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Abstract

We propose a three dimensional multi-resolution scheme to represent volumetric data in resolutions which are
powers of two, resolving the rigidity of the commonly used separable Cartesian multi-resolution schemes in 3D
that only allow for change of resolution by a power of eight. Through in-depth comparisons with the counterpart
resampling solutions on the Cartesian lattice, we demonstrate the superiority of our subsampling scheme. We
derive and document the Fourier domain analysis of this representation. Using such an analysis one can obtain
ideal and discrete multidimensional filters for this multi-resolution scheme.

Categories and Subject Descriptors (according to ACM CCS): G.1.1 [Numerical Analysis]: Approximation
1.4.10 [Image Processing and Computer Vision]: Image Representation, Volumetric

1. Introduction

Multi-resolution schemes are important tools for dealing
with large data. Different levels of detail of the data can be
pre-computed and an appropriate level can be picked accord-
ing to the available bandwidth of the display device or the
transition channel (e.g. for online music, video, or graphics
applications).

Ideally, one would like to find the appropriate level-of-
detail, which preserves exactly as much data as can be han-
dled by the underlying hardware or software constraints. In
other words, we would like to have a continuous level-of-
detail (LOD) slider, creating the LOD that is needed. How-
ever, it is only feasible to pre-compute finitely many LOD’s.
The choice of LOD’s is often constrained by the underlying
data structures and algorithms available to process these data
structures.

One could easily use a continuous filter in order to re-
construct a continuous representation of the underlying data
and to sample this continuous representation at any arbitrary
resolution. Using this idea, any arbitrary granularity can be
produced. However, this would require the use of a differ-
ent filter mask for each sample point of the down-sampled
grid. This is rather ineffective and computationally expen-
sive. Hence, it is desirable to construct a multi-resolution
pyramid using only discrete filters.
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In image and volume processing it has been customary to
work with image and volume pyramids that treat each di-
mension separately. In such a scenario the smallest possible
granularity of sub-sampling would be to half the resolution
of each dimension. This leads to the well-known quad-trees
(in 2D) and octrees (in 3D). While we are only halving the
resolution per coordinate axis during each iteration, we ef-
fectively reduce the overall data by a factor of four in 2D and
eight in 3D.

While this is a convenient and widely used pipeline, the
granularity may be too coarse and alternatives are of inter-
est. Hence, quincunx filtering has been studied in the image
processing community [Vai93,DM84] with the benefit of al-
lowing a finer granularity for 2D image pyramids. Quincunx
allows an overall data reduction by a factor of two in each
iteration.

Van De Ville et al. [VDVBUOS5] have shown that a simple
extension of the quincunx scheme to 3D is not possible and
iterating through the commonly assumed Face Centered Cu-
bic (FCC) subsampling cannot provide a suitable isotropic
representation of the signal at various resolution levels. On
the other hand, Linsen et al. [LPD*04] have studied a multi-
resolution pipeline which has a change of resolution by a
factor close to two in each step. In the first step of down-
sampling, this method loses 3/8 of the data; in the second
step it discards 3/5 of the data; and in the final step it loses
1/2 of the data to obtain a representation at 1/8 of the orig-
inal data rate. Therefore, each resolution of the data is not
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exactly halving the information. Another drawback is that
this pipeline is made up of grids, for which no rendering al-
gorithms with proper reconstruction filters exist. Moreover,
it is not possible to analyze the representation of the data
at various resolution levels in terms of the spectrum of the
underlying signal. In other words, there are no signal pro-
cessing tools available to analyze or predict the quality of
the data representation and reconstruction on such grids.

In this paper we introduce a novel multi-resolution
pipeline, which represents a volumetric dataset at one half
of its original resolution on a Face Centered Cubic (FCC)
lattice and at one quarter of its original resolution on a Body
Centered cubic (BCC) lattice. The resolution of one eighths
is again represented on a Cartesian lattice. Since proper in-
terpolation and reconstruction schemes for these lattices ex-
ist we are able to render these 3D lattices properly and ef-
ficiently. Moreover, we can offer a Fourier analysis of this
multi-resolution representation.

In Section 2 we review previous research on this topic
and introduce our multi-resolution pipeline in Section 3. In
Section 4 we are describing some details necessary for the
implementation of our framework. Finally, in Section 5, we
compare our novel pipeline to a pipeline based on compara-
ble CC lattices only, which was computed using a continuous
filter bank. We conclude our paper in Section 6 and point to
some ideas on how to further improve our results.

2. Related Work

Since it is not always possible to interactively process
data in the original sampling resolution, level-of-detail
and multi-resolution techniques have been proposed by
many researchers to balance between architectural con-
straints (e.g. performance and memory) and fidelity. Multi-
resolution techniques have been employed in a variety of
visual data representation approaches including geometric
rendering [WG92, CDL*96, LWC*02] and volumetric data
visualization [LHJ99], especially for out-of-core applica-
tions [SCM99].

Progressive Meshes [Hop96] probably come closest to a
continuous LOD pipeline. This approach becomes practi-
cal through an efficient data structure, which minimizes the
overhead. Unfortunately, nothing close to such elegance is
known in image or volume processing. The de-facto stan-
dard is quadtree and octree structures. They are easy to im-
plement and they do not alter the underlying lattice structure
(this pipeline consists solely of CC lattices).

Octrees have been well studied [Sam90] and are widely
used in scientific visualization and graphics [WG92]. They
are the primary tool to deal with large and time-varying
data [SCM99, YMCO5].

In 2D image processing, the quincunx lattice provides
more flexibility than a quadtree structure, since it preserves

a Cartesian lattice (through a rotation by 45°), while, the
down-sampling rate is two rather than four as for quad-trees.

The FCC lattice is likened in structure to the quincunx lat-
tice and provides a down-sampling by a factor of two in 3D.
However, Van De Ville et al. show that no isotropic down-
sampling pyramid, based on the dilation matrix induced by
the FCC lattice, can be computed [VDVBUOS5]. Linsen et
al. designed a wavelet multi-resolution pyramid which is
based on an v/2 subdivision scheme [LPD*04]. Their multi-
resolution pyramid goes from a CC to a modified FCC (with
an additional sample in the middle of each cell) to a BCC
lattice. Because of the existing filter banks associated with
each level, it is potentially a very attractive pipeline. How-
ever, the modified FCC lattice of this pipeline is a new grid
for which no proper interpolation filter is known. Further, no
proper Fourier transform is known for this lattice and hence,
it is not possible to analyze the spectrum of the data. There-
fore, we cannot use this lattice in a volume visualization al-
gorithm.

Recently we have devised interpolation and reconstruc-
tion kernels based on box splines for the BCC lattice and
similar linear and cubic element kernels for the FCC lat-
tice [QEE*05,EDMO04]. We have demonstrated that efficient
and fast linear reconstruction for both BCC and FCC lattices
outperforms the trilinear interpolation for the Cartesian lat-
tice. Also we have recently devised an extremely efficient
evaluation method for the cubic box spline that will be pub-
lished shortly.

The problem of optimal down-sampling relates to the
classical cover problem. The cover problem is the prob-
lem of covering space with equal sized spheres while al-
lowing the smallest amount of overlap [CS99]. When down-
sampling, we are moving the copies of the spectra in the
Fourier domain closer to each other. In order to minimize
aliasing, we would like to minimize the amount of over-
lap of the aliased spectra. Hence, we would like to arrange
the aliased spectra so that they incur the smallest amount
of overlap. With the assumption of an isotropic signal spec-
trum, the Fourier domain interpretation of optimal down-
sampling yields a tile of spheres where the overlap between
the replicas of the spectrum is minimized. As discussed by
Conway and Sloan [CS99], BCC attains the best (smallest)
cover overlap. Second to that is the FCC pattern, and the
Cartesian cubic ranks third in this measure. While these lat-
tices give us insight over aliasing behavior in the frequency
domain, their duals give the actual sampling pattern to use
in the spatial domain. Hence, we first down-sample to FCC
(which is dual to BCC), second we down-sample to BCC
(which is dual to FCC) and finally we down-sample to Carte-
sian.

3. Subsampling Lattices

The goal of subsampling is to obtain a sub-lattice of the
original lattice such that the sub-lattice has the appropri-
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ate sampling density based on a desired subsampling ratio.
Our construction of the multi-resolution transform is mainly
motivated by suitable properties of the BCC and FCC lat-
tices. Considering the original data given on the Cartesian
lattice of ZS, an FCC sub-lattice can be constructed, that has
half its density. Moreover, a BCC sub-lattice of 73 can be
constructed whose density is a quarter of the original Carte-
sian lattice. The nesting structure of the FCC and BCC sub-
lattices inside the original Cartesian lattice is depicted in Fig-
ure 1.

The FCC sub-lattice

The BCC sub-lattice

Figure 1: The Cartesian lattice and the structure of the sub-
lattices. The FCC has half the sampling density and BCC has
a quarter sampling density. The sampling density for each
sampling lattice is the inverse of the volume of the Voronoi
cell of that sampling lattice.

3.1. Face Centered Cubic Lattice

The FCC lattice is commonly referred to as the checkerboard
lattice in 3D. This property illustrates the structure of the
FCC lattice as a sub-lattice of the Z> with only half of the
points. The lattice points belonging to the FCC lattice have
the property that the sum of their coordinates is even.

In terms of signal processing theory of band-limited func-
tions, the spectrum of a band-limited function represented
on the FCC lattice is contained in the Voronoi cell of its
dual lattice. The dual to the FCC lattice is a BCC lattice
whose Voronoi cell is a truncated octahedron. Therefore, the
spectrum of a properly band-limited function represented on
the FCC lattice is contained in a truncated octahedron in the
Fourier domain. This is illustrated in Figure 2b.

(© The Eurographics Association 2006.

3.2. Body Centered Cubic Lattice

The BCC lattice points have the property that all three coor-
dinates of each point have the same parity. In other words,
a lattice point belongs to the BCC lattice if and only if all
three of its coordinates are even or all three are odd.

As the FCC and BCC are dual lattices of each other, the
spectrum of a properly band-limited function that is repre-
sented on the BCC lattice is contained in the Voronoi cell of
the dual FCC lattice. The Voronoi region of an FCC lattice
is a rhombic dodecahedron as illustrated in Figure 2a.
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a) FCC b) BCC

Figure 2: The Voronoi cells

3.3. Fourier Domain Representation

Assuming the original volumetric dataset is properly band-
limited and sampled on a Cartesian lattice, and since the dual
to the Cartesian is still a Cartesian lattice, the spectrum of the
original signal is contained in a Voronoi cell of the Cartesian
lattice, which is a cube.

In order to properly subsample this original function onto
a sub-lattice, one needs to perform a filtering step to appro-
priately band-limit the original function for the sampling at
the lower rate (i.e. the sub-lattice). The Nyquist region for
the sub-lattice sampling is determined by the geometry of
the sub-lattice. The Voronoi cell of the dual to the sub-lattice
is precisely the Nyquist region for the sampling process. In
other words, to perform the proper band-limiting process,
one needs to filter out the parts of the original spectrum that
fall outside the Voronoi region of the dual to the sub-lattice.
In geometric terms, one needs to cut out and preserve the
Voronoi cell of the dual to the sub-lattice from the original
cubic spectrum.

The Nyquist region for subsampling the CC volume onto
an FCC lattice is the Voronoi cell of the BCC lattice (a trun-
cated octahedron). This polyhedron occupies exactly half the
volume of the original cubic spectrum, as in Figure 3a. Sim-
ilarly, when subsampling the Cartesian volume down to the
BCC lattice, the Nyquist region is the Voronoi cell of an FCC
lattice (a rhombic dodecahedron). This polyhedron occupies
exactly a quarter volume of the original cube as in Figure 3b.
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a) FCC

b) BCC ¢) Cartesian

Figure 3: Nyquist regions for various subsampling steps.
The gray cube indicates the support of the spectrum of the
original Cartesian-sampled 3D function.

4. Implementation

The multi-resolution framework we describe here consists
of two main parts. The filtering process can be regarded as a
pre-processing step. It results in data representations at dif-
ferent scales (levels of detail). The key point of our method is
that these representations are on different lattices and can be
obtained from the original resolution Cartesian lattice by the
use of discrete filters. The second subsection is concerned
with rendering those lattices to the screen using ray-casting.
Here, proper interpolation techniques are the key for a high-
quality rendering process.

4.1. Filtering process

The main challenge in designing valid filters for the band-
limiting process before subsampling, is to devise a band-
pass filter whose support resembles the Voronoi cell of the
dual lattice of the subsampling lattice. Therefore, we require
filters whose support is contained within the polyhedron in
Figure 3 and zero everywhere else. This would constitute the
ideal subsampling filter for these sub-lattices. While these
ideal filters are band-limited in the frequency domain, they
have infinite support in the spatial domain and hence are im-
practical to use.

Our approach for designing compact support filters for the
subsampling process was to take advantage of the linear and
cubic reconstruction filters we recently introduced for the
BCC and FCC lattices in [QEE*05, EDMO04], respectively.
These filters do have the proper support in the frequency do-
main.

For our experiments we used the linear element FCC filter
that is a linear filter on the first neighbors cell of the FCC,
where the first neighbors cell is a cub-octahedron (see Fig-
ure 4a). The cubic FCC filter is the convolution of the lin-
ear element FCC with itself [QEE*05]. Similarly, we used
the linear box spline BCC filter whose support is a rhombic
dodecahedron (see Figure 4b). The cubic box spline is the
convolution of the linear box spline with itself [EDMO04].

For evaluation purposes we also computed a comparable
multi-resolution pyramid based solely on CC lattices. For
this Cartesian pipeline, since there is no sub-lattice of a half

and a quarter resolution, we resort to resampling techniques.
To obtain a properly band-limited function at half the res-
olution, we reconstructed the original (continuous) volume
using a tri-cubic B-spline filter. The filter size was properly
chosen, such that a proper band-limiting process occurred
before the lower rate resampling. A similar computation was
performed to obtain the CC lattice at one quarter of the res-
olution from the original lattice.

FCC BCC
Figure 4: The first neighbor cells

4.2. Rendering Multi-resolution Lattices

In this section, we present our rendering framework for ray-
casting volumes sampled on the Cartesian, BCC, and FCC
lattices. First, we design a General Ray-caster that operates
on continuous volumes. Then, we implement various recon-
struction kernels for Cartesian, BCC, and FCC lattices to
produce continuous volumes from datasets sampled on these
lattices. This architecture enables the maximum reuse of ray-
casting code common to all lattice types. Furthermore, min-
imal coding is needed to extend this framework to new lat-
tice types, or new reconstruction kernels for existing lattice

types.

Most parts of the standard volume rendering pipeline re-
main the same when rendering different lattices. The step
that needs adjustment is the interpolation stage where a con-
tinuous volume is reconstructed from the given sampling lat-
tice.

Datasets are sampled on a given lattice in world-space.
We record the scaling and offset needed to arrive at the
corresponding canonical-lattice-space. In particular, in the
canonical Cartesian lattice, the distance between neighbor-
ing points along any (x, y, or z) axis is 1. In the BCC and FCC
lattices, that distance is 2, as it can be seen in Figure 1. We
now transform the canonical-lattice-space into a compacted-
Cartesian-space, in preparation of data storage. Finally, co-
ordinates in the compacted-Cartesian-space are transformed
to 1-dimensional indices in memory-space, and samples are
stored on file accordingly.

All the afore-mentioned transformations are well under-
stood, except the one going from canonical-lattice-space
to compacted-Cartesian-space. For the Cartesian lattice this

(© The Eurographics Association 2006.
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Figure 5: BCC indexing scheme. The sequence of images
shows a simple 2x2x4 BCC dataset being mapped from
canonical-lattice-space  to  compacted-Cartesian-space.
Green (dotted) lines illustrate even z-slices of the BCC
dataset. Red (solid) lines illustrate odd z-slices. Left
column: canonical-lattice-space for BCC. Right column:
compacted-Cartesian-space for CC; note that the size of
each compacted Cartesian slice has been decreased by a
scaling factor of two (and thus the concept of ’compaction’).
Top row: front view. Bottom row: side view.

step is just the identity transformation. For the BCC lattice,
as shown in Fig. 5, we shift down all odd-numbered z-slices
(colored red, connected by solid lines) by an offset of 1 along
the x and y axes, so that they align with the even slices along
the z axis. Then, we compact the x and y axes by a factor of
2, so that the resulting compacted-Cartesian-lattice becomes
a canonical-Cartesian-lattice. For the FCC lattice, illustrated

Wz=0 (een) z=1{odd)

Figure 6: FCC index compaction into Cartesian scheme
(given in xyz-coordinate tuples) used for memory storage.

in Fig. 6, we decompose each z-slice into two sub-slices,
push the second sub-slice to be halfway between the cur-
rent z-slice and the z-slice directly behind it, and then bring
all sub-slices into alignment along the z axis. Finally, we
perform the appropriate scaling to transform these z-aligned
sub-slices into a canonical-Cartesian-lattice.

5. Results

In order to examine the multi-resolution scheme discussed
in this paper, we have implemented two pipelines - one
pipeline based on CC/FCC/BCC down-sampling and one
solely based on Cartesian lattices. Both pipelines have a
sample reduction of one-half at each step. Normal estima-
tion, needed for shading, was based on central differencing

(© The Eurographics Association 2006.

of the reconstructed continuous function both in the Carte-
sian and FCC/BCC case. Central Differencing is easy to im-
plement and there is no reason to believe that it performs
any better or worse than taking the analytical derivative of
the reconstruction kernel [MMMY97].

We have chosen the synthetic dataset first proposed in
[ML94] as a benchmark for our comparisons. The function
was sampled at the critical resolution of 40> on the Cartesian
lattice. We then obtained the corresponding down-sampled
FCC and BCC data volumes using the filtering process de-
scribed in Section 4.1. The FCC volume has half the samples
of the original volume and the BCC volume has a quarter of
the original samples. Therefore, we obtained a pair of lin-
early down-sampled and cubically down-sampled FCC and
BCC volumes. Similarly, we constructed CC lattices at one
half and one quarter of the original resolution via a filtering
step discussed in Section 4.1. Again we produced a pair of
linearly and cubically re-sampled Cartesian datasets at each
resolution.

The rendering pipeline renders images of the FCC vol-
umes using the linear and cubic element filters introduced
in [QEE*05] and the BCC renderer makes use of the lin-
ear and cubic box splines as in [EDM04]. The Cartesian im-
ages were rendered using the popular tri-linear and tri-cubic
B-spline interpolations. For each sub-sampled dataset ren-
dered, we produced an error image to visualize the errors
incurred in this lower resolution representation of the origi-
nal volume. Since the gradient error is perceptually signifi-
cant, we mapped the angular error of the computed gradient
(via central differencing) to gray-scale. We mapped the max-
imum angular error to white and zero error to black. In our
experiments we used an angular error of 2 radians as our
maximum error.

The left image of Figure 7 depicts the original ML dataset
at 40> resolution (using tri-linear interpolation), and on the
right is the corresponding error image. The error image is
black when there is no error in estimating the gradient and
the white and gray areas convey the angular error of the gra-
dient estimation.

Figure 7: ML Data at a CC resolution of 403 (left) and its
error image (right). The max angular error depicted is 2 ra-
dians.

Figure 8 displays the half resolution volumes. The top row
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is the image of the FCC volume (left) and its error (right).
The bottom row is the corresponding resolution on the Carte-
sian pipeline. These volumes are down-sampled using the
corresponding linear filters and rendered using the linear
reconstruction filters. The appearance of brighter tints of
gray in the error image of the Cartesian representation indi-
cates the appearance of more errors in the Cartesian pipeline.
Figure 9 displays the half resolution volumes like Figure 8

Figure 8: Top row: FCC at half resolution (left) and its er-
ror image (right); Bottom row: CC at half resolution (left)
and its error image (right). The max angular error depicted
is 2 radians. We used linear down-sampling and linear re-
construction filters.

using a linear down-sampling filter. These volumes were ren-
dered using cubic reconstruction filters. We can still observe
the dominance of dark and black regions in the FCC error
image that indicates fewer errors in the FCC representation.

Figure 10 displays the quarter resolution volumes. The
top row depicts the image of the BCC volume (left) as well
as the gradient error of the BCC volume (right). The bot-
tom row is the corresponding resolution on the Cartesian
pipeline. These volumes are down-sampled using the cor-
responding linear filters and rendered using the linear filters
for reconstruction. Figure 11 displays the quarter resolution
volumes using linear down-sampling filters. These volumes
were rendered using the cubic reconstruction filters. The ap-
pearance of brighter tints of gray in the error image of the
Cartesian indicates that more errors exist in the Cartesian
pipeline. We can still observe the dominance of dark regions
in the BCC error image that indicate existence of fewer er-
rors in the BCC representation.

Figure 12 depicts the data at a resolution of one-eighth of
the original resolution.

We also compared the two multi-resolution pipelines on
an experimental data set. Although we can not quantify the

Figure 9: Top row: FCC at half resolution (left) and its error
image (right); Bottom row: CC at half resolution (left) and
its error image (right). The max angular error depicted is
2 radians. We used linear down-sampling and cubic recon-
struction filters.

Figure 10: Top row: BCC at one quarter resolution (left)
and its error image (right); Bottom row: CC at one quarter
resolution (left) and its error image (right). The max angular
error depicted is 2 radians. We used linear down-sampling
and linear reconstruction filters.

accuracy of the representations, we included the actual ren-
dering of the dataset at each resolution for comparison pur-
poses. The results can be seen in Figure 13. In the middle
rows, the left images belong to FCC and BCC representation
and the right image to the corresponding Cartesian multi-
resolution pipeline. The original skull dataset was sampled
at the resolution of 128°. It becomes clear from the images
that our new multi-resolution pipeline is preferable since it

(© The Eurographics Association 2006.
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Figure 11: Top row: BCC at one quarter resolution (left)
and its error image (right); Bottom row: CC at one quarter
resolution (left) and its error image (right). The max angular
error depicted is 2 radians. We used linear down-sampling
and cubic reconstruction filters.

Figure 12: CC at one eight of the original resolution (left)
and its error image (right). The max angular error depicted
is 2 radians. We used linear down-sampling and linear re-
construction filters.

preserves more detail. However, some rendering artifacts are
visible for the FCC image, which are due to a linear FCC
filter that exhibits girdering artifacts (see [CMSO1]). In our
experimental setting we have experienced with filters that
would get rid of these artifacts. These filters will be pub-
lished shortly.

6. Conclusions and Future Work

We introduced a multi-resolution algorithm that allows the
change of resolution in 3D with powers of two. Moreover,
we have demonstrated that the representation of the data
on these lattices is a more accurate representation than re-
sampling to a lower resolution Cartesian lattice. This was
illustrated through the error images in the results section.
Analyzing the images in the results section and other pos-
sible combinations of down-sampling and reconstruction fil-
ters, we noted that linear type down-sampling along with cu-
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Figure 13: The skull data set at the original resolution of
128% at the top. First row, at half the resolution, left image
on FCC, right on re-sampled Cartesian lattice. Second row
at quarter resolution, left image on BCC and right image on
re-sampled Cartesian. The bottom row, the dataset at one
eighth resolution. These volumes are down-sampled using
linear type filter and reconstructed using cubic type recon-
structions.

bic type reconstruction produces the most suitable results in
terms of the smoothness of reconstruction, while this config-
uration keeps the angular gradient estimation errors low.

Since the FCC lattice constitutes the data representation at
the half resolution, it is important to design accurate filters
with desirable smoothness properties. The linear and cubic
element filters on the FCC lattice do not have any proven
smoothness properties. We are currently investigating filters
for the FCC step with variable guaranteed smoothness. We
have some preliminary results on a B-spline family of filters
for the FCC lattice. Using these filters, we could eliminate
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the artifacts introduced on the FCC resolution image of Fig-
ure 13.

Currently, we are able to quantitatively visualize the er-
rors in the various multi-resolution steps, through compar-
ison with the analytical ML function. For other real life
datasets, we also would like to quantitatively visualize the er-
rors of various resolution datasets with respect to their orig-
inal high resolution volume. This error analysis will enable
us to examine our multi-resolution scheme against the Carte-
sian pipeline on a number of other real life datasets.

Possible applications for our fine-grained multi-resolution
pyramid include LOD or progressive rendering, 3D multi-
scale feature extraction, or multi-scale spatio-temporal fea-
ture extraction in video data, to just name a few directions.
Other future development could go towards a generalized
lattice rendering beyond 3D. Key issues here are appropriate
linear or higher order filtering kernels, and a unified indexing
scheme. Apart from that GPU accelerated lattice rendering
of the 3D lattices (BCC, FCC) using higher-order kernels is
currently being investigated.

Further, perfect reconstruction filter banks could be de-
signed for these non-separable lattices.
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