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Abstract
We propose a novel method to improve the quality of multi-resolution visualizations. We reduce aliasing artifacts
by approximating the data distribution with a Gaussian basis function at each level of detail for more accurate
rendering at coarser levels of detail. We then show an efficient implementation of our novel Gaussian based
approximation scheme and show its superiority using numerical tests and compelling renderings.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computing Methodologies]: Computer Graph-
ics - Methodology and Techniques E.1 [Data]: Data Structures

1. Introduction

Visualizing scientific and medical volumetric data continues
to require processing ever larger data sets. Many algorithms
have been proposed for optimizing performance, especially
for datasets too large to fit in main memory. Such datasets are
commonly visualized with hierarchical rendering algorithms
based on multi-resolution representation of the data, trading
off image quality against rendering speed.

Although image quality is implicitly balanced against ren-
dering speed, few authors have addressed the question of
multi-resolution image quality, i.e. the quality of the im-
ages rendered at coarser levels of resolution. In this paper,
we address this question by using statistical information to
decrease aliasing artifacts in direct volume rendering.

Conventional multiresolution algorithms downsample
voxel opacities with the mean value of all high resolution
voxels that contribute to each low resolution voxel. Espe-
cially for transfer functions with relatively narrow domains,
this causes features visible at high resolution to disappear,
blur or deform in low resolution images. Our first contri-
bution is therefore to demonstrate how these defects can be
reduced by storing statistical information such as histograms
in the multi-resolution data structure.

However, histograms are sufficiently expensive that they
negate most of the advantage of the multi-resolution repre-
sentation, so our second contribution is to demonstrate that
a simple Gaussian distribution, stored as mean and standard
deviation, can significantly improve image quality at little or

no additional cost in memory or rendering time. We do so by
describing a novel approach that efficiently combines Gaus-
sian distributions with transfer functions to generate output
colors and opacities.

The remainder of this paper is organized as follows: After
a review of related work in Section 2 we present the details
of our method and the Gaussian basis transfer function in
Section 3. Experimental results are discussed in Section 4,
followed by conclusions and future work in Section 5.

2. Related Work

Since it is not always possible to interactively process
data in the original sampling resolution, level of detail
and multi-resolution techniques have been proposed by
many researchers to balance between architectural con-
straints (e.g. performance and memory) and fidelity. Multi-
resolution techniques have been employed in a variety of
visual data representation approaches including geometric
rendering [WG92, CDL∗96, LWC∗02] and volumetric data
visualization [LHJ99] especially for out-of-core applica-
tions [SCM99].

Multi-resolution volume rendering techniques generally
use spatial hierarchies to represent different levels of detail.
Often the goal is to maintain a specific frame-rate [LS02] at
the expense of image quality. The quality of the image can
then be updated when user interaction stops using techniques
such as progressive refinement [LH91, PPL∗99, RYL∗96].

Most hierarchical multi-resolution schemes use the mean
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values of the underlying function values in order to
construct the representations in different levels of de-
tail. Notable exceptions are wavelet-based multi-resolution
schemes [GLDH97, HVU98], which use better filtering
methods to improve the quality of lower levels of the multi-
resolution hierarchy. In particular, Guthe et al. [GWGS02,
GW04] use a block based wavelet compression and em-
ploy graphics hardware to handle large datasets at interactive
speed. Kraus et al. [KE01] use a topology guided downsam-
pling to preserve topology of a scalar volume field in coarse
levels of detail.

Some of the proposed multi-resolution hierarchies for vol-
ume rendering also address the underlying transfer function
being used during the rendering. Ljung et al. [LLYM04] use
a level-of-detail scheme, selecting the appropriate level of
detail during data decompression using information from the
transfer function being applied. Wittenbrink et al. [WMG98]
have shown that interpolation of the underlying function
before the application of a transfer function is of utmost
importance in order to assure the best quality. Röttger et
al. [RKE00, RE02] have since shown that the application of
a transfer function to the underlying scalar data can create
arbitrarily high frequencies, making it difficult to render the
data properly. To address this, they proposed pre-integrated
volume rendering to minimize the impact of the modulation
of the underlying signal by the transfer function.

Other related work deals with the quality and proper
sampling in the volume rendering pipeline. Mueller et
al. [MMI∗98] combine elliptical Gaussian reconstruction
kernels with a Gaussian low-pass filter to reduce the alias-
ing artifacts in volume splatting. Zwicker et al. [ZPvBG02]
extends this idea to point-based data. For a high-quality
texture-based volume rendering, Engel et al. [EKE01] avoid
additional slices by integrating non-linear transfer functions
in a pre-processing step known as pre-integrated volume ren-
dering.

However, none of these approaches has dealt explicitly
with the proper use of transfer functions nor exploited the
underlying distribution of the function values to improve im-
age quality. This paper therefore proposes a novel method
that improves the quality of multi-resolution rendering by
approximating the distribution of function values at coarse
levels of detail.

3. Rendering

Given a desired level of performance, hierarchical rendering
uses criteria such as viewing distance [WWHW97], projec-
tion area [LS02] and gaze distance [LW90] to identify the
level of detail at which the data must be rendered. At a given
level of detail, one should ideally produce the highest pos-
sible image quality for a given performance cost. To under-
stand how to do so, we consider the theoretical implications
of multi-resolution downsampling, then develop a method
that significantly reduces image artifacts.

3.1. Accurate Multi-resolution Transfer Functions

In general, hierarchical rendering decreases rendering time
by substituting a small data set downsampled from the full
data set. This tends to result in aliasing problems such as
the “jaggies" and discontinuities visible in Figure 2, caused
by the loss of detail information during construction of the
multi-resolution representation. In particular, information is
lost because the data in a subvolume is represented by the
mean of the samples in the subvolume. This mean value rep-
resents the data values well if they form smooth regions with
little variance, but data sets often display their most interest-
ing behaviour near sharp gradients for which the mean alone
is not a good summary of a subvolume. This causes drastic
problems in the resulting images because the transfer func-
tion often does not have a smooth transition between colors
and opacities for different values. More sophisticated sum-
maries of the subvolume can, however, be substituted for the
mean, and this idea forms the basis of our approach.

As an example, consider a subvolume with values
{1,1,1,1,5,5,5,5} and mean µ = 3 and suppose V (x) is a
transfer function which maps real numbers to color values.
Unless V (3), the color specified in the transfer function for
3, is near to the color produced by blending V (1) and V (5),
the summary information will misrepresent the data in the
final visual image.

For simplicity, we develop notation in one dimension:
higher dimensions are essentially identical, but with denser
notation (i.e. integration along three dimensions). Assume
that the scalar field to be visualized is f (x), and that the
sample points xi are evenly spaced: i.e. that f (xi) = f (iT )
for some sampling distance T . For convenience, we use fi to
refer to f (xi).

Typically, the transfer function V is a vector-valued func-
tion mapping input data values to output colors and opacity.
We write this transfer function as V : IR→ (R,G,B,α), where
R,G,B,α are respectively red, green, blue and opacity, and
state the rendering task in terms of visualizing V ( f (x)), of
which we only know the values V ( fi). A proper coarse vi-
sualization of this discrete dataset would involve smoothing
V ( f (x)) with a low-pass filter in order to avoid aliasing, then
sub-sampling. For level n in the multi-resolution hierarchy,
this can be written as:

Vn+1( f (y)) =
∫ ∞

−∞
Vn( f (y− x))w(x)dx (1)

where

f (x) =
∞

∑
k=−∞

f (k)h(x− k) (2)

where w is the (continuous) low-pass filter used for comput-
ing the (n+1)st level of the multi-resolution pyramid and h
is a (continuous) interpolation filter used to reconstruct the
underlying function f from its discrete representation. The
importance of Equation 2 in volume rendering has been well
documented by Wittenbrink et al. [WMG98].
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The formulation in Equation 1 is not particularly useful,
as it requires recomputing the multi-resolution pyramid af-
ter each change of the transfer function V . A more useful
formulation of Equation 1 derives from the sifting property
of the Dirac delta function δ [Bra99]:

Vn+1( f (y)) =
∫ ∞

−∞

∫ ∞

−∞
Vn(s)δ (s− f (y− x))w(x)dsdx (3)

=
∫ ∞

−∞
Vn(s)

(

∫ ∞

−∞
δ (s− f (x))w(y− x)dx

)

ds

=
∫ ∞

−∞
Vn(s)

(

∫

f−1(s)
w(y− x)dx

)

ds (4)

, where
∫

f−1(s) is the integral over the inverse image f −1(s)
of the isovalue s.

If w is a box filter with support of size N, then
∫

f−1(s) w(y−x)dx is equivalent to 1
2N

∫

f−1(s)|[y−N,y+N] dx, i.e.
the restriction of the integral to the support of the filter.

In the discrete case with a box filter, this distribution
is merely the histogram of a local neighborhood of f (y)
weighted by 1/2N: the histogram therefore also has support
of size 2N.

Regardless of the low-pass filter chosen,
∫

f−1(s) w(y −
x)dx is the weighted distribution of f in the support of the
filter w, and the discrete version is the weighted histogram of
f in the support of w. Thus, for any low-pass filter w, we can
guarantee accuracy of low-resolution images within the lim-
its of reconstruction by storing Hw(s,y) =

∫

f−1(s) w(y−x)dx
for each location y, where Hw is the weighted histogram cen-
tered at y. Note that all our histograms are local, i.e. they col-
lect statistics about the underlying function f in the neigh-
borhood of y. If we were to store these weighted histograms
at each multi-resolution node, we would then compute the
value at this node Vn+1( f (y)) in the following way:

Vn+1( f (y)) =
∫ ∞

−∞
Vn(s)Hw(s,y)ds (5)

This allows us to represent our function in a multi-
resolution pyramid with proper anti-aliasing and without
a priori knowledge of the transfer function. For multi-
dimensional transfer functions we would use a multi-
dimensional histogram, which can be derived using a multi-
dimensional delta function in Equation 1.

3.2. Discretizing the Local Histograms

While the above equations were derived on the assumption
of continuity, we normally work with discrete representa-
tions and discrete histograms. We therefore need to approx-
imate f (s) at a resolution dependent on the transfer func-
tion to assure that V ( f (s)) is sampled above the Nyquist fre-
quency. This is still an open problem: no algorithm is known
to determine such a sampling frequency accuractly. Only an
approxiamte upper bound has been determined [Kra03]. We
leave this problem open, and work with the same sampling

Figure 1: Bottom: a transfer function with the opacities
as the vertical axis (V ). Top: the computed Gaussian ba-
sis transfer function; The horizontal and vertical axes are
respectively mean (µ) and standard deviation (σ ) and each
point has been drawn with the color and opacity computed
for the related µ and σ .

as for the underlying scalar field fi. Given this, and assum-
ing that we have sampled 8-bit values ranging from 0 to 255,
we can rewrite Equation 5 as follows:

Vn+1( fi) =
255

∑
j=0

Vn( j)Hw( j, i) (6)

with

Hw( j, i) =
N

∑
k=−N

δ [ j− fi−k]wk (7)

where N is the filter support of w and δ [ ] is the discrete form
of the delta impulse function. As noted above, the second
term is simply the histogram of f weighted by the filter w.

It is important to point out that we need to low-pass filter
the signal fi for supersampling the function V ( f ) [WMG98].
However, for sub-sampling V ( f ), as is common in multi-
resolution analysis, we need to low-pass filter V .

3.3. Gaussian Histogram Approximation

In practice, storing histograms for each block in the hi-
erarchy requires a lot of storage and computation, thus
slowing down rendering and negating much of the benefit
from more accurate representation. To balance these com-
peting demands, we summarize the subvolume, not with a
weighted histogram, but with a compact approximation of
the weighted histogram function. In our particular imple-
mentation we use a Gaussian distribution as a first approxi-
mation.

We therefore store the mean (µ) and standard deviation
(σ ) for each voxel at coarse resolutions. To find the color
and opacity of a voxel with values (µ,σ), we then perform
the following integration:

Vn+1( fi) =
∫ +∞

−∞

(

1
σi
√

2π
e−(s−µi)

2/(2σ 2
i )

)

Vn(s)ds (8)

Computing this integral explicitly for each voxel is expen-
sive. But since V generally remains constant during render-
ing, we can treat the integral as a function of µ and σ and
store it in a two dimensional transfer function lookup table
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whose indices are the mean isovalue and the standard de-
viation. Each time the user changes the transfer function,
we update the lookup table, which takes a few millisec-
onds. Figure 1 shows a sample transfer function (bottom)
and the computed transfer function based on the Gaussian
basis function (top). For the top transfer function, points
have been drawn with the color and opacity computed for
the related µ and σ .

We note that the Gaussian method may fail to approximate
histogram distributions properly if they have more than one
major maximum (peak). This typically happens at the bor-
der between a sampled phenomenon and empty space in the
volume. One solution for this case would be to use more
than one Gaussian function for approximating the distribu-
tions when the error of a single Gaussian approximation is
not negligible, but we restrict ourselves to a single distri-
bution for efficiency. Although this paper does not address
this approach, we use a straight forward method to solve the
problem of the empty regions, by not considering the vox-
els in empty spaces (voxels that are always set to have zero
opacity) in calculating µ and σ .

4. Implementation and Results

Our goal in this work was to provide higher-quality volume
renderings at coarse resolutions of a multi-resolution dataset.
We identified five principal factors affecting the image qual-
ity: the type of data visualized, the simplification level of the
data, the downsampling filter chosen during simplification,
the statistical information retained at various levels of down-
sampling, and the type of transfer function chosen.

The data sets we chose as representative of different do-
mains were a synthetic dataset (sphere), a medical dataset
(Visible Human Male), and a fluid dynamics simulation
dataset (Richtmyer-Meshkov). The synthetic dataset is a
spherical distance function sampled at a resolution of 2563,
while the medical dataset is the visible human male head CT
dataset with a resolution of 512× 512× 512, and the sim-
ulation dataset is one frame (frame 250) of the Richtmyer-
Meshkov instability dataset from Lawrence Livermore Na-
tional Laboratory with a resolution of 2048×2048×1920.

Although we wanted to use the full resolution of these
datasets, the memory requirements of storing a histogram
per each voxel in the coarse resolutions, precluded full com-
parisons for data sets larger than 643. Moreover, by choosing
the coarsest levels of simplification, the characteristic visual
artifacts were more visible. We therefore chose the four lev-
els of simplification between 643 and 83.

For statistical information, we rendered our images with
full histogram in each voxel (the best statistical informa-
tion available), with the Gaussian distribution proposed in
this paper, and with the conventional mean value. We chose
three different filters (box, tent and cubic) to compare their

effects on the output. Finally, we chose two transfer func-
tions that oscillated between red, green and blue, one at high
frequency, the other at low frequency, to emphasize the ef-
fects of sample distribution in the subsampled data.

Figures 2 - 4 show some of the images that we generated,
chosen to illustrate the effects of the various choices. Fig-
ure 2 shows the effects of the Gaussian and mean distribu-
tions on the visible male head data set at full resolution (i.e.
2563). Images using the histogram were not computed due
to memory limitations, and a typical transfer function was
chosen for displaying bone and other features.

As we can see from Figure 2, the Gaussian distribution
does a better job of preserving features such as the diagonal
line across the skull and the locations and shape of the eye
sockets and mouth. And, at the coarsest level of resolution,
the mean distribution generates curious colour artifacts due
to ramps in the transfer function, while the Gaussian distri-
bution does not. This disparity between Gaussian distribu-
tion and mean value was also visible across all resolutions,
filters, transfer functions and datasets. We have omitted dis-
playing all of our images, for clarity and to conserve space.

Figure 3 shows the effects of using different downsam-
pling filters to reduce the Richtmyer-Meshkov data set from
643 down to 163 using a high frequency transfer function
which oscillates from red to green to blue. We note that the
histogram distribution gives a result that is quite close to
the 643 resolution, no matter what filter is used, although
blurring is apparent. Using mean distribution results in the
colours that are sometimes unrelated to any of the samples in
the block, leading to the artifacts shown, while the Gaussian
distribution does a better job of approximating the correct
integral values.

Similarly, Figure 4 shows the effects of different transfer
functions at the two lowest resolution levels in the spherical
data set. For a high-frequency transfer function, the correct
image is of thin concentric shells of red, green and blue. A
correct image will involve a fairly uniform mixture of red,
green and blue throughout the volume: i.e. the grey tones
visible in the histogram distribution images. However, for
the mean distribution, the effect of the multi-resolution rep-
resentation is to sample a single opacity for each sub-block,
resulting in the color artifacts visible in this figure. Again,
the Gaussian distribution, while not eliminating these arti-
facts entirely, is much more satisfactory.

In comparison, the right two columns of Figure 4 depict
the low-frequency transfer function and the obtained im-
ages show a set of thick concentric spheres of slowly vary-
ing color. Even at coarse resolutions, we expect that these
spheres will be distinguishable, and from the figure we see
that this is indeed the case. In this case, the artifacts gen-
erated by the mean distribution are less prominent, but still
visible, while the Gaussian distribution is nearly as good as
the histogram distribution.
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Resolution Histogram Gaussian/ Mean
Mean (Unpacked) (Packed)

2563 - 77.2MB 58.5MB
1283 3.6GB 9.7MB 7.3MB
643 460MB 1.3MB 920KB

Table 1: Storage requirement for each distribution.

In addition to visual comparison, we evaluated our results
analytically by computing the root mean squared error be-
tween the approximated distribution of f for each voxel and
the histogram distribution for the same voxel. This measures
the error induced in f by our approximation before applying
the transfer function. Although we plotted these errors for all
of the images we generated, the plots consistently showed
that Gaussian distributions had consistently smaller errors,
and Figure 5(a) may be taken as representative.

As Figure 5(a) shows, the error of the Gaussian distribu-
tion was consistently less than the error of the mean approxi-
mation at each level of resolution, with the error diminishing
under the Gaussian distribution as the resolution was coars-
ened further. This occurs because the downsampled vox-
els represent progressively more of the original data, with
a Gaussian distribution becoming a better fit to the data as
more samples accumulate. Although different low-pass fil-
ters affect the visual quality at coarser levels of detail (cubic
is better than linear, and linear better than box), it does not
have a major effect on the approximation errors. This is be-
cause the filters do not necessarily cause the histograms to
become closer to Gaussian distributions.

We also computed root mean square error between the im-
ages produced with histogram distribution and images pro-
duced with Gaussian and mean distributions. This gives a
measure of image error after applying transfer functions and
filters. We computed the RGBA color of each voxel using
the Gaussian approximation and mean approximation and
compared it to the color when using the full histogram dis-
tribution for that voxel, averaging the root mean squared er-
rors of red, green, blue and alpha components. A perceptual
color space such as CIE Lab might be a better basis for an
insightful comparison. Figure 5(b) and Figure 5(c) respec-
tively show the error in rendered images for different filters
and for different transfer functions.

Again, in these plots similar to the rendered figures, the
average error of rendering is consistently less for the Gaus-
sian distribution than the mean distribution. It is interesting
to note that the actual downsampling filter is less significant
than the statistical information chosen to represent the func-
tion.

4.1. Memory and storage overhead

We expected that encoding the standard deviation values for
each voxel would add around 33% (1-byte σ added to 1-
byte µ + 2-bytes gradient) overhead in terms of memory
and processing power. Surprisingly there was no significant
memory or processing overhead, presumably due to com-
piler optimization of data structures. Since voxel values (1
byte mean) and normals (2 bytes) are word aligned to 4
bytes by the compiler, adding the standard deviation (1 byte)
adds no memory overhead in practice. During volume ren-
dering, voxel color was determined by a look up to a table
indexed by discretized µ and σ . The look up table is com-
puted once at a negligible cost each time user changes the
transfer function. The result of this was that we did not no-
tice any slowdown due to our algorithm. We did consider not
packing our data structures to achieve a storage reduction
of 20%, but found that the additional overhead for runtime
word alignment offsetted this, and reverted to an unpacked
format. Table 1 shows the storage requirement to keep the
multi-resolution information for each distribution.

5. Conclusion and future work

In this paper we have developed a mathematical framework
for improving multi-resolution image quality based on trans-
fer functions applied to scalar data. Using a Gaussian basis
to approximate the data distribution at each level of detail,
rather than the commonly used mean approximation, we are
able to composite color more accurately and reduce aliasing
artifacts. Our methods allow any low-pass filter to be ap-
plied to build the multi-resolution pyramid without a-priori
knowledge of the transfer function.

In future we would like to extend our framework to visu-
alize multi-modal and time-varying datasets, and consider
the effect of an adaptive approximation scheme with dif-
ferent function bases for better approximation at different
levels of detail of different datasets. We would expect to
apply the work of Drew et al. [DWL98] with the Singular
Value Decomposition of a wavelet-compressed histogram.
We are also investigating possible ways to include gradients
and other derived information in our current transfer func-
tion scheme.
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Figure 2: Renderings of the Visible Human Male Head (2563) at different levels of details. Top row: using mean value for
approximation. Bottom row: using Gaussian function for approximation. From left to right, each image represents an additional
level of coarsening by a factor of two in each dimension.
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Figure 3: Effects of downsampling distributions with different filters on the Richtmyer-Meshkov Instability dataset.
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Figure 4: Rendering with different transfer functions on the spherical distance dataset.
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(a) Histogram Approximations Errors
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(b) Effect of Filters
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(c) Effect of Transfer Functions

Figure 5: (a) Errors of the mean and Gaussian approximations of the histogram for the three test datasets. At a certain
level of detail, for each method, the reported error is the root mean squared error of the voxels’ approximated histogram in
comparison with their actual histogram, for all voxels in that level of coarsening. Rendering errors of the mean and Gaussian
approximations ( f ) of the histogram on (b) the Richtmyer-Meshkov Instability dataset using different filters and (c) the spherical
distance dataset using a high-frequency and low-frequency transfer function (V ).
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