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Abstract—We review schemes for dividing cubic cells into Sec. VI and for Projected Tetrahedra [2] in Sec. VII, and dis-

simplices (tetrahedra) for interpolating from sampled data to R®,  cuss the implications in terms of sampling theory in Secl.VII
present visual and geometric artifacts generated in isosfiaces Finally, we present our conclusions in Sec. IX
and volume renderings, and discuss how these artifacts reia to ' T

the lter kernels corresponding to the subdivision schemes Il. PREVIOUS WORK

sulpfceexs ?rzgqsc_o rﬁolurls 'r;tir?g:tig“hg-rle-ig Qﬁg;ox:n;?g)go?f Previous analysis of simplicial subdivision of cubic c¢fi§
umetric Representatioﬁ, I.6.9.gg Visuglization tec’hnique and [9], [10] focusses on_the numl_)er of triangles generated, [10]
methodologies, 1.6.9.h Volume visualization and on the topological consistency [8], [10] and correct-
ness [10] of the isosurfaces.
The simplicial subdivision most often used is the minimal
. INTRODUCTION subdivision (Sec. IV-B) of 5 tetrahedra per cube [2], [5],
CIENTIFIC applications often generate data on reguld®l, [9], [10], [11], [12]. Also reported [8], [10], [11], [B],
rectilinear grids in three dimensions. The sampled valugs4], [15] is the Freudenthal subdivision (Sec. IV-C) of 6
are extended to the entire space by some type of interpdietrahedra. We have also experimented with the body-agntre
tion, and the interpolated functioh visualized, often with cubic lattice (Sec. IV-E) of 12 tetrahedra. BloomenthalySg
isosurfaces [1] or volume rendering [2]. Isosurfaced adre a different subdivision (Sec. IV-D) of 12 tetrahedra. Altedr
geometric surfaces of the forim 1(h) for anisovalueh, while & Craw s [8] extend this to 14, 16, 18, 20, 22 & 24 tetrahedra.
volume rendering mapis to opacity and emissive values therBased on the desiderata reported here, we prefer the 24-fold
computes the amount of light that reaches an image planesubdivision (Sec. IV-F), as do others [8], [13], [16], [1A.
Interpolation often uses a trilinear interpolant, which i48-fold subdivision (Sec. IV-G) is also reported in [15]8]1
relatively complex and costly [3], so many researchers use
tetrahedral approximations. Each cubic cell is divided sev- Il. DESIDERATA FOR SIMPLICIAL SUBDIVISION
eral tetrahedra, and barycentric interpolation appliegaoh  There are several competing goals when subdividing cubic
tetrahedron. For volume rendering, Projected Tetraheglfa Fells which mean that no subdivision is best under all circum
requires input in the form of a simplicial mesh, often ackityv Stances, so we simply state these goals as desiderata.
by simplicial subdivision of cubic cells. We assume that the data has been sampled on a cubic
Tetrahedra have several advantages. They can be genergltifiin three dimensions, although our analysis also applie
in advance or at run-time. Tetrahedral isosurfaces havedscat0 curvilinear and irregular grids. We assume that the de-
compared with 15 for Marching Cubes [1], or 38 for trilineapited interpolation functiorf (p) is the trilinear interpolant
interpolation [3]. Barycentric interpolation on tetrahadis OVer the cube unless stated otherwise. We subdivide each
monotonic: critical points are at vertices of the mesh, makUbe, replacing the grid with a tetrahedral mesh and perform
ing topological analysis easier. And some techniques requiarycentric interpolation over each tetrahedron, sulisiy a
tetrahedra [2], [4], [5], [6], [7]. new piecewise—_linear interpqlgti_dﬁ(p) for f (p). _
These advantages do not come without a price. Subdivision/Ve assess different subdivision schemes according to how
increases mesh size by a factor of 5 or more, and polygoN4!! €ach achieves the following desiderata:
output by a factor of 2 or more, compared with Marching i) Parsimonious: the subdivision should add as few data

Cubes [1]. Additionally, the barycentric interpolationegonot points_ as possible.
match the assumed trilinear interpolation function, cagsi i) Contained:F(p) should depend only on sample values
unpleasant geometric and visual artifacts when rendering. thatf (p) depends on: for trilinealr, only on the sample

In this paper, we illustrate isosurface and volume rengerin _ values at the vertices of the cube containmg
artifacts which should be considered when deciding when ofi) Symmetric: the subdivision should be symmetric under

how to apply simplicial subdivision for particular tasks. ~ rotations and re ections of the cube. o
We review previous work in Sec. II, present desideratalv) Minimal: the subdivision should use as few simplices as
for simplicial subdivisions in Sec. Ill, and describe start possible, to reduce the cost of subsequent processing.

3-D subdivisions in Sec. IV. We then consider the numerical V) Implicit: the subdivision should not require explicit
accuracy of the subdivisions in Sec. V, show characteristic ~ creation and storage of tetrahedral elements.

geometric, topological and visual artifacts for isosuefain Vi) Continuous:F should be continuous, to prevent cracks
or holes in generated isosurfaces.

Hamish Carr was at the University of British Columbia, anchisv with vii) Exact: the subdivision should minimize numerical, ge-
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Torsten Moller is at Simon Fraser University. ometric, topological, visual and sampling differences
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(a) Minimal (5) I (b) Freudenthal (6)

b

(c) Face-Divided (12a) (d) Face-Divided (12b

(e) BCC (12 average) (f) Face-Centred (24) (g) Edge-Centred (48)

Fig. 1. The Subdivisions

Subdivision || Contained| Symmetric | Parsimonious| Minimal | Implicit | Continuous| Exact
Minimal (5) yes no yes yes yes possible no
Freudenthal (6) yes no yes no yes possible no
Face-Divided (12) yes no no no possible | possible no
BCC (12 average) no yes no no yes yes no
Face-Centered (24 yes yes no no yes yes no
Edge-Divided (48) yes yes no no yes yes no
TABLE |

TABLE OF SUBDIVISIONS. “POSSIBLE’ IMPLIES A DESIDERATUM THAT CAN BE SATISFIED BY A SUITABLE CHOCE OF ADDED VERTICES OR EDGES

IV. 3-D SUBDIVISIONS
Having stated desiderata, we now describe each of

subdivisions in Fig. 1, give a taxonomy and test each one

against the desiderata, summarizing our results in Table |

A. Taxonomy of Subdivisions

Tetrahedral subdivisions are constructed using only the v

tices of the mesh, or by adding additional vertices. Addio

B. The 5-fold Minimal Subdivision

the
The most popular simplicial subdivision [2], [5], [8], [9],

[10], [11], [12] is the minimal subdivision shown in Fig. }(a

To obtain it, four vertices of the same parity are cut from the
cube along the plane de ned by their neighbouring vertices.
Each cut reduces the number of vertices remaining by 1. After
?our such cuts, a regular tetrahedron is left over.

vertices can belong to an edge, a face or the body of the cellMinimality is assured because each tetrahedron shares at
In practice, body vertices are added rst, followed by facleast one triangular face with another tetrahedron. Thash e

and edge vertices, since this disturbs symmetry the leabt

minimizes the resulting number of simplices. This resufis i

the following taxonomy:

1) Subdivisions with no additional vertices:
a) Minimal (5-fold) - Sec. IV-B
b) Freudenthal (6-fold) - Sec. IV-C

2) Subdivisions with body vertex added:
a) Face-Divided (12-fold) - Sec. IV-D
b) Body Centered Cubic (BCC) - Sec. IV-E

3) Subdivisions with body and face vertices added:
a) Face-Centered (24-fold) - Sec. IV-F
b) 14-, 16-, 18-, 20- and 22-fold: see Sec. IV-F

&t removes at most one vertex from the cube and 4 cuts are
required to reduce the original 8 vertices to 4 vertices. livhe
the rst vertex is removed, its neighbours become degree fou
and cannot themselves be “cut off”. As a result, all vertices
removed must have the same parity, and only two ways exist
to divide the cube into ve tetrahedra.

This subdivision is contained, parsimonious, minimal, and
implicit, but not symmetric, because the cut corners and the
neighbours are treated differently, and because the dentra
tetrahedron is a different shape from the others.

For continuity, note that opposite faces are divided by
opposing diagonals. As shown in [2], [10], [11], [16], the
two possible 5-fold subdivisions must alternateHf is to

4) Subdivisions with body, face and edge vertices addedse continuous. This is possible in regular meshes but not for

a) Edge-Divided (48-fold) - Sec. IV-G

curvilinear meshes such as a torus of odd circumference.



} . (i) (xisyi;z) (1)
C. The Freudenthal (6-fold) Subdivision 1 (333 06
This subdivision is older than the minimal subdivision, 2 (4,4,3) 06 3 a2
and is used for numerical computation [13], [14], [15] and 3  (5;3;3) 06 f(xy;z)= e 27
rendering [8], [10], [11]. The vertices on a major diagonfl o 4 (643 06 i=1
. . (7;3;3) 0:6
the cube are each connected to all vertices of the cube. Thlé (843 06
gives 6 tetrahedra packed around the major diagonal as shown (9; 3 3) 0:6 d? = (x xi)%+(y yi)?+(z z)?

in Fig. 1(b). Three of these tetrahedra are mirror images o8 (8;8;5) 24
the other three, and are not isomorphic without re ection. 9 (9:539) 15
This subdivision is contained, parsimonious, implicitdanrig. 2. A Small Analytical Dataset De ned As A Sum Of Gaussian
only slightly less minimal than the minimal 5-fold subdiais.
Provided that face diagonals are consistent between adjace
cubes, this subdivision will be continuous. This is achieve™ Face-Centered 24-fold Subdivision

most simply by using the same major diagonal in each cube,The face-divided subdivision (see Fig. 1(f)) can be divided
or by alternating diagonals in adjacent cubes, as in Fig). 1(y adding some or all of the face centers [8], [13], [16],
This choice of one of four major diagonals prevents symmetfy7], [18], giving subdivisions with 14, 16, 18, 20, 22 or 24
and imposes a strong directional bias on this subdivision. tetrahedra, respectively. The 24 tetrahedra subdivisioratso
Other subdivisions into 6 tetrahedra exist [8], but thege ape obtained by dividing each of the 24 simplices in the BCC
even less symmetric, use non-isomorphic tetrahedra, and gihdivision (Fig. 1(e)) along the plane of the cube's face.
not guarantee continuity. Since these subdivisions amdyrar This subdivision is contained, symmetric, implicit, and
used, we will not consider them further. continuous. It is not parsimonious, because it requires an
- L average of 4 interpolated data points per voxel. Nor is it
D. Face-Divided 12-fold Subdivision minimal, because it has nearly ve times as many simplices
This subdivision is constructed from pyramids whose basgs the minimal subdivision.
are the faces of the cube [8], [9]. Each face center is joinedwe had previously claimed [19] that this subdivision could
to the body center, giving 6 square pyramids. Each of thesenis made exact by selecting the face and body saddles as the
divided into two tetrahedra by an arbitrary face diagonak(s additional points that de ne the tetrahedra. This claim was
Figs. 1(c) and 1(d)). Not all vertices are treated equally, $ased on work by Natarajan [20], which assumed a maximum
this subdivision is not symmetrical. Moreover, there are twof one body saddle. As Nielson [3] shows, however, two
possible diagonals per face, giving 64 possible con gorati  body saddles are possible in a single cube. Thus, the 24-fold

In practice, continuity is assured by using the same sufubdivision cannot be made topologically correct, as it dtas
division in each cube, in which case opposing faces mugbst one body point added.
have matching diagonals, and only two unigue cases remain.
!n the .rst case (Fig. 1(c)), a main diagonal is picked ang Edge-Divided 48-fold Subdivision
its vertices connected to the body center and to diagonally L . )
adjacent vertices. It is easy to see that this is merely adurt | "€ 24-fold subdivision can be further subdivided by adding
subdivision of the Ereudenthal subdivision edge vertices to obtain a 48-fold subdivision [15], [18],ims

It is also possible to have two vertices on a main diagongid- 1(9), or by dividing the original cube into 8 sub-cubes,
which belong to no face diagonals (Fig. 1(d)). Because A3en applying Freudenthal subdivision to the sub-cubemsh
such vertices exist in the Freudenthal subdivision, thisiga "9 the main diagonals that coincide with the main diagonals

of the face-divided subdivision cannot be obtained by wrthOf the original cube. Since barycentric interpolation ieehr,
dividing the Freudenthal subdivision. it is not dif cult to prove that this subdivision generatdset

Neither of these two cases is symmetric, parsimonioi@MeF as the Face-Centred (24-fold) subdivision.
minimal, or exact, and care is required to ensure that the This subdivision is contained, symmetric, implicit, ancheo

subdivision is implicit and continuous. tinuous, but neither parsimonious nor minimal, as it reggiir
8 times the original number of vertices, and nearly 10 times
E. The Body Centered Cubic Subdivision the minimal number of simplices.
This subdivision, suggested to us by Herbert Edelsbrunner,
is based on a body-centered cubic (BCC) lattice. A vertex is V. NUMERICAL RESULTS

added to the center of each cell, connected to the vertices offo compare the different subdivision schemes quantitigive
the cell and to the center of each adjacent cell. This geeeratve performed several computational experiments on thelsmal
24 tetrahedra each shared between two cells. On averagete function shown in Fig. 2. This function is a sum of
tetrahedra per cube are generated. Gaussian distributions, with most of the peaks aligned in a
We show this subdivision in Fig. 1(e): unlike other subdizigzag along the sampling grid. Although at or beyond the
visions, it is not possible to show a single cube divided intdyquist limit for resolution, this dataset neatly illusia the
tetrahedra. Instead, we show the 24 tetrahedra that iotersgorst-case behaviour of simplicial subdivisions.
a given cube. Although the BCC subdivision is strongly The atom9 dataset ts into a cube of siid8 13 13
symmetric, implicit and continuous, it is not parsimonidits We took samples at spacings bf= 2° down to2 5, then
adds extra vertices), minimal, contained, or exact. evaluated the maximum absolute error and maximum relative
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Fig. 3.  Numerical Errors From Simplicial Subdivision. Thegraphs show the numerical error between the analyticah fofr the atom9 dataset and the
interpolated form induced by the various subdivisions felested cubic cells in the data. Subdivisions with vertieglsled were tested twice: once by
interpolation from the previously sampled values, oncerkex mid) by sampling the analytical form at the added vestic

error by comparing the analytically correct function witmumerical behaviour of the induced interpolant. In thesgdh
the interpolated function induced by each subdivision gisirare some common features:

MATLAB's constrained minimization functiofimincon

We did this for each type of cubic subdivision, plus trilin-
ear interpolation. For the 5-fold and 6-fold, which are non-
symmetric, we used subdivisions in each of two orientations o
For the 12-fold, BCC, and 24-fold, which need additionakdat
points and are thus not parsimonious, we tested subdigsion
that interpolated this new data from the lattice vertices] a  g3)

those that obtained the true data by function evaluation.

After studying these results, we chose to focus on absolutes)
error, since large absolute errors produced more notieeabl
artifacts. We therefore selected a number of cubes with-abso
lute errors greater thah0 2, and ran experiments to compute

maxima for different subdivisions and different scales.

Finally, from these experiments, we chose 40 points that
had realized the maximum errors in their respective cubes. W

tracked these points using different subdivisions anceckffit

lattice cube sizes. We plotted the absolute error of theltsesu

on logarithmic scales, using logarithms base 2.

We show some sample graphs in Fig. 3: we note that these

1) A smaller lattice reduced the error roughly in proportion

to the length of the cube side. (Unfortunately, it blows
up the size proportionally td=side>.)

For test points near a maximum, we observed a large
increase in accuracy with the rst steps of re nement,
with accuracy tapering off with further re nement.

The maximum error for trilinear interpolation is similar
to the simpler, simplex-based interpolation schemes.
As can be seen from the clumping of the error plots,
the numerical error under the various subdivisions does
not vary signi cantly. Moreover, it was not uncommon
for the asymmetric subdivisions (5-fold, and 6-fold)
to have both the best and the worst errors. It follows
that geometric (numerical) error is a poor test of the
topological artifacts which we will see in Sec. VI
and Sec. VII. This is particularly worrisome, as many
hierarchical decomposition schemes, such as [18] rely
on measuring numerical (geometric) error to determine
which simplices to remove.

are not exhaustive, but are best viewed as representatthe of 5) Using the real midpoints sampled from the function



generally reduces the error of the 12-fold, 24-fold, and For the 24- and 48- fold subdivisions in Fig. 4(l) and
BCC subdivisions. The reduction is comparable to th&ig. 4(m), we see identical isosurfaces, as predicted ol
achieved by halving the cube size, when the midpoint®t entirely smooth, these surfaces do not have visiblecdire
are interpolated. tional biases. For applications where directional biasesilsl

be avoided, the 24- fold subdivision is clearly to be prefdrr

VI. | SOSURFACEARTIFACTS Since the features in this dataset are at or beyond the

In addition to numerical tests, we illustrate characteristnyquist limit, we might expect the artifacts to be purelydoc
visual artifacts from simplicial subdivisions using ator&®t in character and of no particular signi cance in larger data
dataset and the UNC head. Fig. 4 shows isosurface artifagé§s. Unfortunately, this is not true: these artifacts Hesi
for the various subdivisions compared to a ray-tracing ef thhemselves on the larger scale txture that is to say, a
ideal isosurface (Fig. 4(a)), a ray-tracing of an isoswgfasing  consistent pattern across a large area of the surface.
the trilinear interpolant (Fig. 4(b)), and the surfacesgated To illustrate this, we show some isosurfaces from the UNC

by Marching Cubes (Fig. 4()). Qead data set in Fig. 6 in medium zoom, where the artifacts

As predicted, if we use the minimal subdivision without ‘ ¢ Using th inimal subdivisi thout
parity rule, we get visible cracks in the surfaces in Fig.).4(calre most apparent. 1sing the minimarl subdivision without a

. : : ‘ i le results in small cracks below the eye and along
But if we apply a parity rule, we get either Fig. 4(d) Orparlty_ru P .
Fig. 4(e). Note how different the topologies of the surfacége bridge of the nose in Fig. 6(c). As before, the parity sule

in these two images are. This means that the topology of tWeFig' 6(?) an?] Fti)g..dG(e)fprr]event cra(;kz,.ﬁbut give dgfgrent
surfaces generated is effectively dependent on a coin-toss textures along the bridge of the nose and different topem

If we move to the Freudenthal subdivisions, Fig. 4(f) an e eye socket. With the Freudenthal subdivision, we seagtr

Fig. 4(g) show that the topology is dependent on the choi gectional biases in Fig. 6(f) and Fig. 6(g). As expected,

of major diagonal and that pronounced directional biases aE € faqe-divi.ded subdivisions show diagonal bias in Fidy) 6(
visible, aligned with the major diagonal chosen. and Fig. 6(i), although less strongly than the Freudenthal

For all its symmetry and theoretical advantages, the bo ubdivision. For this particular image, the BCC, 24- and 48-

centred cubic subdivision in Fig. 4(j) produces even wor: 8Id subdivisions all perform acceptably.

artifacts, seen in close-up in Fig. 4(k). We call these act§  These artifacts emphasize high frequencies inherent to em-
“girders”: spurious connections between surfaces thamfompirical data, and it is worth asking whether they also oceour i
through the faces of cubes. To explain how this happens, @igulation data. Since this data is often smoother, we expec
show in Fig. 5(b) a similar 2-D simplicial subdivision of asee fewer artifacts, and Fig. 7 demonstrates that this céimebe
square cell. This subdivision is obtained by adding a veatex case. In this case, we rendered isosurfaces for the fuedetata
the center of each cell. The central vertex is then connectidce the dataset is highly symmetric, we would expect the
to all four vertices of that square cell, and all 4 neighbogri impact of asymmetric subdivisions to be reduced. Yet, as we
central vertices. The edges between vertices of each sgelresee from this gure, the directional biases result once more
are suppressed. As with the 3-D BCC subdivision, girdenmfororiented topological connections. Even though the iseses
when we use this subdivision to interpolate function valuesare relatively smooth, oriented differences are still biis;

To show how the girders are formed, consider the zerparticularly for the Freudenthal subdivision in Fig. 7(e)da
valued vertices in the second and third rows of Fig. 5(ayig. 7(f). And, although girders are not apparent for the BCC
Intuitively, we expect these vertices to be connected:ithate subdivision in Fig. 7(i), a related artifact appears in thenf
expect that no contour exists that separates them. Theailinof pyramidal pits whose boundaries are de ned by the girders
interpolation function satis es this intuitive expectati a these pits can also appear in the form of pyramidal peaks.

sample contour at the isovalue 0.20 is shown. _ These images support the observation that cheap subdi-
For the pseudo-BCC subdivision, the contour at isovalygsions come at the expense of topological and geometric
0.20 is shown in Fig. 5(c). Note that the lower row of celbitacts that are not well-predicted numerically, whilgler-

centers all have the value 0.25, so they separate the zejgs|ity subdivisions require increasingly large numbefs o
in the second and third rows of vertices: a sample contour@t;ahedra and therefore of rendered triangles.

0.20 is again shown. This contour “encloses” the edge betwee . . .
the cell centers. It is not dif cult to see that the two pagdll In Table I, we consider the output (rendering) cost in terms

girders shown in Fig. 4(k) are caused by the contour enctjpsiﬂf numbers of trlgn_gles generated for a sample |sosurfaxmg N
the edge between cell centers in the same way that even the minimal scheme generates more than twice as

This girder effect is not restricted to interpolation by sim™anY triangles as Marching Cubes. And using the face-cetntre
plicial subdivision, it has also been observed in data Sammsubdlwsmn to avoid visual artifacts comes at the cost vése

on a BCC grid [21], and is a major disadvantage of usinf§nes s many triangles.

barycentric interpolation over BCC grids. Of course, some of this cost can be reduced by using a
Since the face-divided subdivision schemes depend ommadi ed version of Marching Cubes that corresponds to the

major diagonal of the cube, we expect to see directionakkiasopology of the particular subdivision: the set of casestlier

similar to those for the Freudenthal subdivision. These afeeudenthal subdivision, for example, can be found in [21].

apparent in Fig. 4(h) and Fig. 4(i). Although the surfacadowever, for subdivisions with additional vertices, susttlze

generated are more rounded, they are not much smootherface-centred subdivision, these cases become quite cemple



(a) Isosurface at f=0.12 (b) Trilinear (c) Minimal - No Parity (d) Minimal - Even (e) Minimal - Odd

.

() Body-Centred Cubic (k) BCC Close-up () Face-Centred (24) (m) Edge-Divided (48) (n) Marching Cubes

Fig. 4. Artifacts In The Atom9 Dataset At = 0:12

o o 0 0 o

(a) 0.20 Contour (Bilinear) (b) The “pseudo-BCC” Subdivision) (c) 0.20 Contour (BCC)

Fig. 5. “Pseudo-BCC” Subdivision In 2-D, lllustrating “@ier” Formation

VII. DIRECTVOLUME RENDERING ARTIFACTS in each subdivision is a constant multiple of the number of
cubes, we did not measure the memory footprint.

Visual artifacts are also visible in volume renderings gene It is not a surprise that the artifacts from Fig. 4 are
ated using Projected Tetrahedra [2]. Fig. 8 shows imageseof still visible, complete with parity differences in the mimal
atom9 dataset using a simple step transfer function. We usetbdivision (Fig. 8(b) and Fig. 8(c)). Moreover, the discon
1-D textures for accurate calculation of the exponentiahtsn  tinuity of the function when using 5 simplices without a
the rendering integral [6], but did not optimize for speed][2 parity rule causes the unpleasant artifacts visible in B{g).
[23], [24] because we were solely concerned with imagehe expected axial biases can be seen in Fig. 8(d) through
quality. We also did not apply perspective correction [2i8; Fig. 8(g), while girders are visible for the BCC subdivision
cause we used orthogonal projection. Since we were workik@. 8(h). For clarity, this last image is also shown in Fi§) 8
with regular cubic meshes, we did not explicitly constrine t with an increased extinction coef cient to make the girders
tetrahedral mesh, instead rendering the cells in backetotf more apparent. Lastly, both the 24 and 48 simplex versions in
order, one cube at a time. Since the number of tetrahedra ubégl 8(j) and Fig. 8(k) give reasonable results.
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(a) Full Isosurface (b) Marching Cubes (c) Minimal (None) (d) Minimal (Even)
(e) Minimal (Odd) (f) Freudenthal A (g) Freudenthal B (h) Face-Divided A
(i) Face-Divided B () BCC (k) Face-Centred () Edge-Centred

Fig. 6. Closeup of Nose of UNC Head. Visual artifacts of siicipl subdivision are visible here in the form of surfacetteg.

f/l%?ﬁmr?g Cubes Jggg%gz Rit.'g the upper left in F_ig. 9(b) but to the Iower_ right in I_:ig._9(c).
Minimal (5), No Parity 2452378 2.381 In Fig. 9(d) and Fig. 9(e), the expected diagonal bias is seen
Minimal (5), Even Parity 2,453,046| 2.382 in the boundary of the central (larger) peak, in a faintly
Minimal (5), Odd Parity 2,452,370 2.381 visible diagonal fuzziness, and in diagonal protrusionghim
Freudenthal (6), Axis 000 - 111} 3,011,206| 2.924 smaller peaks. Fig. 9(f) and Fig. 9(g) also show boundary
Freudenthal (6), Axis 001 - 110| 3,003,346 2916 problems, diagonal smearing and apparent directionakbias
Eggg:g:x:ggg 8%@ iggg:ggg 2:282 ?n the _smaller. peak_s. While the !BCC su.bdivision shows no
Body Centred Cubic (BCC) (12)) 5,980,476| 5.807 immediate artifacts in Fig. 9(h), girder artifacts show gpaa
Face-Centred (24) 7,250,428 7.040 pale grid elsewhere in the data with the same transfer foncti
Edge-Divided (48) 11,855,532| 11.511 (Fig. 9()). And nally, as expected, face-centred and edge-
TABLE || centred subdivisions show few and manageable artifacts.
NUMBER OF TRIANGLES GENERATED FOR | SOSURFACESOF THE UNC Interestingly, the isosurface artifacts are worse for theie-
HEAD USING EACH SUBDIVISION. ical UNC head data set, but the volume rendering artifaes ar

worse for the simulated fuel data set. For example, theaatsf
other than topological variations in Fig. 7 are less obvitnas
those in Fig. 6. And the artifacts in Fig. 9 are more obvious
For larger datasets, volume-rendered artifacts are lessipr than those visible in a volume rendering of the UNC head
nent than for isosurfaces. In Fig. 9, we show volume-rerdierdataset (omitted due to space constraints). Since emipirica
images of the fuel data set. The no-parity minimal subdivisi data tends to have a lot of high-frequency information and
shows diagonal discontinuities in Fig. 9(a). These disoont noise, techniques such as isosurfaces which emphasize high
ities do not appear in the parity-based minimal subdivisjorfrequency information can reasonably be expected to show
but the small peak at lower left has a protusion that poimstsworse high-frequency artifacts. However, the noise applie



(a) Marching Cubes (b) Minimal (None) (c) Minimal (Even) (d) Minimal (Odd)

(e) Freudenthal A (f) Freudenthal B (g) Face-Divided A (h) Face-Divided B

(i) BCC () Face-Centred (k) Edge-Centred

Fig. 7. Isosurface Artifacts in Fuel Dataset. Subdivisietifacts include surface texture, directional bias, shiagtures and topological variations.

an implicit smoothing pass to volume rendering. In contrash the frequency domain. This is equivalent to convolution
simulation data tends to have less high-frequency infaonat with the Sinc functionginc(x) = (sin x )= x) in the spatial
and is less vulnerable to isosurface artifacts, but volung®main. Hence the 3D Sinc function shown in Fig. 10(K) is
rendering artifacts are not smoothed by the effects of noiseyenerally considered to be the ideal reconstruction kefpé]
However, Sinc interpolation is expensive to compute, since
VIII. SAMPLING THEORY AND SUBDIVISIONS it is an IR lter (in nite impulse response), and requirelset

In addition to considering numerical, topological and geentire sampled dataset to be processed to compute a single
ometric artifacts, we also compared the interpolating &krn interpolated value. As a result, many approximations to the
induced by the subdivisions with the interpolating kernefls Sinc interpolation have been suggested [27], [28].
the trilinear interpolant and the ideal (sinc) Iter. We dtay Applyinganm m m lter at a point costsO(m?). For
brie y reviewing the standard sampling theory assumptionstrilinear interpolationm = 2 and the cost is acceptable. For

Usually, noa priori information is present for the (con-higher-order (i.e. larger) Itersm increases and the cost is
tinuous) underlying function that is sampled. It is insteadnacceptable. Trilinear lItering is also attractive topgically
assumed that the function is band-limited. Since the fonctias it satis es the intuitive expectation of connectedness i
is given on a regular rectangular grid, the aliased spegtiiad Sec. IV-E, guarantees that maxima and minima occur at grid
frequency domain are also replicated on a regular grid. Thertices, and has a closed form for saddle points [3].
frequency support of the function is thgn =T 4; =T ] Figs. 10 and 11 show the interpolating kernels for each
[ =Ty; =Tyl [ =T, =T.], whereTy, Ty, andT, are the subdivision in both spatial and frequency domains. These
sampling distance iR, y, andz direction [26]. This frequency kernels were computed by setting the central vertex in a
=T is known as theNyquistlimit. 3 3 3array of samples td:0 and all other vertices t0,

In order to reconstruct a continuous function from thesgpplying the simplicial subdivision to the neighbouringes,
sampled values, we would have to multiply with a box functioand sampling the interpolated value2i6 256 256 For



(a) Minimal (None) (b) Minimal (Even) (c) Minimal (Odd)

(d) Freudenthal A (e) Freudenthal B (f) Face-Divided A (g) Face-Divided B

(h) BCC (i) BCC (increased opacity) () Face-Centred (k) Edge-Centred

Fig. 8. Direct Volume Renderings of Atom9 Dataset Using &tgd Tetrahedra

comparison, we also show the trilinear lter (j), the idesinc) still exists. In the frequency domain, this causes eloogati
Iter (k) and the nearest neighbour lter (I). along the axis shown in Fig. 11(f).

In Figs. 10(a) and 10(b), we show the minimal subdivision For the BCC subdivision, we see in Fig. 10(g) that the
in both versions: normal and reverse parity, corresponthnggirders in the rendered images match the similar thin strest
the two different no-parity rules possible. It is not possib in the interpolating kernel. Moreover, Fig. 11(g) shows hut t
to compute interpolating kernels for the even and odd paritiye kernel in the frequency domain is far from ideal.
subdivisions, since a interpolating kernel must be unifgrm Finally, in Figures 10(h), 10(i),11(h) and 11(i), we seettha
applied throughout the space and these subdivisions véing face- and edge- centred subdivisions have kernels that a
throughout the space. We can see, however, that the tw@sonably compact and well-distributed but not ideal.
no-parity rules apply directional biases to the data and, inWe also note that all of the subdivisions show visible ngers
Figs. 11(a) and 11(b), signi cant side-lobes exist where wafretching out in the frequency domain along the orthogonal
would prefer a compact kernel. and diagonal axes. One would expect these to result in high-

In Figs. 10(c) and 10(d), we again show the FreudentHag¢quency noise or artifacts in the images. If we consider
subdivision with two different dominant axes. In this subFig. 4, we see that the surfaces have sharp protruding crner
division the kernel aligns with the major axis in the spatiailong the orthogonal and diagonal axes, as expected. These
domain, and is attened in the frequency domain along therotrusions are precisely what cause the texturing effisdile
corresponding major axis, shown in Figs. 11(c) and 11(d). in Fig. 6 and Fig. 7, and we believe they represent the ngers

Similarly, the rst face-divided subdivision shown inin the interpolating kernel. Again, these sharp protrusiare
Figs. 10(e) and 11(e) displays the same axial bias to a lesset limited to isosurfacing, but are an intrinsic part of the
extent. This bias is unsurprising because this subdivisionerpolating kernel and can be seen, albeit faintly, in. Big
is itself a subdivision of the Freudenthal subdivision.c&in
accurately interpolated vertices are added and more sig®li IX. CONCLUSION
used, the error is predictably less. We have reviewed the various simplicial subdivisions pro-

Fig. 10(f) and Fig. 11(f) show the interpolating kernel foposed for 3-D applications, and examined the geometric ar-
the alternate face-divided subdivision from Sec. IV-D. éjertifacts that result from each. We have also considered the
the major diagonal is no longer explicitly visible since §t i sampling artifacts in the Fourier domain for each of these
perpendicular to the simplices used. Accordingly, the &ernsubdivisions. None of the subdivisions is entirely satisfay:
is attened with respect to the major diagonal, but the biasome care is called for when selecting one for use.
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(a) Minimal (None) (b) Minimal (Even) (c) Minimal (Odd)

(d) Freudenthal A (e) Freudenthal B (f) Face-Divided A (g) Face-Divided B

(h) BCC (i) More BCC Artifacts () Face-Centred (k) Edge-Centred

Fig. 9. Closeups of Projected Tetrahedra Volume Renderedjés for the Fuel Dataset.

Unsurprisingly, there appears to be a trade-off between sizill generate fewer triangles, require fewer interpolgtethts,
(as measured by parsimony and minimality) and accuraapd give a topologically correct surface.
(as measured by symmetry, consistence and exactness). F&@ur analysis of tetrahedral subdivisions took place in the
applications where visual artifacts are not a concern,eeithcontext of regularly sampled grids. Although most of the
the minimal (5-fold) or Freudenthal (6-fold) subdivisiocan analysis also applies to curvilinear grids, or irregulaidgr
be used. For isosurface rendering and segmentation, eithsing hexahedra, additional work is possible in these realm
simplicial subdivision should be avoided entirely, or csibefor example, although simpler, it would be useful to extend
should be subdivided into at least 24 tetrahedra. For ttee analysis to prisms in irregular grids. It might also befpr
Projected Tetrahedra method of volume rendering, largéescitable to construct a more rigorous taxonomy of all possible
texture is small enough that any subdivision may be used, etrahedral subdivisions, similar to that in [8].
directional biases may still appear.

We know of no reason to use a 48-fold subdivision except ACKNOWLEDGMENTS
for hierarchical applications [18]. Instead of interpolgt ~ This work has been supported by NSERC through a post-
additional vertices for this subdivision, additional saesp 9raduate fellowship and a research grant, by IRIS through a
should be taken (which is, in effect, what Zhou, Chen gesearch grant, and by NSF grants 9988742 and 0076984, and
Kaufman do). But if we increase the input size by a factdty the University of British Columbia, where the rst author
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