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Abstract

Barnett et al. in 2009 proved that Granger causality and transfer en-
tropy causality measure are equivalent for time series which have a
Gaussian distribution. Granger causality test is linear, while trans-
fer entropy a non-linear test. Many biological and physical mechanisms
show to have non-Gaussian distributions. In this paper we investigate
under which conditions on probability density distributions of the data
can the equivalence of the two causality measures be extended. In the
complexity sense ”cheaper” linear Granger test can be applied for de-
tection of causality in time series satisfying these conditions. These
results have an impact on causality detection in common biological and
physical time series.
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1 Introduction

Is Gaussian (normal) probability distribution sufficiently precise for real world
data modeling? Dependence modeling by Gaussian probability distribution
with copula functions has been widely used in applications of financial risk
assessment and actuarial analysis, for example in the pricing of collateralized
debt obligations. Some researches believe that the methodology of applying
the Gaussian copula to credit derivatives to be one of the reasons behind the
current global financial crisis. Gaussian distribution has been extensively ap-
plied also in modeling of neurophysiological time series, especially for EEG,
see for instance [23], [9]. Normal children, in the early postnatal period, gener-
ate EEG’s which have a non-Gaussian distribution of amplitude that becomes
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increasingly Gaussian before one year of age and remains so throughout subse-
quent development. Conversely, the EEG’s of children with Down’s syndrome
exhibit highly non-Gaussian properties at all ages studied [8].

On the other hand, results in the recent literature show that generalized
Gaussian distributions often show better precision for modeling and classi-
fication of biomedical signal (EEG) than Gaussian distributions Generalized
Gaussian distribution functions (GGD) for example [4].

Many biological mechanisms show log-normal distributions [17]. These
processes in nature are for example log-normal: the length of latent periods of
infectious diseases [21], distributions of mineral resources in the Earth’s crust,
the distribution of particles or chemicals, [7], reaction time, etc. However,
some measurements can however on small data sample fit both normal and
log-normal distributions (for example body height [19]). What is the differ-
ence between normal and log-normal distribution? Both forms of variability
are based on a variety of forces (causes) acting independently of one another. A
major difference is however that the effects can be additive or multiplicative,
thus leading to normal or log-normal distributions, respectively [19]. Expo-
nential distribution has been frequently uses in modeling in astrophysics, for
example has been shown to be a good model for dusty galactic discs [20]. These
probability distributions will be addressed in this paper.

By testing of causal relationships between time series, the appropriate
model selection is of crucial importance. Barnett et al. in 2009 proved in
[3] that the two measures for testing the causal relationships between multi-
variate series, namely G-causality and transfer entropy, are equivalent for time
series which have a Gaussian distribution. Taking in consideration that mea-
surements observable in nature are often non-Gaussian, it opens a question, for
which probability distributions, could be this result extended. In this paper
we will investigate under which conditions on probability density distributions
of the data can be the equivalence of the two causality measures extended.

1.1 Mixtures of Gaussian distributions and one general-

ized Gaussian distribution for time series modeling

Hidden Markov Models (HMM) with Gaussian mixtures have been frequently
used in literature for sequential data classification, including the EEG and
other biomedical signals. The number of Gaussian mixtures is usually selected
ad hoc, which influences the quality of modeling. Instead of using Gaussian
mixtures, Bicego at al. in [4] suggested to apply a Hidden Markov Model
where each state dependent emission probability function is represented by
one Generalized Gaussian (GG). Although modeling each emission function as
a mixture of GGs is also possible (as is typically done for standard Gaussians),
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they restricted the formulation to HMMs with just one GG per state. It has
been shown in [5] that given one HMM using a mixture of Gaussians in each
state, there exists an (in a likelihood sense) equivalent HMM with more states
but just one Gaussian per state, and this proof could be easily extended to any
kind of mixture. Using one GG per state eliminates the problem of choosing
the number of components in each mixture. In the EEG signal classifica-
tion, a slightly better performance of HMM with one generalized Gaussian has
been experimentally shown over HMM with one Gaussian distribution func-
tion in [4]. For multivariate Generalized Gaussian Hidden Markov Models
(GG-HMM) a remarkable improvement in the classification over multivariate
Gaussian Hidden Markov Models (G-HMM) has been achieved, similarly also
in [12]. These experimental conclusions motivate the application of multivari-
ate generalized Gaussian distributions for biomedical data.

2 Causality testing in time series

The introduction of the concept of causality into the experimental practice,
namely into analyses of data observed in consecutive time instants, time series,
is due to Clive W. J. Granger in 1969 in [10], the 2003 Nobel prize winner in
economy. In his Nobel lecture [11] he recalled the inspiration by the Wiener’s
work and identified two components of the statement about causality: 1. The
cause occurs before the effect; and 2. The cause contains information about
the effect that is unique, and is in no other variable. As Granger put it, a
consequence of these statements is that the causal variable can help to forecast
the effect variable after other data has been first used [11]. This restricted sense
of causality, referred to as Granger causality, GC thereafter, characterizes the
extent to which a process Xt is leading another process Yt, and builds upon
the notion of incremental predictability. It is said that the process Xt Granger
causes another process Yt if future values of Yt can be better predicted using
the past values of Xt and Yt rather then only past values of Yt. The standard
test of GC developed by Granger [10] is based on a linear regression model.

2.1 Granger causality

We will adopt the notation of the paper from Barnett et al [3]. Let ⊕ denotes
concatenation of vectors, so that for x = (x1, . . . , xd) and y = (y1, . . . , ym)
x⊕y is the 1×(d+m) vector (x1, . . . , xd, y1, . . . , ym). Given jointly distributed
multivariate random variables X and Y i.e. random vectors in Rd, we denote
by Σ(X) the d×d matrix of covariances cov(Xi, Yj) and by Σ(X,Y) the d×m
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matrix of cross-covariances cov(Xi, Yα). Let Σ(X|Y) denotes the d× d matrix

Σ(X|Y) = Σ(X) − Σ(X,Y)Σ(Y)−1Σ(X,Y)T (1)

define when Σ(Y) is invertible.
Suppose we have a stationary multivariate stochastic process Xt in discrete

time (i.e. marginal distributions are jointly distributed). Denote X
(p)
t = Xt ⊕

Xt−1⊕· · ·⊕Xt−p+1 for X along with p−1 lags so that X
(p)
t is a 1×pd random

vector for each t. Given the lag p, we use the shorthand notation X−
t = X

(p)
t−1

for the lagged variable.
Suppose we have three jointly distributed stationary multivariate stochastic

processes Xt, Yt, Zt. Consider the regression models

Xt = αt + (X
(p)
t−1 ⊕ Zr

t−1).A+ εt (2)

Xt = α′
t + (X

(p)
t−1 ⊕ Y

(q)
t−1 ⊕ Z

(r)
t−1).A

′ + ε′t (3)

where A and A′ are the matrices of regression coefficients, αt and α′
t are the

constant terms and the random vectors ε and ε′ comprise the residuals, so
that so that the predictee variable X is regressed firstly on the previous p lags
of itself plus r lags of the conditioning variable Z and secondly, in addition,
on q lags of the predictor variable Y. The G-causality of Y to X given Z
is a measure of the extent to which inclusion of Y in the second model (3)
reduces the prediction error of the first model (2). The standard measure of
G-causality in the literature is defined for univariate predictor and predictee
variables Y and X, and is given by the natural logarithm of the ratio of the
residual variance in the restricted regression (2) to that of the unrestricted
regression (3). It was shown in [3] that for the G-causality holds

FY→X|Z = ln(
Σ(X|X− ⊕ Z−)

Σ(X|X− ⊕ Y− ⊕ Z−)
). (4)

By stationarity this expression does not depend on time t, so we omit t from
the notation.

2.2 Transfer entropy

Transfer entropy as a non-linear causality measure was introduced by Schreiber
in 2000 [22]. Let us first remind some basic definitions. The differential entropy
of a (continuous) random vector X taking its values in Rd with the probability
density function p(x) is defined by

h(X) = −
∫

Rd

p(x) ln p(x)dx.
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If X is a discrete (multivariate) random variable given by a set of possible
values {x1, . . . , xn} then the entropy can explicitly be written as

H(X) = −
n∑

i=1

p(xi) ln p(xi)

where p denotes the probability mass function of X. With Xt,Yt,Zt defined
as before, the transfer entropy of Y to X given Z is defined as the difference
between the entropy of X conditioned on its own past and the past of Z, and
its entropy conditioned, in addition, on the past of Y:

TY→X|Z = H(X|X− ⊕ Z−) −H(X|X− ⊕ Y− ⊕ Z−) (5)

where H(.|.) is the conditional entropy. For stationary variables the transfer
entropy does not depend on t, so we omitted it from labeling. More on the
information-theoretic methods for causality detection can be found in our re-
view paper [13]. As it was already mentioned in the Introduction, Barnett at al.
proved in [3] that if all processes are jointly Gaussian then Granger causality
and transfer entropy are equivalent up to a factor of 2. This result provides for
the first time a unified framework for data-driven causal inference that bridges
information-theoretic and autoregressive methods. This statement brings a
consequence for practice, a reduction of the computational complexity. In the
complexity sense ”cheaper” linear test can be applied for detection of causality,
when one knows the time series in Gaussian.

In our paper we investigate, to which other multivariate probability dis-
tributions can be the equivalence of the two causality measures extended. To
express the transfer entropy, we need the knowledge of the analytical value
of the particular entropy in multivariate case. In the next session we discuss
common multivariate joint distributions, for which are differential entropies in
their analytical form known.

3 Jointly multivariate probability distributions

and their differential entropies

Recall that a jointly multivariate probability distribution f of dimension d can
be defined as
fX1,...,Xd

(x1, . . . , xd) = fX1(x1)fX2|X1
(x2|x1) . . . fXd|X1...Xd−1

(xd|x1 . . . xd−1)
where
fXi|X1...Xi−1

(xi|x1 . . . xi−1) =
�··· � fX1,...,Xd

(x1,...,xi,ui+1,...,ud)dui+1...dud�··· � �
fX1,...,Xd

(x1,...,xi−1,ui,...,ud)duidui+1...dud
and

fX1,...Xi
(x1, . . . xi) =

∫
· · ·

∫
fX1,...,Xd

(x1, . . . , xi, xi+1, . . . , xd)dxi+1 . . . dxd.
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The definition of the multivariate probability distribution by copula theory
is not considered here. Analytical expressions for the entropy of various uni-
variate continuous distributions are known (i.e. Lazo and Rathie [18]) but
their extension to multivatiate distributions is not always trivial. The formu-
las for various common multivariate distributions were computed by Darbellay
and Vajda in [6], namely for d-dimensional Pareto, logistic Burr, exponential,
Weibull, Weinmann exponential, Ordered Weinmann exponential and Gamma-
exponential distributions.

3.1 Normal distribution and its entropy

Recall that a multivariate normal distribution in Rd is defined as

N(x, μ,Σ) =
1

(2π)d/2|Σ|1/2
exp (−1

2
(x − μ)T Σ−1(x − μ))

where |Σ| is the determinant of Σ, a d× d symmetric positive definite matrix.
The entropy of this distribution is ln

√
(2πe)d|Σ|.

3.2 Generalized-normal distribution and symmetric Kotz

type distribution

The definitions of this subsection are adopted from Kitsos and Toulias in [16].
Both presented distributions are generalizations of a normal distribution. The
d-dimensional random variable X has the γ-order generalized normal dis-
tribution with mean μ and covariance matrix Σ when the density function
is of the form

KT d
γ (μ,Σ) = Cd,γ|Σ|−1/2 exp{−γ − 1

γ
Q(X)

γ
2(γ−1) } (6)

where |Σ| means determinant of Σ, Q(X) =< (X− μ)T ,Σ−1(X− μ) >, where
< uT , v > is the inner product of u, v ∈ Rd and T denotes transpose. The
normalizing factor is defined as

Cd,γ = π− d
2

Γ(d
2

+ 1)

Γ(dγ−1
γ

+ 1)
(
γ − 1

γ
)dγ−1

γ (7)

where Γ(.) is the Gamma function. For γ = 2 is KT2(x, μ,Σ) is the (multi-
variate) normal distribution.

One of the merits of the generalized normal distributions is that they be-
long to the Kotz-type distribution family (see below), i.e., they are elliptically
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contoured distributions. Recall that the symmetric Kotz type distribution has
density

Kotzm,r,s(μ,Σ) = K(m, r, s)|Σ|−1/2Qm−1 exp{−rQs}

where r > 0, s > 0, 2m + d > 2 and the normalizing constant K(m, r, s) is
given by:

K(m, r, s) =
sΓ(d/2)r(2m+d−2)/2s

πd/2Γ(2m+d−2
2s

)
.

It was shown in [14] that the distribution KTγ(μ,Σ) is the symmetric Kotz
type distribution with parameters m = 1, s = γ

2(γ−1)
, r = γ−1

γ
, i.e. KTγ(μ,Σ)

= K1, γ−1
γ

, γ
2(γ−1)

(μ,Σ).

Note also that for the normal distribution holds N(μ,Σ) = KT2(μ,Σ) =
Kotz1, 1

2
,2(μ,Σ),while the normalizing factor is Cd,γ = K(1, γ

2(γ−1)
, γ−1

γ
). It has

been proven in [2] that the entropy of the symmetric Kotz type distribu-
tion Km,r,s(μ,Σ) is H(Kotzm,r,s(μ,Σ)) = − lnC(d, s,m) + 1

2
ln |Σ| + 2m−d+2

2s
−

m−1
s

[
ψ(2m+d−2

2s
) − ln r

]
, where ψ(x) = d

dx
[ln Γ(x)].

By asserting m = 1, s = γ
2(γ−1)

, r = γ−1
γ

, the entropy of generalized normal

multivariate distribution was computed in [15] as

H(K1, 1
2
,2(μ,Σ)) = − ln

|Σ|1/2

Cd,γ
+ d

γ − 1

γ
. (8)

4 Results

Lemma 4.1. Let X,Y,Z be jointly multivariate random discrete variables
with values in Rd. Assume that the entropy of their distributions can be ex-
pressed as H(X) = C ln(|Σ(X)|) + S(d), where C is independent of X and
d and for S : Z+ → R holds S(d) + S(p) = S(d + p). Then the Granger
causality and transfer entropy for the discrete variables are equivalent up to
the multiplication constant 1

C
.

Proof:
The proof uses some ideas of the proof from [3] for Gaussian distributions. If a
(jointly multivariate) continuous probability distribution X has entropy in the
form h(x) = C ln(x) + S then its discrete entropy can be written as H(X) =
C ln(|Σ(X)|) + S where Σ is a covariance matrix. It follows from the block

determinant identity

∣∣∣∣A B
C D

∣∣∣∣ = |D||A− BD−1C| and the definition of Σ that

Σ(X⊕Y) =

(
Σ(X) Σ(X,Y)

Σ(X,Y)T Σ(Y)

)
= |Σ(Y)||Σ(X)Σ(X,Y)Σ(Y)−1Σ(X,Y)T|

which from formula (1) equals to |Σ(Y)|.|Σ(X|Y)|. Then H(X|Y) = H(X ⊕
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Y) − H(Y) = C ln(|Σ(X ⊕ Y)|) − H(Y) = C ln(|Σ(Y)||Σ(X|Y)|) + S(2d) −
C ln |Σ(Y)| − S(d) = C ln( |Σ(Y)|.|Σ(X|Y)|

|Σ(Y)| ) + S(d) = C ln(|Σ(X|Y)|) + S(d).

Analogously we get H(Σ(X|X−⊕Z−)) = C ln |Σ(X|X−⊕Z−)|+S(d) and
H(X|X−⊕Y− ⊕Z−)) = C ln |Σ(X|X−⊕Y− ⊕Z−)|+S(d). The difference of
the two last formulas equals to transfer entropy TY→X|Z and comparing it to
the G-causality defined by (4), we get the statement of the lemma.

4.1 Generalized normal distribution

In the following theorem we set conditions under which are G-causality and
transfer entropy equivalent.

Theorem 4.2. Let random discrete variables X,Y,Z have jointly multi-
variate generalized normal distributions in Rd whose continuous version is
given by formula (6). If the parameter ω = γ−1

γ
of the distribution satisfies the

condition

ωd = ln[
Γ(3d

2
)Γ(2dω)ωωd

π
d
2 Γ(3dω)Γ(d)

], (9)

then the Granger causality and transfer entropy of these variables are equivalent
up to a factor of 2.

Proof:
Denote by Hd = H(x1, . . . , xd) the entropy of a d-dimensional random variable.
From the definition of entropy (8) we get H2d−H3d = ln |Σ2d|1/2− ln |Σ3d|1/2−
lnC2d,γ + 2dγ−1

γ
+ lnC3d,γ − 3dγ−1

γ
. To apply Lemma 4.1, one requires that

− lnC2d,γ +2dγ−1
γ

+ lnC3d,γ − 3dγ−1
γ

= 0. This corresponds to
C3d,γ

C2d,γ
= expdγ−1

γ .

This rewritten equals to

π− 3d
2 Γ(3d

2
+ 1)ω3dωΓ(2dω)

Γ(3dω + 1)π−dΓ(d+ 1)(ω)2dω
= expdω .

Applying the fact that Γ(z + 1) = zΓ(z) for every z ∈ R, we get

π− d
2 (ω)dω 3d

2
Γ(3d

2
)2d(ω)Γ(2dω)

(3dω)Γ(3dω).d.Γ(d)
= expdω

Γ(3d
2
)Γ(2dω)(ω)dω 3d

2
2dω

π
d
2 Γ(3dω)Γ(d)(3dω)d

= expdω

Γ(3d
2
)Γ(2dω)(ω)dω

π
d
2 Γ(3dω)Γ(d)

= expdω
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and the statement of the theorem follows.

From the graphical solution of equation (9) we conclude that it is fulfilled
for every 1 < d ≤ 77. For higher dimensions is the argument of logarithm not
positive. It is of a principal interest, for which Cd,γ would be the corresponding
generalized Gaussian distribution suitable for modeling the common biological
time series, namely EEG time series. This question can be answered by direct
application of these distributions to the EEG data.

4.2 Other probability distributions

The equivalence of Granger causality and transfer entropy holds also for the
following probability distributions.

Theorem 4.3. 1. Let random discrete variables X,Y,Z have jointly
multivariate Weinman exponential distributions in Rd whose continuous
density has the form

p(x) = Πd−1
i=0

1

θi
e

d−i
θi

(xi+1−xi)

where xi > 0 are arranged in increasing order of magnitude, with θi > 0
for i = 1, . . . , d− 1. Then the Granger causality and transfer entropy of
these variables are equivalent up to the factor of 1.

2. Let random discrete variables X,Y,Z have jointly multivariate log-normal
distributions in Rd with the continuous density in the form

p(x) = (2π)−d/2|Σ|−1/2(Πd
i=1xi)

−1 exp−1

2
(log x − μ)TΣ−1 log(x − μ)

with logx = (log x1, . . . , log xd)
T , xi > 0, i = 1, . . . , d, μ ∈ Rd and Σ

a positive definite matrix of order d. Then their Granger causality and
transfer entropy are equivalent up to the factor of 1

2
.

Proof: (i): It has been shown in [6] and [24] that the entropy of multivariate
Weinman exponential distribution is H(p) = Σd−1

i=0 log θi + d. This entropy for
discrete distributions expressed by means of |Σ(X)| fulfills our lemma and the
statement follows.
(ii): It has been shown in [1] and [24] that the entropy of multivariate log
normal distribution is H(p) = 1

2
log |Σ|+ d

2
+ d

2
log(2π)+

∑d
i=1 μi. This entropy

for discrete distributions rewritten by means of |Σ(X)| fulfills our lemma and
the statement follows.
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5 Conclusion

Motivated by the experimental evidence, that the generalized normal distri-
bution is more suitable for EEG time series modeling than the normal distri-
bution, we have investigated what influence on the causality detection these
models have. We have got a condition for the parameters of a generalized
normal distribution, for which the equivalence of the Granger causality and
transfer entropy holds up to a factor. For exponential Weinman and log-normal
data distribution we have also proven the equivalence of the two causality mea-
sures. These probability distributions also occur in natural processes. In the
complexity sense ”cheaper” linear test can applied for detection of causality in
time series, when the probability distributions are one of mentioned ones. The
next step of our research is to investigate experimentally, how precise do the
log-normal, Weinmann distributions and the generalized normal distributions
satisfying the condition (9), respectively model the EEG time series or other
real world time series.
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