, for example, when an execution path deviates
from the expected test case execution path.7

Testing plays an important role in process model design, development, and
maintenance because it allows to identify faults early during these phases.7 As
process models tend to become more and more complex, manual test case genera-
tion becomes time-consuming and, therefore, expensive.9 Hence, automatic test case
generation tools emerged. These can quickly generate hundreds or even thousands
of test cases to completely test a single process model.10

Each individual test case might be executed quickly. However, executing all test
cases may still require an excessive amount of time and, therefore, results in high
costs.11 Hence, it becomes necessary to apply test case selection and minimization
techniques. Those techniques select an appropriatea subset of the available test cases
to be executed. If the subset is small and efficient enough, significant time-savings
can be achieved while user defined test requirements are still satisfied.11,12

Take, for example, the process model shown in Fig. 1. It is tested by three test
cases T1, T2, and T3. Assume that T1 covers the top most path, T2 the middle path,
and T3 the path on the bottom. Assume further that a user requirement is to cover
75% of the process model (i.e. 75% node coverage, so 75% of all nodes are tested
by test cases).b Then possible subsets would be to select T1 and T2 (combined

Fig. 1. Test case selection example with coverage illustration.

aAppropriate means that user-defined requirements are fulfilled, such as, a minimal coverage
objective, for example, that a minimal amount of process nodes is tested.
bMultiple coverage metrics exist such as path, branch, or node coverage. However, in this paper we
will, for the sake of brevity and simplicity, only consider node coverage. However, we are confident
that a generalization to other coverage metrics is possible — a discussion is available in Sec. 7.
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execution time 15min),c T2 and T3 (25min), or T1 and T3 (20min). However,
imagine, that the selected test cases should be executed in the minimum possible
amount of time, while reaching at minimum 75% node coverage requirement. Then
the selection technique must select T1 and T2 as the optimal subset.

Identifying an optimal test case subset results in a combinatorial explosion prob-
lem (the complexity is exponentially related to the amount of test cases).11 Hence,
it cannot be solved in polynomial time.13 So, existing approaches utilize heuristics,
such as the Greedy Algorithm. Heuristics enable to find solutions where analytical
algorithms are infeasible because of the huge search space.11

We have analyzed existing process model test case selection and minimization
approaches. It was found that those are inflexible regarding the supported user-
defined coverage requirements. Moreover they only use an incomprehensive repre-
sentation of each node’s unique coverage requirements. In addition, they model the
coverage effects of each test case in a limited fashion. Hence, existing work is not
suitable for answering the following research questions:

RQ1 How can node coverage effects for process model test cases be modeled in a
more comprehensive way?

RQ2 How can the unique coverage requirements of each process node be deter-
mined and utilized during process model test case selection?

RQ3 How to design an algorithm which flexibly supports complex process model
test case selection requirements? For example, to optimize the selected test
cases based on their execution time.

The above questions have been subject for investigation in a previous
conference paper, see Ref. 14. This work raises research questions that aim
specifically at the effectiveness and efficiency of the presented test case selec-
tion algorithm.

RQ4 How to evaluate the effectiveness of the presented selection algorithm in
comparison with random, greedy, hill climbing, sequential backward, and
simulated annealing-based selection algorithms? (extended from Ref. 14).

RQ1 Are test execution performance optimizations conceivable, specifically in the
context of evolving processes? How can the performance gains be measured?
(new).

In order to tackle research questions RQ1 and RQ2, novel and extended cov-
erage metrics are provided. These enable to exploit process model information and
characteristics that have not been considered so far, but might be relevant for test
case selection. For example, how each node’s coverage, in a process model, is affected
by its neighborhood nodes (e.g. nodes that are, for example, directly connected)
and their type (e.g. if a neighborhood node is a gateway). Moreover, it is assumed
that different kinds of nodes in a process model may have a different complexity, for

cThe expected execution time can, for example, be extracted from recorded execution logs, see
Sec. 3 for a detailed discussion.
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example, tasks versus gateways. This is exploited to deduce if a node must be tested
more or less thoroughly.15 So this work provides a comprehensive representation of
test case coverage effects. In addition, a novel approach is provided to identify the
unique coverage requirements of each individual process node.

The investigation of RQ3 leads to the design of a genetic process model test
case selection algorithm. The algorithm enables to flexibily work with different cov-
erage metrics, fitness functions, and process model complexities. The effectiveness
of the algorithm has been evaluated against random and greedy selection.14 Here a
comparison with advanced simulated annealing, sequential backward selection, and
hill climbing-based business process test case selection techniques is added. This
leads to a more comprehensive understanding of the effectiveness of the proposed
algorithm (RQ4). Finally, RQ5 demands for optimization concepts to avoid com-
plete recalculations of test case selections in case a process model evolves. The latter
is often the case for many reasons, such as, legislation changes.16,17 The achieved
performance gain is evaluated by comparing the performance of the presented algo-
rithms with and without the proposed optimization.

This paper is organized as follows. Prerequisites and coverage metrics are dis-
cussed in Sec. 2. Section 4 proposes a performance optimization for the genetic
business process model test case selection approach presented in Sec. 3. The evalu-
ation, corresponding results and their discussion are presented in Sec. 5. Section 6
discusses related work. Conclusions and future work is given in Sec. 7.

2. Coverage Metrics

This section introduces coverage metrics for test case selection based on a given
process model O. O is defined as directed graph O := (N,CE ,DE )d where N

denotes the set of process nodes, CE the set of control flow edges, and DE the
set of data flow edges. As auxiliary functions (cf. Ref. 19), we utilize the direct
successors of a node n as n• := {n′ ∈ N | (n, n′) ∈ CE} for the control flow and
n◦ := {n′ ∈ N | (n, n′) ∈ DE} for the data flow. The direct predecessors of n can
be defined accordingly by •n := {n′ ∈ N | (n′, n) ∈ CE} for the control flow and
◦n := {n′ ∈ N | (n′, n) ∈ DE} for the data flow.

In this paper, we are mainly interested in the execution path of each test case.
This is because the execution path enables to determine which process model nodes
are covered (i.e. tested) by each test case. So a test case is formally defined as:

Definition 2.1 (Test case). A test case v on a process model O = (N,CE ,DE ) is
defined as v := (Nv,CE v, enabled) with Nv ⊆ N , CE v ⊆ CE , and enabled ∈ {0, 1}.
Nv and CEv form the expected test case execution path and enabled indicates if
the test case should be executed (1) or not (0). The ordered set V of all test cases
v on a process model O is denoted as test suite. It can be configured to create a

dThe notion of directed graphs corresponds to the internal representation in order to cover different
prevalent process modeling notations such as BPMN.18
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test suite configuration Vi where all test cases are enabled or not (i.e. v.enabled is
set to 1 or 0).

Note, this work does not concentrate on test case generation, test oracles, failure
models, or related technical testing aspects. This is because this paper only con-
centrates on selecting, from a given set of all test cases that verify a given process
model, a subset of test cases which fulfills given user requirements. For this it is
expected that a predefined set of manually defined or automatically generated test
cases is already available. These test cases are expected to be capable of verifying
the process model execution behavior. For example, by checking for non-responding
services or expected variable states.4

Moreover, for this paper an abstracted basic test case definition that only con-
tains the execution path of each test case is sufficient. Hence, a test case is aware of
the activities, gateways, etc. that are covered, and hereby verified, during its execu-
tion. The test case coverage information is in the following exploited to select test
cases that fulfill user-defined process coverage requirements, for example, to select,
from a set of all test cases, a subset of test cases that covers 80% of all process
model nodes in minimal test case execution time.

Test case selection starts with a test suite V (consisting of all available test
cases for the process model O) and a set of requirements R. The requirements R

are user-defined and specify that, for example, the minimal node coverage should
be 75%. The requirements contained in R must be satisfied to find a test suite
configuration which provides an adequate testing of the process. Therefore, it
must be decided which test cases should be executed when executing the test
suite. Hence, the challenge is to find a minimal subset V ′ ⊆ V that satisfies all
requirements in R.

One typical requirement is that the process must be completely covered (i.e. each
node must be tested by the selected test cases). For this, mostly, simple coverage
metrics are used. For example, a process node is already marked as completely
covered, and therefore, fully tested, when it is checked by at least one test case.
However, this approach ignores that each process node has a unique complexity and
significance (cf. Ref. 15). So we propose that each node should be covered by an
individually adjusted number of test cases to achieve an optimal coverage.

2.1. Optimal coverage: Optimal number of test cases per node

This approach is called optimal coverage because it determines an optimal coverage
value (i.e. how many test cases should be used to test it) for each node. Therefore, it
applies, individually for each process node, various complexity metrics. We assume
that if a process node (e.g. an activity or gateway) is more complex than another
one, it must be tested more thoroughly (i.e. covered by more test cases). Hence,
it must get assigned a higher optimal coverage value. We suggest to determine the
optimal coverage value Co(j) of node j as the weighted sum over selected complexity
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metrics compi(j) for node j, (i = 1, . . . , n):

Co(j) := 1 +

⌈
n∑

i=1

wi · compi(j)

⌉
. (2.1)

In Eq. (2.1), wi ∈ [0, 1] defines the weight for metric compi(j). Moreover, a
minimal coverage of 1 is assigned to each node, i.e. each node must be covered by
at least a single test case. The complexity metrics and the weights reflect the process
node coverage requirements. One example for a complexity metric is the Fan-In/
Fan-Out metric (cf. Ref. 20): for node j it sums over the number of successors |j • |
and predecessors | • j| of node j and divides this sum by the maximum Fan-In/
Fan-Out value over all nodes of the process model.

Two types of metrics are considered in this paper. First, generic metrics that
are based on the process model. These metrics incorporate the node complexity (the
structural Fan-In/Fan-Out metric), the process structure (a node is positioned in
sequences or more complex loops, error, or concurrent paths), or the node position
(a fault at an early executed node affects more follow up process nodes than a fault
at a late node). Second, metrics that are supported by historic data (e.g. log files).
Such metrics are previously identified faults (it is then more likely to find another
fault), node execution frequency (an fault does have an higher effect if the faulty
node is executed more frequently), previous coverage (if a node was not covered
during previous tests, then it should be checked during follow up tests). Moreover,
historic data enables to determine the error path probability (if a node frequently
has to fall back to its error path it more likely contains a fault), frequency of data-
modifications (we assume that a node which modifies multiple variables has likely
a higher internal complexity than a node which modifies only one variable), and
known changes (if a process node is changed then those changes should be checked
with tests).

Example: Node j has three incoming edges and one outgoing edge. It is analyzed
using the Fan-In/Fan-Out metrice with a weight of 1. Further, the node with the
maximum Fan-In/Fan-Out metric of the whole process model has four incoming
and two outgoing edges. Then compfan would generate the following result:(1 +
3)/(2 + 4) = 0.66. The total optimal coverage can then be calculated by Co(j)
using 1+ �(1 · 0.66)� = 2, i.e. two test cases are required to thoroughly test j, when
considering its complexity. Existing approaches would ignore the node complexity
and hence test it with a single test case. This could result in not detecting faults
that will be found by the proposed approach. Why? Because, each node has a
specific internal node behaviorf which can, for example, contain multiple execution
branches. Imagine that the internal node behavior contains a single conditional

eThis example only utilizes, for the sake of brevity, the Fan-In/Fan-Out metric. The test case
selection prototype (cf. Sec. 5), however, uses all the mentioned metrics (see previous paragraph).
fNote, each node’s functionality is determined by its internal behavior (e.g. realized as a web-
service or application) that is executed when executing the process node.
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branch which provides two execution paths (e.g. for premium or normal customers).
Then a single test case will most likely only test one of the branches so 50% of the
node’s internal behavior and it will require at least two test cases to thoroughly
test the node. Note that we are assuming that the mentioned complexity metrics
also allow to assess the nodes internal complexity. For example, a node with many
incoming edges most likely has a more complex internal behavior than a node with
only one incoming edge.

The presented approach focuses on process test cases which execute and verify
whole process execution paths. However, one may argue that it is more efficient
to test each process resource independently from the process model itself. This
is the case iff each resource is fully isolated and deterministic (e.g. if only strictly
isolated webservices are used). However, business process models tend to integrate a
wide range of interconnected resources, such as, legacy applications or Enterprise-
Resource-Planning software. Hence, we found that not all the resources that are
utilized by the current processes are isolated. So an access on resource R1 by an
early activity A1 can affect the behavior and state of another resource R2 that is
called by activity A2. In such a case, R2 will behave differently whether or not A1
was executed previously. Hence, a fault in R2 can be triggered or not depending
on the execution of A1.

Existing work indicates that webservices also partly fail to deal with concurrent
access patterns that can stem from parallel process execution paths. Here, related
faults can also be identified by process model tests in an efficient manner.21,22 In
addition, we found that the current process execution engines enable to integrate
executable code snippets directly in a process model. Those snippets are executed
without the need to invoke external resources and can access various process prop-
erties (e.g. variables or process execution states). This deep integration makes it
difficult to test them independently from the process model but they can be tested
by process test cases.

Moreover, the — possibly hidden — interactions of each resource are diverse. So,
testing each theoretically possible interaction and mutual impact of each resource
results in an enormous testing effort. Hence, we see process execution paths and
the related test cases as a way to identify the most important resource access
patterns. This enables, in the following, to reduce the overall testing effort.22 This
is also reflected by the calculated optimal coverage heuristic. It represents, for each
process model node, an artificial importance to verify its correctness with process
test cases. Therefore, the optimal coverage calculation takes multiple aspects into
account. These aspects range from data artifacts to historical information (e.g.
if faults were identifies for an activity recently). Overall, we conclude that both
testing approaches are important and must be applied to thoroughly test processes
and related resources. That is, the testing of each individual resource based on fine
granular test cases and coarse granular process execution-based tests — this work
focuses on the later.
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2.2. Test coverage metrics: Coverage of all enabled test cases

The following coverage calculation approaches are applied individually on each pro-
cess node j. They determine, given a test suite configuration Vi and a process model
O, which test coverage is achieved by Vi on j.

Traditional Coverage: The traditional coverage covtr is based on existing cover-
age calculation approaches. It is calculated for a process node j and a test suite con-
figuration Vi by analyzing the test paths of each enabled test case v = (Nv,CE v, 1)
cf. Eq. (2.2).

covtr(j, Vi) :=
∑

v=(Nv ,CEv,1) ∈ Vi

counttr(v, j). (2.2)

If j is covered by an enabled test case (i.e. it is contained in j ∈ Nv of v = (Nv,

CE v, 1)), its coverage value is increased by one, cf. Eq. (2.3).

counttr(v, j) :=

{
1 if j ∈ Nv,

0 otherwise.
(2.3)

Neighborhood Coverage: Neighborhood coverage reflects that, in a process, each
node depends on its predecessors. Hence, if the predecessor of a node j is faulty
then j might will never be executed (e.g. the process might terminate because of a
fault before reaching j) or has to deal with incorrect data/states. We propose that
this should be reflected by increasing the optimal coverage because the complexity
increases if multiple predecessors can affect a single node.

Moreover, we assume that each test case that is executed on a predecessor of
j also has a slightly positive effect on j itself. Therefore, j’s coverage value should
be slightly increased if one of its predecessors is tested. Hence, we are proposing to
calculate the individual neighborhood coverage of each process node and combine
it with its respective traditional coverage. Hereby a comprehensive representation
of each test case’s positive effects is provided.

This (a) motivates the test case selection algorithm to select test cases which
together achieve a broad coverage of functionality supported by the process model
under test. In addition, (b) it reflects the positive effects of each test case more
comprehensively during test case selection. Why (a)? Because with neighborhood
coverage the proposed test case selection algorithm gains less additional total cov-
erage from covering close paths (i.e. paths that all concentrate on one function)
than without neighborhood coverage. Hence, it is additionally motivated to cover
paths (and therefore functions) which are more diverse and further apart from each
other. Both advantages increase the probability that test cases selected by the pro-
posed approach will more likely detect faults than test cases selected by existing
approaches.

The neighborhood coverage value for a node j is calculated by analyzing each
enabled test case. This is ∀ v = (Nv,CEv, 1) over process model O = (N,CE ,DE )
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to identify the neighborhood path start nodes NNPS ,v by, cf. Algorithm 1:

NNPS ,v := {k ∈ Nv | ∃ p ∈ N\Nv with k ∈ •p}. (2.4)

Neighborhood path start nodes are nodes that are covered by a test case v, but
also have direct successors that are not covered by v. Subsequently, all identified
neighborhood path start nodes are analyzed, i.e. ∀ s ∈ NNPS ,v, to determine all
direct successors which are not covered by v using

NFNN ,s,v := {a ∈ N | a ∈ s • ∧a /∈ v · Nv}. (2.5)

Finally, the successors of all nodes in NFNN ,s,v are searched for j to calculate
j’s neighborhood coverage (cf. Algorithm 2).

Example: Consider Fig. 2(a) with test suite configuration Vi which contains a sin-
gleg enabled test case v with Nv = {A, B, . . . , F, G}. Obviously, B is the only
neighborhood path start node, i.e. NNPS ,v = {B}. In turn, B results in the set
NFNN ,B,v = {H, K}. So H and K are situated in a neighborhood path to the path
covered by test case v, but are not covered by v themselves.

Assume that the neighborhood coverage is to be determined for node L. For
this, all successors of H and K are searched until L is found or the search reaches
a node which is covered by v. During the search, the nodes on the “search paths”
are numbered consecutively (using counter c). The number indicates the number
of edges or respectively the distance between L and the neighborhood path start
node B. The greater the distance, the less the neighborhood coverage. This is
expressed by a coverage reduction factor covred. It indicates how quickly the positive
effect of the test case v is reduced when getting further away from nodes covered
by v. For covred = 0.2, a node numbered with 1 would be assigned 0.8 of the
traditional coverage effect of the neighborhood start node. Here it is assumed that
the traditional coverage of v on the neighborhood path start node is always 1.
Imagine that j (so j = L) is the node marked with a 2, i.e. the node that is two

(a) Utilizing the control flow (b) Utilizing the data flow

Fig. 2. Illustrating the concept of neighborhood coverage.

gNote, if a test suite contains multiple enabled test cases then the neighborhood coverage is
calculated individually for each test case v on j. Subsequently, each individual neighborhood
coverage effect of each test case is added up to calculate Vi’s total neighborhood coverage effect
on j.
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“steps” far from the neighborhood path start node, so c = 2. Then the control flow
neighborhood coverage effect on L can be calculated by max((1− (2 ·0.2)), 0) = 0.6
when using a covred of 0.2.

Algorithms 1 and 2 focus on the process control flow. Neighborhood coverage
can also refer to the process data flow denoted by the data flow edges DE of a

Algorithm 1. Neighborhood coverage calculation (pseudo code).

Algorithm NeibCov(Vi, j, covred)

covnbh=0
Data: process node j to be analyzed, test suite configuration Vi, and

coverage reduction factor covred

Result: the neighborhood coverage covnbh of j

foreach test case v ∈ Vi with v.enabled = 1 do
foreach neighborhood path start node s in NNPS ,v do

foreach fs ∈ NFNN ,s,v do
covnbh+=NeibCovRecur(j, s, fs, v, 1, covred) /* adds up the

achieved neighborhood coverage of each v on j */

end
end

end
return covnbh

Algorithm 2. Neighborhood coverage calculation subroutine (pseudo code).

Recursive Subroutine NeibCovRecur(j, s, n, v, c, covred)
Data: process node to search for j, current neighborhood path start

node s, current analyzed node n, analyzed test case v, step
counter c, and a coverage reduction factor covred

Result: covnbh of j for process model branch starting with s

if j = n (i.e. the searched node j is found) then
return max((1 − (c · covred)), 0)/* calculate the neighborhood

coverage */
else if n ∈ Nv (i.e. the currently analyzed node n is covered by v) then

return 0/* stop the search for this branch */

else
c = c + 1/* increase the step counter by one */

foreach n∗ ∈ n• (i.e. n∗ ∈ n◦ for the data flow) do
return NeibCovRecur(j, s, n∗, v, c, cov red)/* recursively

analyze all successive branches */
end

end
return 0
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process model O = (N,CE ,DE ). The data flow based approach uses different
sets to determine the neighborhood path starts nodes. Hence, they are based on
the data flow edges DE instead of the control flow edges, i.e. DNNPS ,v := {k ∈
Nv | ∃ p ∈ N\Nv with k ∈ ◦p} and DNFNN ,s,v := {a ∈ N | a ∈ s ◦ ∧a /∈ v · Nv}. In
Fig. 2(b), hence, DNNPS ,v = {A} and DNFNN ,A,v = {L} hold. Based on these sets,
Algorithms 1 and 2 can be used analogously. In the example depicted in Fig. 2(b),
starting from A nodes L and N are successively numbered with 1 and 2, respectively,
as they are connected via data edges. Assume a reduction factor of covred = 0.2.
Then the neighborhood coverage covnbh(L) of v turns out as 0.8 and for N as 0.6
respectively based on test case v.

Coverage Degeneration: Imagine that multiple test cases are applied on the
same process node. Then partly similar internal node behavior (cf. Sec. 2.1) is
likely executed and, therefore, tested by multiple test cases. We assume that the
individual positive effect of an additional test case depends on the amount of test
cases which already cover a node. Hereby the positive effect is defined as the like-
lihood that a test case detects a not yet identified fault. Hence, it is higher when,
e.g. a node is currently only covered by two test cases as it would be if the same
node is already covered by ten test cases. So, we advocate to slightly decrease the
additional coverage gain of each test case if multiple test cases are covering the
same process node. We denote this by the term coverage degeneration which is
captured by a coverage degeneration factor that is determined for each coverage
metric.

The degeneration factor for the traditional coverage covtr(j, Vi) of a node j is
calculated based on the test suite configuration Vi (cf. Eq. (2.2)). Initially, the
degeneration factor (cf. Eq. (2.6)) is identified by weighing the number of enabled
test cases with a user-defined factor wdeg ∈ [0, 1]. Subsequently, it is put into
relation with the maximum possible degeneration factor wdegMax ∈ [0, 1] to limit
the maximum degeneration. Assume that 10 enabled test cases cover j, wdeg = 0.05,
and wdegMax = 0.3. Then the coverage degeneration factor for traditional coverage
turns out as 1 − min(((10 − 1) ∗ 0.05), 0.3) = 0.7. Hence, the achieved traditional
coverage will be multiplied with 0.7 to reduce it by 30% from 10 (+1 for each test
case) to 7.

covdeg
tr (j, Vi)

= 1 − min(((|{v = (Nv,CE v, 1) ∈ Vi | j ∈ Nv}| − 1) · wdeg), wdegMax).

(2.6)

The degeneration factor of the neighborhood coverage metrics is also based on
the number of enabled test cases. More precisely, each enabled test case in Vi is ana-
lyzed to count how many test cases generate a positive neighborhood coverage (cf.
Algorithm 2) on j (cf. Eqs. (2.8) and (2.9)). Subsequently, the number of test cases
is also multiplied with wdeg, cf. Eq. (2.7), to calculate the neighborhood coverage
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K. Böhmer & S. Rinderle-Ma

degeneration factor. Again wdegMax limits the maximum possible degeneration.

covdeg
n (j, Vi, covred)

= 1 − min(((covdeg
nc (j, Vi, covred) − 1) · wdeg), wdegMax), (2.7)

covdeg
nc (j, Vi, covred)

=
∑

v=(Nv ,CE ,1)∈Vi

∑
s∈NNPS,v

∑
fs∈NFNN,s,v

countdeg
n (j, s, fs, v, covred), (2.8)

countdeg
n (j, s, n, v, covred)

=

{
1 if NeibCovRecur(j, s, fs, v, 1, covred) > 0,

0 otherwise.
(2.9)

The degeneration factors for the data flow (i.e. Dcovdeg
n ) can be calcu-

lated analogously. Due to space restrictions we again abstain from a detailed
definition.

By applying the described coverage degeneration technique the proposed test
case selection approach gains a more comprehensive view on the coverage effects
of each test case, than existing work. It is assumed that this will increase the
likelihood of identifying faults that are missed by existing test case selection
approaches.

Final Process Node Coverage: The presented metrics, this is, traditional cov-
erage as well as neighborhood coverage for control and data flow, together with
the degeneration factors are combined to a comprehensive coverage metric for pro-
cess nodes (cf. Eq. (2.10)). Hence, a node j, a test suite configuration Vi, and a
coverage reduction factor covred (applied when determining the neighborhood cov-
erage) are taken to determine the coverage which is achieved by Vi on j. Note,
DNeibCovn(Vi, j, covred) calculates the neighborhood coverage based on the pro-
cess models’ data flow.

Cs(Vi, j, covred) = covdeg
tr (j, Vi) · covtr(Vi, j)

+ covdeg
n (j, Vi, covred) · NeibCov(Vi, j, covred)

+ Dcovdeg
n (j, Vi, covred) · DNeibCov(Vi, j, covred). (2.10)

The proposed concepts address the first two identified research questions by
providing a more comprehensive view on coverage calculation and coverage require-
ments than existing process test case selection work. However, we also want to pro-
vide a solution to address flexible requirements and questions such as “Which test
cases should be selected to get the maximum possible coverage within three hours
test suite execution time?”. We assume that Genetic Search Algorithms can play a
viable role to address such challenges.
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3. Genetic Selection Algorithm

A Genetic Algorithm (GA) is a search heuristic that mimics natural selection.23 The
first step is to determine the individuals of the problem and their encoding. For test
case selection, intuitively, the test cases are encoded as binary genes and combined
to individuals, i.e. the test suits. Multiple individuals then form the population.
Each individual is assessed using a fitness function that can calculate the individ-
ual’s quality. Subsequently, the individuals with the highest quality (i.e. fitness) are
selected and combined (i.e. by applying crossover and mutation). The combined
individuals form the next generation of the population. Repeatedly applying the
last step typically increases the average quality of the whole population over time.
Hereby, an adequate solution to the search problem is identified.

Genetic Encoding: Each potential test suite configuration Vi (cf. Definition 2.1)
consists of multiple test cases. This is Vi := 〈v1, . . . , vk〉 which is encoded in a binary
way based on the value of the attribute enabled in each v:

V enc
i := 〈v1 · enabled, . . . , vk · enabled〉. (3.11)

Generating the First Population: The presented genetic approach supports two
ways of generating the first population. The first population is the initial set of all
currently evolving test suite configurations, P := 〈V enc

1 , . . . , V enc
S 〉. Note, S holds

the user chosen maximum population size.
First, a fully random approach. More precisely, population size test suite con-

figurations V enc
i are generated and filled with randomly generated genes (i.e. test

case enabled states). A random number rand ∈ [0, 1] is generated for each test case
in Vi. If rand is lower than 0.5 then the test case (i.e. the gene) is disabled (0),
else enabled (1). Hereby, the first population starts with a relatively even distri-
bution of enabled/disabled test cases. We see this as a suitable starting point for
most search problems (e.g. for the search/test case selection problem that utilizes
Eq. (3.13)).

However, secondly, it can sometimes be expected that the final search result (i.e.
a test suite configuration which fulfills all user requirements) will have enabled a
small or high amount of test cases to become an optimal solution. In such a case, the
first population generation approach can be fine-tuned accordingly. For example,
assume that a user decides that a large process model should be tested in relatively
little time. Then, likely, relatively few test cases will be enabled at the final test
suite configuration.

Hence, instead of comparing rand ∈ [0, 1] with 0.5, it is compared with a config-
urable value population config ∈ (0, 1). This enables to control how many test cases
become, most likely, enabled or disabled. The main advantage of this approach is
that the initial starting population is already relatively similar to the final solution.
For example, only a few test cases are enabled at the initial population for a search
problem were also, likely, only a few test cases would be enabled at the optimal
solution.
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Therefore, the final search result can be generated quicker. Hence, the genetic
search algorithm must not “waste” computation time to disable test cases which
could be already disabled in the initial starting population. Additionally, the quality
of the identified solution increases. This is because the genetic search algorithm can
invest computation time (i.e. generations) into optimizing valid potential solutions
instead of searching a solutions that, for example, is not “rejected” by a penalty
function (cf. Eq. (3.14)).

Fitness Function: A fitness function allows to assess the quality (i.e. fitness level)
of each individual (i.e. of each test suite configuration). For example, here the
quality is measured by taking the test suite coverage, which is achieved by a specific
test suite configuration, in relation to the required test suite configuration execution
time. We assume a test suite configuration with a higher fitness level as better than
one with a lower fitness value.

The following fitness function (cf. Eq. (3.13)) utilizes Eq. (3.12), to assess the
achieved test coverage of a test suite configuration V enc

i .h Therefore, Eq. (3.12) adds
up and determines (by using Eq. (2.10)) the coverage of each process node j. We
assume, that a node does not gain any advantage from achieving a coverage level
which is above its own calculated optimal coverage level (cf. Eqs. (3.12)–(3.14)).
Hence, we take the minimum between the achieved final coverage Cs (cf. Eq. (2.10))
of the node j and its optimal coverage Co (cf. Eq. (2.1)). The added up coverage is
then divided by the maximum possible optimal coverage (i.e. the sum of all nodes’
optimal coverage) to normalize the generated result.

covr(Vi, covred) =

∑
j∈N min(Co(j), Cs(Vi, j, covred))∑

j∈N Co(j)
. (3.12)

The first fitness function, cf. Eq. (3.13), utilizes a user-chosen minimum test
coverage value covobj ∈ [0, 1]. It assesses a test suite configuration Vi to check if
Vi achieves at least covobj percent of the total possible optimal coverage within
minimal test suite execution time.

fitminT (Vi, covobj , covred)

=




covr(Vi, covred)/100 if covr(Vi, covred) < covobj ,∑
j∈N min(Co(j), Cs(Vi, j, covred))

x
otherwise.

(3.13)

Specifically, fitminT starts by determining if the minimum coverage objective
covobj is already fulfilled. Therefore, it compares the average node coverage of Vi

(using covr(Vi, covred), Eq. (3.12)) with covobj . If the covobj is not fulfilled then the
achieved coverage is divided by 100 and returned. Hence, the fitness increases when
additional test cases are enabled. So the GA is motivated to enable at least enough
test cases to achieve a minimum coverage of covobj .

hNote, that V enc
i can always be decoded into a specific Vi by using the known V and setting the

respective enabled states.
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If the covobj is fulfilled then the achieved coverage is divided by x. x is defined as
the sum of the total execution times over all enabled test case in Vi. Calculating the
execution time of a single test case v starts by determining the average execution
time (e.g. based on timestamps stored in recorded process execution logsi) of each
node which is part of the execution path Nv. Subsequently, the average execution
times of each node in Nv are summed up to calculate v’s expected total execution
time. Hence, the fitness increases by preferring test cases that are executed quickly
while providing a high amount of additional coverage.

The second fitness function fitmax(Vi, covred) (cf. Eq. (3.14)) assesses a test
suite configuration Vi. It checks if Vi achieves the maximum possible total process
model coverage in at most g total test suite execution time. Therefore, it starts by
calculating the total test coverage achieved by Vi. Subsequently, it multiplies the
coverage with a dynamic penalty factor if the total execution time x of Vi is too high
compared to the user chosen maximum execution time objective g (cf. Eq. (3.15)).

fitmax(Vi, covred) =


∑

j∈N

min(Co(j), Cs(Vi, j, covred))


· (1 − d(g, x)), (3.14)

d(g, x) =




0 if x ≤ g,

1 if x ≥ g · 2,

(x − g)
g

otherwise.

(3.15)

Equation (3.15) checks if the total test suite execution time of Vi (i.e. x) is
below the user chosen execution time objective g. If x is below g (i.e. the total
execution time is below the chosen maximum one) then no penalty is applied. The
maximum penalty of 1 is applied if x is twice as high than g. Finally, if x is between
g and two times g, then a fraction of the maximum penalty is applied to increase
the flexibility of the presented approach. Hence, the algorithm is able to select
a test suite configuration which is slightly above the chosen maximum execution
time. Therefore the configuration has to, compared to alternative configurations,
provide a dramatic coverage improvement for only a slight miss of the execution
time objective.

Selection of Parents: Parents must be selected to create offspring that can form
the next generation.23 Therefore, the user chooses an offspring rate that controls
how many percent of the old generation will be selected as parents. Subsequently,
the parents are replaced with their children to generate the next generation. The
selection process itself is based on the Tournament Selection technique.23 Hence, the
algorithm randomly chooses individuals and compares their fitness. The individual
with the highest fitness is selected until offspring rate percent of the population size

iNote, if no execution logs are available then the expected average node execution times can also
be specified manually, for example, by a domain expert.
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is chosen. Tournament Selection was chosen because the selection pressure can be
controlled by varying the amount of compared individuals. Moreover, it also showed
encouraging results when we compared it with other selection techniques during the
preliminary tests.

Crossover and Mutation: The proposed GA utilizes Multi Point Crossover.23

Hence, two parent individuals are selected and a crossover operation is applied to
generate two new individuals (children). Therefore, crossover points ∈ [0, I] (i.e.
the user chosen amount of crossover points, where I holds the amount of test cases
stored in a single individual) points are randomly chosen and ordered. Then the
algorithm iterates through all points and the section between the last point and
the current one is swapped between the parents.23 After crossover, each gener-
ated child is mutated. Hence, the mutation algorithm iterates through all genes
of the child and generates a random value rand ∈ [0, 1] during each iteration. If
rand < mutation rate, then the current gene is replaced by a randomly generated
one.23 Multi Point Crossover was chosen because it provides the necessary flexibil-
ity to adapt it for each problem size using the crossover points variable. Finally,
the generated children replace their parents to create the next generation of the
population.

Termination: The GA terminates automatically when the termination condition,
to repeat the algorithm for max generation ∈ N number of times, is satisfied. It
returns the best individual, i.e. the test suite configuration with the highest fitness
value, found until then.

GAs provide flexibility, for example, a custom fitness function can be integrated
to address unique coverage selection requirements. Moreover, they can be cus-
tomized. For example, by exchanging algorithm components, such as, the applied
crossover method, or by adapting parameters for various problem sizes. Hence, we
propose GAs as an expandable foundation for process model test case selection.
In the following, their effectiveness is evaluated in comparison with other test case
selection techniques.

4. Performance Optimization

We found that the proposed genetic process model test case selection approach
can create high quality test suite configurations in a relatively low amount of time.
Even through only a non-optimized proof-of-concept implementation was used. For
example, below 5 min computation time were required, on average, to determine a
high quality test suite configuration for a large and highly complex process model
with 266 process model nodes and 390 test cases. Note that only a standard desktop
PC was used during the evaluation. It consists of a 3 gigahertz Intel CPU and 8
gigabyte of RAM running on Debian 8. Moreover, high performance frameworks
for GAs (cf. Ref. 24) enable to execute GAs in parallel on multiple machines. This
would, likely, speed up the proposed genetic test case selection approach even more.

1740002-16

In
t. 

J.
 C

oo
p.

 I
nf

o.
 S

ys
t. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

V
IE

N
N

A
 o

n 
01

/0
5/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

December 14, 2016 16:9 WSPC/S0218-8430 111-IJCIS 1740002

Automatic Business Process Test Case Selection

Nevertheless, it still takes a non-negligible amount of computation time to find
a high quality test suite configuration for large and complex process models. In
addition, it also must be considered that the current process repositories frequently,
each, contain hundreds of models.25 These business process models are frequently
applied in versatile service, partner, and political landscapes that result in the
need to change the models in a rapid pace.16,17 We assume that these changes are
typically small compared, for example, to a process model redesign that changes
large parts of the model.26 It is expected that only a single feature or process model
node is adapted/added/exchanged/removed.

Hence, the changed process model version shares many of its tests and test
paths with its original unchanged version. Therefore, the old test suite configura-
tions (i.e. generated for the original process model) are still partly relevant for the
new, changed, process model version. So, this paper proposes a novel approach to
speed up the presented genetic test case selection technique for the changed model.
Therefore, existing previously generated test suite configurations are exploited (i.e.
test suite configurations generated for the original, unchanged, process model) as
a foundation for the construction of new test suite configurations for the changed
process model (cf. Fig. 3). Note, that, after each process model change, a new test
suite configuration must be generated. This ensures that the selected/enabled test
cases are still optimal and respect all the change operations which were applied on
the respective process model.

So, before starting to construct a new test suite configuration, for the new
changed process model version, it is checked if an old test suite configuration,

Fig. 3. Increasing the test case selection performance for changed process models.
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generated for the original unchanged model, exists. Moreover, the selection query
utilized to generate the old configuration must be equal or very similar to the one
that is applied on the changed process model. If this is the case, then the old test
suite configuration is exploited as a foundation to construct the initial population
of the proposed genetic test case selection approach. Hereby, the search for a test
suite configuration for the changed process model is accelerated.

Therefore, two steps are executed: First, the old test suite configuration is ana-
lyzed to detect if any of the test cases was changed. For example, if a new test
case was created or an old one was deleted/replaced because of the applied process
model change operations. Subsequently, the old test suite configuration is adapted
accordingly by adding new test cases and removing deleted test cases. For example,
new test cases are required to cover newly added process nodes. Note, new/changed
test cases are always assumed as disabled, i.e. not selected.

Secondly, the adapted old test suite configuration it expanded to generate an
initial starting population P . Therefore, the old test suite configuration is converted
into a V enc. Hence, the enabled/disabled state of each test case configured in the
analyzed/adapted old test suite configuration is converted in a gene. Subsequently,
a number exp ∈ [0, 1] is chosen by the user that controls how many of the genes
in V enc are randomly selected and become assigned a new random state. Hence,
it is randomly chosen if the gene, and therefore the test case, should be enabled
or disabled. This enables to generate slightly different versions of the old test suite
configuration. Hence, by applying this step multiple times, once for each yet to
be generated entry in P , the initial population P is filled with multiple potential
test suite configurations. Those potential test suite configurations are based on a
previously determined high quality test suite configuration. In addition, they are
also different enough to provide freedom for further optimizations. For example, to
identify a test suite configuration which fits all the applied process model changes
and conforms to the respective selection criteria (cf. Fig. 3).

Moreover, a new termination approach is proposed. Hence, if an old test suite
configuration is reused then the GA will no longer terminate after a fixed amount of
generations. Instead, a more flexible combination of the fixed generation termination
approach and a quality improvement threshold approach is utilized. This is to ter-
minate when the overall fitness of the best identified test suite configuration stays
the same for a specific amount of generations, cf. Ref. 23. Hence, a min generation
∈ N value is chosen by the user that indicates that the genetic selection process
should be executed for a minimal (i.e. min generation) amount of generations. After
the minimal generation amount requirement is fulfilled, then the second termina-
tion condition, representing a quality improvement threshold, is used. The quality
improvement threshold is controlled by a variable called min improvement ∈ (0, 1).
It indicates that the minimal fitness (i.e. quality) of the current best test suite
configuration should be min improvement percent above the best test suite con-
figuration which was found up to improvement generation ∈ N generations before.
If this requirement cannot be fulfilled then the test case selection ends. This is
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because the search has likely identified a high quality test suite configuration which
can hardly be further improved.

The combination of these two termination factors (a) motivates the genetic
test case selection search to leave a local optimum that could be contained in the
initial population by forcing the algorithm to explore the search space (cf. the
min generation value). Moreover, (b), the quality improvement threshold termina-
tion approach motivates the algorithm to terminate as soon as it makes “sense”.
This is because further improvements are unlikely achievable and, therefore, it likely
reduces the overall computation time invested in each test case selection search.

The proposed novel initial population generation approach enables to reuse the
computational effort which was invested in already executed test case selection
searches. Hereby, test suite configurations can be generated substantially faster
compared to a non-optimized approach. This is because a non-optimized approach
always has to start its test case selection search from scratch. The impact of the
presented optimization is evaluated in the following. Therefore, this work com-
pares the amount of generations that are required to identify a suitable test suite
configuration for the genetic selection approach with and without the discussed
optimization.

5. Evaluation

This work assesses the feasibility of the proposed process model test case selec-
tion approach. In addition, it evaluates the impact of the presented optimization.
Therefore, an evaluation is conducted which uses three different process models
with increasing size and complexity. Moreover, the genetic selection approach was
compared with alternative selection techniques. Those alternatives consist of ran-
dom, adaptive greedy, simulated annealing, sequential backward selection, and hill
climbing-based test case selection techniques.

Designing Test Problems: The test data which was used for the evaluation
consists out of three artifacts, namely, (a) three process models (with low, medium,
and high complexity); (b) test cases (one test case was generated for each possible
execution path for each model); and (c) historic data (e.g. recorded execution logs,
to determine the execution frequency of a node or its average execution time). All
test data were artificially generated. Moreover, each evaluated test case selection
technique was executed on each of the three models and their related data (i.e.
test cases and historic data). Each test case was sextupled. This simulates that the
internal behavior of process nodes is typically very complex and, therefore, multiple
test cases with various test data are required to thoroughly test it.

The process model generation starts with an initial model with a low complexity
(20 nodes, 42 test cases, 7 unique execution paths). Subsequently, the initial model
was then extended by adding additional paths and XOR splits to generate a model
with medium complexity (80 nodes, 120 test cases, 20 paths) and high complexity
(266 nodes, 390 test cases, 65 paths). Finally, artificial historic data (i.e. execution
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log data) were generated in a deterministic way. For example, the node execution
time was determined from the node position and a default execution timespan.
Hence, the test data is “stable” and can be reproduced for future evaluations. The
same test data (i.e. process models, execution logs, and so on) are utilized for the
evaluation of the presented genetic process model test case selection approach and
the associated performance optimization.

Metrics and Evaluation: The evaluated test case selection techniques were com-
pared as follows. First, the proposed genetic search algorithm-based approach tried
to answer one of the two questions: (a) “Which test cases should be executed to
achieve a X percent process node coverage within a minimal test suite execution
time?”; or (b) “Which test cases should be executed to achieve the maximum pos-
sible coverage in Y minutes test suite execution time?”.

Subsequently, the timespan which is required to execute the identified test
suite configuration, for questions (a) or (b), was calculated. Finally, the deter-
mined timespan was used by the other evaluated selection techniques. These are,
for example, random selection, adaptive greedy selection, and simulated annealing
based selection. The random and adaptive greedy test case selection approaches
select one test case after another. They stop when selecting another test case
would create a test suite configuration which requires more time to execute than
the one identified by the proposed GA-based technique. The simulated annealing-
based approach, in comparison, generates and randomly alters whole test suite
configurations. It strives to identify a test suite configuration which takes equal
or less time to execute than the one identified by the proposed genetic selection
approach. In addition, the solution should provide a maximum possible process node
coverage.

The random selection (cf. Ref. 27) technique randomly selects each test case from
a list of not yet selected test cases. Adaptive greedy selection, however, analyzes and
orders each available not yet selected test case based on its additional coverage/
required execution time balance. Finally, the test case which provides the most
additional coverage for the least additional execution time is chosen. The genetic
selecting technique utilizes the approach described in Sec. 3.

The simulated annealing-based approach (cf. Ref. 28) always starts with the a
randomly generated active test suite configuration. Hence, each test case’s enabled/
disabled state was defined randomly. Subsequently, a configurable random amount
of test cases (controlled by the variable alter ∈ (0, 1)), of the currently active test
suite configuration, is randomly selected and its enabled/disabled state is flipped.
Hence, a disabled test case becomes enabled and vice versa. Finally, the generated
new test suite configuration is analyzed to determine if it should be accepted as the
new active solution. Therefore, an acceptance probability ∈ (0, 1) factor is calculated,
cf. Eq. (5.16). This enables the simulated annealing-based approach to deal with
local optima. So, it can temporarily accept and improve on a solution which is worse
than the previously identified ones.
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Hence, if the new solution is better than the previously identified best one then
it is always accepted (i.e. acceptance probability is set to 1). Here, better means
that the new solution has to reach a higher coverage level than previously identified
solutions. In addition, the total test case execution time must be below or equal to
the permitted maximum execution time. Otherwise, the acceptance probability is
calculated, by Eq. (5.16). Equation (5.16) utilizes the coverage reached by the old
best solution covbest ∈ N, the new solution covnew ∈ N, and a temperature factor
tmp ∈ N. Finally, the calculated acceptance probability factor is compared with a
random value randAccept ∈ (0, 1). The new solution is accepted if randAccept is
smaller than the calculated acceptance probability factor. Moreover, the tempera-
ture tmp (which influences the probability that a solution which is worse then the
previously accepted one is accepted) is reduced. Therefore, tmp is multiplied with
a cool down ∈ (0, 1) factor to simulate a stepwise annealing, which also gave this
algorithm its name. The total test suite configuration execution time controls if a
new solution is accepted or not. Hence, it must be below or equal to the execution
time which was predetermined by the genetic selection approach. The algorithm
will repeatedly execute above steps until the temperature is less or equal than one.

ap(covnew , covbest, tmp) =

{
1 if covnew > covbest,

e(covnew−covbest)/tmp otherwise.
(5.16)

The sequential backward selection (cf. Ref. 29) technique starts with a test suite
configuration where each available test case is selected (i.e. enabled). Subsequently,
it iteratively disables one test case after another until a stopping criterion is ful-
filled, for example, when the test suite configuration meets a user defined maximum
test suite execution time requirement. Hence, the selection approach is required to
repeatedly identify the next test case that should be disabled. Therefore, it individ-
ually disables each still enabled test case and subsequently analyzes the coverage/
execution time relation of the hereby generated test suite configuration. This enables
to identify the test cases that adds the least value (i.e. least additional coverage
for its required execution time) to the test suite configuration. This test is then
disabled and the discussed iterative approach is repeated.

Hill climbing (cf. Ref. 30) is a local search technique that starts with a random
valid test suite configuration (i.e. a valid but likely non-optimal solution). Subse-
quently, it iteratively generates slightly changed candidate solutions (i.e. slightly
changed test suite configurations) and compares these to the initial starting solu-
tion. If a candidate solution reaches a higher fitness then it is accepted and utilized
to spawn additional candidate solutions. Note, to reach a higher fitness, the cover-
age must be higher than the previous solutions while the total test suite execution
time is still below a user chosen maximum execution time requirement. The iterative
search stops if none of the generated candidate solutions improves the solution that
was utilized to spawn them. Alternatively, it also stops after a maximum amount
of iterations was computed.

1740002-21

In
t. 

J.
 C

oo
p.

 I
nf

o.
 S

ys
t. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

V
IE

N
N

A
 o

n 
01

/0
5/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

December 14, 2016 16:9 WSPC/S0218-8430 111-IJCIS 1740002
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The test suite configurations (i.e. the configuration identified by each of the
four selection algorithms) were evaluated by determining the achieved final average
node coverage, cf. Eq. (3.12). Hence, the optimal coverage, Co (cf. Eq. (2.1)), of
each node j ∈ N of a process model O = (N,CE ,DE ) is added up and then
compared with the added up achieved final node coverage, Cs (cf. Eq. (2.10)). Cs is
calculated based on the analyzed test suite configuration. In addition, fault coverage
was determined by assigning artificial faults to each process node. We assume that
a test suite configuration Vi would find more faults for the process node j if the
achieved final coverage gets closer to the optimal coverage of j (cf. Eq. (5.17)).

fault(Vi, j, covred)

=




1 if Cs(Vi, j, covred) > 0 ∧ Cs(Vi, j, covred) ≤ Co(j) · 0.25,

3 if Cs(Vi, j, covred) > Co(j) · 0.25 ∧ Cs(Vi, j, covred) ≤ Co(j) · 0.50,

5 if Cs(Vi, j, covred) > Co(j) · 0.50 ∧ Cs(Vi, j, covred) ≤ Co(j) · 0.75,

7 if Cs(Vi, j, covred) > Co(j) · 0.75,

0 otherwise,

(5.17)

faultCoverage(Vi, covred) =

∑
j∈N fault(Vi, j, covred)

|N | · 7 . (5.18)

Note that covred represents the user chosen coverage reduction factor which is
utilized at Cs(Vi, j, covred) (i.e. the coverage calculation, cf. Eq. (2.10)) during the
incorporation of the neighborhood coverage of j. For example, imagine that the
achieved coverage (for the process node j) would be between 25% and 50% of j’s
optimal coverage. Then it was assumed that three out of seven faults would be
found by the test suite for the node j. Finally, the detected faults for each node
were added up and divided through the maximum possible detectable amount of
faults to normalize the result of Eq. (5.18).

The performance optimization evaluation utilizes the same test case selection
queries/criteria as the four compared selection approaches. However, it does not
compare the reached coverage and fault detection rate. Instead, the performance
of the genetic selection approach with and without the proposed optimization is
compared. So, the amount of generations needed by both approaches to identify an
equally good result is determined and compared.

Therefore, a four-step approach is applied. (1) The proposed “classic” genetic
test case selection algorithm is applied on a selection question/test problem combi-
nation. This enables to find an appropriate test suite configuration for the respective
selection question. (2) Subsequently, the test problem (i.e. a process model and asso-
ciated execution logs) are modified. Hereby the variable proc alt ∈ (0, 1) controls
how many percent of the process’s nodes are modified. This enables to mimic typ-
ical process model changes such as replacing, editing, or deleting specific process
model nodes.
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(3) The classic (i.e. non-optimized) approach is again applied on the modified
test problem (i.e. the process model and execution logs). Hereby a suitable test suite
configuration for the changed process model is identified. (4) Finally, the optimized
genetic selection approach is applied on the changed process model. Hence, the
initially generated result (from (1)) is exploited. Note that it was generated for the
old unchanged process model version. Specifically, it is utilized as a foundation to
construct the initial population of the optimized genetic selection approach. The
optimized approach stops as soon as it has found a test suite configuration which
has a fitness value (e.g. process model test coverage) that is higher or equal than
the fitness value of the test suite configuration which was identified by the classic
genetic selection approach (i.e. without the proposed optimization), see step (3).
Finally, after a test suite configuration with a higher or equal fitness was found, the
generations need by the genetic approach from step (3) and step (4) are compared.
This enables to assess if the proposed optimization speeds up the test case selection.
This would be the case if the optimized approach requires less generations than the
non-optimized one.

The generations were chosen as a comparison metric for multiple reasons. For
example, they are independent from the computation hardware performance, imple-
mentation details, and software stack. Moreover, they can easily be measures/
compared. Other factors, such as, execution time, CPU time, or CPU cycles could
easily be influenced by the listed factors. Imagine if one genetic selection algorithm
implementation uses a distributed multi-machine genetic framework vs. a single
threaded proof of concept implementation.

Results: The evaluation results were generated by applying all evaluated test case
selection techniques on the described three test problems. Hence, the evaluated tech-
niques include the proposed genetic selection algorithm, random test case selection,
adaptive greedy selection, simulated annealing based selection, a sequential back-
ward selection-based approach, and a hill climbing-based technique. For each test
problem, two questions were analyzed (a) “Which test cases should be executed to
achieve a X percent coverage within a minimal test suite execution time?” whereby
X is 20, 40, 60, or 80% of the maximal possible optimal total process coverage. In
addition, a second question was evaluated. This is (b) “Which test cases should be
executed to achieve the maximum possible coverage in Y minutes test suite execu-
tion time?” whereby Y is 20%, 40%, 60%, or 80% of twice the time which would
be necessary to execute each process node once.

Primary tests were executed to identify appropriate configuration values for
the designed genetic test case selection technique. Mutation rate (0.5%), wdeg (i.e.
coverage degeneration, 10%), wdegMax (i.e. maximal coverage degeneration, 50%),
cf. Eq. (2.6) and (2.7), covred (i.e. neighborhood coverage reduction per step,
30%), cf. Algorithms 1 and 2, all weights w (e.g. for coverage metrics, 1) and
offspring rate (50%) were fixed for all three test problem complexity levels. The
value of max generation (low complexity test problem:300, medium:500, high:800),
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population size (200, 400, 800) and crossover points (4, 8, 15), chosen individuals
for tournament selection (3, 5, 10), however, were chosen individually to reflect the
increasing test problem complexity.

For example, it was found that a low number of crossover points would, natu-
rally, exchange very large chunks of test suite configurations during child genera-
tion. This hardens the fine tuning of the identified results during the final stage of
the search. This challenge increases from small to large test problem complexity/
sizes, so the number of crossover points was increased whenever the test problem
complexity increases. The fully random initial population generation approach was
always used for question (a) while for question (b) population config was set to 0.8.
This represents that for test case selection question (b) a majority of the test cases
must, likely, be disabled. This is because the permitted test suite execution time is
strictly limited.

Finding appropriate parameters for GA based approaches can be hard. However,
there are parameterless GAs available (see Ref. 31) that configure their parameters
fully automatically. In addition the presented parameters can most likely be reused.
This is because they were defined for three generic complexity levels that, as we
assume, should fit for most existing process model and test suite sizes.

The configuration values of the evaluated non-genetic selection approaches also
reflect the test problem complexity. Hence, alter (low complexity test problem:0.05,
medium:0.01, high:0.009), tmp (10,000, 100,000, 1,000,000), and cool down (0.003,
0.001, 0.0005) were chosen individually for each test problem complexity level. It is
expected that this ensures a proper comparison with the proposed genetic approach.
Hence, if the test problem size increases then the algorithm is provided more free-
dom to analyze the search space. This is achieved, for example, by a higher starting
temperature and a smaller cool down factor. The hill climbing based approach uti-
lizes cand percent (low complexity test problem:0.6, medium:0.8, high:1.0) of the
test suite size (i.e. based on the amount of test cases that can be enabled/disabled)
as the number of candidates generated during each iteration. Moreover it terminates
after at most iter (10,000, 100,000, 1,000,000) iterations.

It was found that the default simulated annealing and hill climbing approach
struggle to identify a valid solution on certain selection problems. Hereby, valid
means that the solution is not rejected by the maximum test case execution time
based penalty function. This was observed on test problems were only a low amount
of test cases must be enabled at a potential solution to become valid, i.e. for ques-
tion (b). For such selection problems the initial random starting solution was tuned
accordingly. For example, only a low amount of randomly chosen test cases were
enabled.

The results show that the GA outperforms the random, adaptive greedy, and
simulated annealing selection techniques (cf. Figs. 4–7). It is also noticeable that
the GA benefits from increasing the test problem complexity. The GA achieved
a 3.6%/3.5% higher coverage/fault detection rate, for questions (a), compared to
the adaptive greedy selection technique, for the low complexity test problem. For
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the test problem with high complexity the genetic selection technique provides a
9%/10.3% higher coverage/fault detection than the adaptive greedy selection (cf.
Tables 1 and 3). The other test case selection approaches (random, hill climbing,
sequential backward selection, and simulated annealing based selection) are even
more significantly outperformed by the GA. Note that Tables 1 and 3 display eval-
uation results which were already presented in Ref. 14. Tables 2 and 4 show novel
results which compare the proposed approach with additional test case selection
techniques.

Additionally, we found, that the simulated annealing based test case selection
approach frequently was not able to identify a valid solution for certain questions.
This was even the case after applying the described tuning of the initial starting
solution. This was observable, for example, for question (b). For this question the

Fig. 4. Average node coverage across all three process model complexities for question (a) (User
chosen coverage objective).

Fig. 5. Average fault coverage across all three process model complexities for question (a) (User
chosen coverage objective).
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Fig. 6. Average node coverage across all three process model complexities for question (b) (User
chosen maximum test suite execution time).

Fig. 7. Average fault coverage across all three process model complexities for question (b) (User
chosen maximum test suite execution time).

selection algorithm has to ensure that the total test suite execution time is not above
the permitted one. It was found that it struggles to find solutions for test problems
that utilize a relatively small permitted total test suite execution time, e.g. if only
20% of twice the total execution time of each process node was permitted. Hence, the
listed average evaluation results for the simulated annealing based approach only
contains results where at least a single valid non-rejected test suite configuration
was identified. The results are depicted in Figs. 4–7.

Overall it became obvious that the GA is able to make better use of the addi-
tional flexibility provided by more complex test problems. Hereby, flexibility means
that the selection algorithm can be chosen from more test cases or more test suite
execution time is permitted. Hence, it is assumed that the GA is better suited for
complex process models and selection requirements than the compared techniques.
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In addition it was found to provide at least equally good results for all other prob-
lems. The improvement is even higher if the results are compared with random
selection. The evaluation also shows comparable results for question (b) (cf. Figs. 6
and 7).

Note, that the evaluation results were generated by averaging the outcome of 100
runs of the random, simulated annealing, and genetic test case selection approach
on each test problem and question. This ensures that the randomized behavior
of those approaches does not falsify the results. This could else be the case, for
example, because of a single “randomly” generated outstanding good or bad result.

The performance optimization evaluation results were generated by applying
the presented genetic business process test case selection approach on the already
described three test problems and two selection questions. To assess the impact
of the proposed performance optimization the genetic approach was applied with
and without the presented optimization. Subsequently, the amount of generations
required for both approaches (with/without the presented optimization), to identify
a comparable high quality test suite configuration, were compared. This enables to
assess if the proposed optimization was able to reduce the amount of generations
required by the genetic approach and, therefore, improved its performance. If this
is the case, then, the presented optimization enables to generate an equally good
result faster. Alternatively it would, probably, enable to identify better results if the
same amount of generations is permitted (and therefore computation time) than
required by the non-optimized genetic selection approach.

The evaluation of the performance optimization reuses the already presented
configuration values for the genetic selection approach. Therefore, for the sake of
brevity, only variables which are only used by the proposed optimization technique
are listed in the following. Hence, exp was always set to 0.25 for each test problem
complexity level while proc alt ∈ (0, 1) was defined as 0.3 for the low complexity,
0.2 for the medium complexity, and 0.1 for the test problem with high complexity.
The variable proc alt defines, in percent, how many nodes of each test problems’
process model are altered to simulate typical process model changes. Hence, the
proc alt variables’ value decreases while the test problems’ process model complexity
increases (and therefore the amount of nodes specified in each process model).
This is because this evaluation focuses on assessing the impact of the proposed
optimization when small process model changes are applied. It is assumed that
those changes only affect a low amount of process model nodes.

Three adaption techniques were applied to simulate process model changes:
(a) a node is completely removed from the process model; (b) a new node is added
to the model and placed right between a randomly chosen existing node and one
of its successors or predecessors; and (c) a node is altered (i.e. it gets assigned
new execution times and execution logs). Note, that the simulated process model
changes were applied on randomly chosen process model nodes. Moreover, for each
changed node a randomly chosen adaption technique was used.
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To assess the impact of the presented optimization technique several values were
collected and analyzed. First, the total generation speed improvement which sums
up all the generations from each run. This performance indicator was collected
separately for the genetic approach with and without the proposed optimization.
Subsequently, it was determined if and how much less generations were required
by the genetic approach with the optimization compared to the genetic approach
without the optimization (in percent) to identify an equally good test suite config-
uration. Secondly, the individual generation speed improvement metric determines
for each individual run the difference in the generation count between the opti-
mized and the non-optimized approach (in percent). Note that the evaluation of
the proposed performance optimization was executed 100 times. This enables to
even out the random aspects of the analyzed approach. The results show the aver-
age improvement for all 100 evaluation runs.

The results show that the proposed optimization substantially increases the
performance of the presented genetic selection approach (cf. Fig. 8). Depending on
the analyzed improvement assessment value a performance improvement between
21.8% and 58513.5%, compared to the genetic approach without the proposed per-
formance optimization, was found. The raw results of the performance optimization
evaluation are shown in Table 5.

An enormous performance improvement was found for the second, process model
execution time based, selection question (b). It originates from a large amount of
evaluation runs where the optimized genetic approach was able to determine a
valid solution, with higher or equal quality than the solution determined by the
non-optimized approach, in below 10 generations. In comparison, the classic non-
optimized genetic approach typically required between 100 and 500 generations.
However, even when excluding these exceptional good results the average speed

(a) Average total generation speed (b) Average individual generation speed

improvement improvement

Fig. 8. Average generation speed improvement for all three process model complexities for ques-
tion (a) and (b) when applying the presented optimization approach.
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Table 5. Raw evaluation results of the performance optimization evaluation for question (a)
and (b).

Process complexity, node coverage/ Total generation speed Individual generation
execution time objective improvement speed improvement

Coverage Execution Coverage Execution
objective time objective objective time objective

(%) (%) (%) (%)

Low, 20% coverage/execution time 59.4 693.2 219.6 58513.5
Medium, 20% coverage/execution time 21.8 41.6 42.6 1924.5
High, 20% coverage/execution time 40.1 98.6 85.7 124.1

Low, 40% coverage/execution time 125.7 63.6 660 44292.2
Medium, 40% coverage/execution time 32.9 28.4 271.3 733.1
High, 40% coverage/execution time 39.5 34.4 65.9 41.7

Low, 60% coverage/execution time 65.5 202.1 2955.9 11900.8
Medium, 60% coverage/execution time 48.6 93.1 178.6 18473.8
High, 60% coverage/execution time 194.2 46.8 5806.7 4490.4

Low, 80% coverage/execution time 63.1 67.2 472.9 15160.3
Medium, 80% coverage/execution time 23.8 53.5 65.6 602.9
High, 80% coverage/execution time 43.1 47.0 91.6 10391.1

improvement still reaches up to 150%. Of course, the exact improvements depend
on the selection question and test data complexity.

Moreover, we found that the proposed optimization is especially beneficial when
the permitted amount of generations (cf. the max generation variable) is relatively
small. Hereby, small must be seen in comparison to the amount of generations
required to identify a Pareto optimal solution. A Pareto optimal solution is an
optimal solution where applying any change would reduce its quality. Hence, we con-
clude that the proposed optimization is most useful when the permitted/available
test case selection algorithm computation time is limited. We expect that in such
a case a quick and high quality result generation is particularly important. Hence,
ongoing rapid process model changes will, likely, benefit from the proposed opti-
mization approach. It is assumed that in such a rapidly changing scenario the
timespan that can be invested in testing and designed each change is, likely, heavily
limited.

6. Related Work

Related work can be classified into two categories: test case selection and minimiza-
tion. Minimization is only partly relevant for this paper because it concentrates less
on selection, but more on test suite redundancy prevention. Hence, minimization
approaches remove test cases that are only covering process parts that are already
sufficiently tested by other test cases in the test suite. However, the research areas
are connected and the proposed approach can be used to generate results which are
comparable to existing minimization approaches, for example, by defining a 100%
coverage objective which should be reached in minimal test suite execution time.
Hence, this section also discusses minimization approaches.
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Two strategies are currently applied to achieve minimization. One option is to
analyze and minimize an already existing set of test cases (also called test suite).
Farooq and Lam describe their minimization objective as a Traveling Sales Man (cf.
Ref. 32) or an Equality Knapsack problem (cf. Ref. 11). Subsequently, they apply
Evolutionary Computation heuristics to search for a minimal set of test cases that
still provides full structural coverage. However, the authors only used their approach
to minimize test cases which were generated through model-based software testing
using UML activity diagrams.

Alternatively, the test case generation algorithms can try to generate a dupli-
cate/redundancy free test suite. Reference 33 utilizes Orthogonal Array Testing
to ensure a redundancy free test suite. Orthogonal Array Testing is a statistical
method that calculates which parameter values should be tested in which combi-
nation. In addition, the authors apply semantic constraints to reduce the amount
of generated process model test cases. Reference 34 instead searches for an opti-
mal amount of test points where sensors can be added to a process model to detect
faulty behavior. Hence, the work identifies the minimal amount of test points which
are necessary to achieve a user chosen coverage level.

Selection analyzes all test cases and selects those which provide the most value.
Reference 12 selects all test cases which cover process model areas that were changed
since the last test runs. Ruth instead concentrates on external partners and selects
only test cases which cover a process partner that was adapted.35 Ruth’s approach
requires that each partner process definition is publicly available which is rather
unlikely in real world scenarios.

Overall, existing work is frequently utilizing simple and relatively inflexible selec-
tion requirements such as “Which test cases should be selected to achieve a 100%
coverage?”. Hence, existing work is frequently not optimizing test suite execution
times to their full potential. Additionally, existing work is treating each process
node equally. For example, current work is assuming a node as completely tested if
at least a single test case tests this node once, independently from the nodes’ com-
plexity. Hereby the unique coverage requirements of each process and node are not
respected. This reduces the likelihood to identify a fault because important nodes
are not tested as thoroughly as necessary. Finally, we found that existing work
does not utilize a comprehensive approach (such as the presented Neighborhood
Coverage) to describe test case coverage effects.

7. Conclusions and Discussion

This paper provides coverage metrics and a GA for test case selection specifically
geared towards process model testing (�→ RQ1 and RQ2). The evaluation results
support their feasibility even for complex process models. It is also shown that
historic information such as log files can positively influence the generated results.
They enable the incorporation of test case execution times, hence enabling the
selection of those test cases that fulfill user-chosen requirements in minimal time.
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The presented GA basically enables the creation of more flexible test case selec-
tion approaches for process models (addressing RQ3 and RQ4). It can also be
adapted to meet unique user requirements, such as “node X must always be tested”,
“only the partner processes should be tested”, or “only modified process parts
should be tested”. Therefore, only adequate optimal coverage calculation metrics
must be defined. As shown, the flexibility can be further increased based on dif-
ferent fitness functions. Overall, this work provides the most comprehensive and
flexible process model test case selection solution so far. This is because it takes
the characteristics of process models, e.g. based on neighborhood coverage metrics
and execution log files, into account.

We see this as an advantage of the GA over more targeted approaches that, as
we found, require more effort to customize them for new test case selection criteria.
Moreover, the evaluation shows that more targeted algorithms, such as, the greedy
algorithm, are outperformed by the presented approach regarding the test selection
result quality. By its nature, the GA-based approach is more computational intense
than, for example, the greedy algorithm. However, we do not see that as a major
issue because we found, during the evaluation, that even overly large and complex
process models could be analyzed in a reasonable amount of time. This gave us a
positive impression of the overall performance, especially, because this paper only
utilizes a prototypical implementation of the presented approach. Moreover, high
speed GAs are available that can distribute their work over multiple machines.36

Moreover, this paper presents and evaluates novel performance optimization
approaches for genetic test case selection techniques (�→ RQ5). The presented
optimizations enable to significantly reduce the computation time required to iden-
tify a high quality test suite configuration. The results indicate that the presented
approaches can be successfully applied in various environments. This also includes
environments where the process models are large and complex, frequently adapted,
and the permitted computation time to identify a test suite configuration is, there-
fore, limited.

This paper, for the sake of brevity and simplicity, concentrates only on a single
coverage calculation approach, namely, node coverage. This is because node cov-
erage enables to illustrate the proposed approach and the addressed limitations of
existing work in an easily comprehensible way. This comes from that fact that its
fine granularity represents the coverage of each node — compared to competing
coverage approaches, such as, the more cause grained branch coverage. For exam-
ple, how the proposed neighborhood coverage affects the calculated coverage of each
process node that “surrounds” a tested process execution path can more easily be
illustrated based on node coverage than, e.g. on branch coverage. Node coverage
also enabled to visualize how the coverage is reduced with increasing distance from
the tested path in a easily comprehensible way.

Moreover, we are confident that the presented ideas and concepts can be gener-
alized to apply them on competing coverage approaches, such as, branch coverage
or path coverage. This also includes the presented genetic process model test case
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selection approach along with the concept of respecting the unique characteristics
of process models during test case selection. For example, to apply a transition
from node to branch coverage the presented optimal coverage calculation approach,
cf. Eq. (2.1), must be adapted. For this, it is proposed to modify it so that it no
longer measures how many test cases are covering (i.e. testing) a single node, but
how many test cases are covering a single branch. A similar transition is, as we
assume, likely applicable on all the other presented concepts and will, in detail, be
presented in future work.

Future work will also incorporate process model test case prioritization and
minimization. Hereby the applicability and feasibility of flexible GAs will be ana-
lyzed for these domains. Moreover, we plan to conduct a case study to analyze the
impact of the proposed coverage metrics on the test selection quality in real-world
scenarios. This will enable to assess the feasibility of, for example, optimal coverage
or neighborhood coverage in additional large, complex, and diverse environments.

In addition, we found that the proposed approach has a strong focus on the
process model. For example, it determines how each test case covers the model or
which process model nodes should be tested with the most effort. However, there
are challenges which cannot be addressed with such an approach. For example,
imagine a scenario where two test cases provide equal coverage and execution time
but only one of them would actually identify a fault. In such a scenario, the proposed
approach would be indecisive between both test cases because it uses an abstracted
coverage/execution time-based test rating criteria for selection purposes. Hence,
future work will focus on representing test cases in a more diverse way. Hereby we
plan to improve test case selection by raking test cases based on an artificial fault
detection likelihood. The planned ranking approach will incorporate, among other
aspects, a mixture of test data diversity and control flow coverage.
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