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Artifacts Caused By Simplicial Subdivision
Hamish Carr, Torsten Möller, and Jack Snoeyink

Abstract— We review schemes for dividing cubic cells into
simplices (tetrahedra) for interpolating from sampled data to IR3,
present visual and geometric artifacts generated in isosurfaces
and volume renderings, and discuss how these artifacts relate to
the filter kernels corresponding to the subdivision schemes.

Index Terms— G.1.1 Interpolation, G.1.2.a Approximation of
surfaces and contours, I.4 Image Representation, I.4.10.e Vol-
umetric Representation, I.6.9.g Visualization techniques and
methodologies, I.6.9.h Volume visualization

I. INTRODUCTION

S
CIENTIFIC applications often generate data on regular

rectilinear grids in three dimensions. The sampled values

are extended to the entire space by some type of interpola-

tion, and the interpolated function f visualized, often with

isosurfaces [1] or volume rendering [2]. Isosurfaces of f are

geometric surfaces of the form f−1(h) for an isovalue h, while

volume rendering maps f to opacity and emissive values then

computes the amount of light that reaches an image plane.

Interpolation often uses a trilinear interpolant, which is

relatively complex and costly [3], so many researchers use

tetrahedral approximations. Each cubic cell is divided into sev-

eral tetrahedra, and barycentric interpolation applied to each

tetrahedron. For volume rendering, Projected Tetrahedra [2]

requires input in the form of a simplicial mesh, often achieved

by simplicial subdivision of cubic cells.

Tetrahedra have several advantages. They can be generated

in advance or at run-time. Tetrahedral isosurfaces have 3 cases,

compared with 15 for Marching Cubes [1], or 38 for trilinear

interpolation [3]. Barycentric interpolation on tetrahedra is

monotonic: critical points are at vertices of the mesh, mak-

ing topological analysis easier. And some techniques require

tetrahedra [2], [4], [5], [6], [7].

These advantages do not come without a price. Subdivision

increases mesh size by a factor of 5 or more, and polygonal

output by a factor of 2 or more, compared with Marching

Cubes [1]. Additionally, the barycentric interpolation does not

match the assumed trilinear interpolation function, causing

unpleasant geometric and visual artifacts when rendering.

In this paper, we illustrate isosurface and volume rendering

artifacts which should be considered when deciding when or

how to apply simplicial subdivision for particular tasks.

We review previous work in Sec. II, present desiderata

for simplicial subdivisions in Sec. III, and describe standard

3-D subdivisions in Sec. IV. We then consider the numerical

accuracy of the subdivisions in Sec. V, show characteristic

geometric, topological and visual artifacts for isosurfaces in
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Sec. VI and for Projected Tetrahedra [2] in Sec. VII, and dis-

cuss the implications in terms of sampling theory in Sec. VIII.

Finally, we present our conclusions in Sec. IX.

II. PREVIOUS WORK

Previous analysis of simplicial subdivision of cubic cells [8],

[9], [10] focusses on the number of triangles generated [10],

and on the topological consistency [8], [10] and correct-

ness [10] of the isosurfaces.

The simplicial subdivision most often used is the minimal

subdivision (Sec. IV-B) of 5 tetrahedra per cube [2], [5],

[8], [9], [10], [11], [12]. Also reported [8], [10], [11], [13],

[14], [15] is the Freudenthal subdivision (Sec. IV-C) of 6

tetrahedra. We have also experimented with the body-centred

cubic lattice (Sec. IV-E) of 12 tetrahedra. Bloomenthal [9] use

a different subdivision (Sec. IV-D) of 12 tetrahedra. Albertelli

& Crawfis [8] extend this to 14, 16, 18, 20, 22 & 24 tetrahedra.

Based on the desiderata reported here, we prefer the 24-fold

subdivision (Sec. IV-F), as do others [8], [13], [16], [17]. A

48-fold subdivision (Sec. IV-G) is also reported in [15], [18].

III. DESIDERATA FOR SIMPLICIAL SUBDIVISION

There are several competing goals when subdividing cubic

cells which mean that no subdivision is best under all circum-

stances, so we simply state these goals as desiderata.

We assume that the data has been sampled on a cubic

grid in three dimensions, although our analysis also applies

to curvilinear and irregular grids. We assume that the de-

sired interpolation function f(p) is the trilinear interpolant

over the cube unless stated otherwise. We subdivide each

cube, replacing the grid with a tetrahedral mesh and perform

barycentric interpolation over each tetrahedron, substituting a

new piecewise-linear interpolation F (p) for f(p).
We assess different subdivision schemes according to how

well each achieves the following desiderata:

i) Parsimonious: the subdivision should add as few data

points as possible.

ii) Contained: F (p) should depend only on sample values

that f(p) depends on: for trilinear f , only on the sample

values at the vertices of the cube containing p.

iii) Symmetric: the subdivision should be symmetric under

rotations and reflections of the cube.

iv) Minimal: the subdivision should use as few simplices as

possible, to reduce the cost of subsequent processing.

v) Implicit: the subdivision should not require explicit

creation and storage of tetrahedral elements.

vi) Continuous: F should be continuous, to prevent cracks

or holes in generated isosurfaces.

vii) Exact: the subdivision should minimize numerical, ge-

ometric, topological, visual and sampling differences

between F and f .
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(a) Minimal (5) (b) Freudenthal (6) (c) Face-Divided (12a) (d) Face-Divided (12b)

(e) BCC (12 average) (f) Face-Centred (24) (g) Edge-Centred (48)

Fig. 1. The Subdivisions

Subdivision Contained Symmetric Parsimonious Minimal Implicit Continuous Exact

Minimal (5) yes no yes yes yes possible no
Freudenthal (6) yes no yes no yes possible no
Face-Divided (12) yes no no no possible possible no
BCC (12 average) no yes no no yes yes no
Face-Centered (24) yes yes no no yes yes no
Edge-Divided (48) yes yes no no yes yes no

TABLE I

TABLE OF SUBDIVISIONS. “POSSIBLE” IMPLIES A DESIDERATUM THAT CAN BE SATISFIED BY A SUITABLE CHOICE OF ADDED VERTICES OR EDGES.

IV. 3-D SUBDIVISIONS

Having stated desiderata, we now describe each of the

subdivisions in Fig. 1, give a taxonomy and test each one

against the desiderata, summarizing our results in Table I.

A. Taxonomy of Subdivisions

Tetrahedral subdivisions are constructed using only the ver-

tices of the mesh, or by adding additional vertices. Additional

vertices can belong to an edge, a face or the body of the cell.

In practice, body vertices are added first, followed by face

and edge vertices, since this disturbs symmetry the least and

minimizes the resulting number of simplices. This results in

the following taxonomy:

1) Subdivisions with no additional vertices:

a) Minimal (5-fold) - Sec. IV-B

b) Freudenthal (6-fold) - Sec. IV-C

2) Subdivisions with body vertex added:

a) Face-Divided (12-fold) - Sec. IV-D

b) Body Centered Cubic (BCC) - Sec. IV-E

3) Subdivisions with body and face vertices added:

a) Face-Centered (24-fold) - Sec. IV-F

b) 14-, 16-, 18-, 20- and 22-fold: see Sec. IV-F

4) Subdivisions with body, face and edge vertices added:

a) Edge-Divided (48-fold) - Sec. IV-G

B. The 5-fold Minimal Subdivision

The most popular simplicial subdivision [2], [5], [8], [9],

[10], [11], [12] is the minimal subdivision shown in Fig. 1(a).

To obtain it, four vertices of the same parity are cut from the

cube along the plane defined by their neighbouring vertices.

Each cut reduces the number of vertices remaining by 1. After

four such cuts, a regular tetrahedron is left over.

Minimality is assured because each tetrahedron shares at

least one triangular face with another tetrahedron. Thus, each

cut removes at most one vertex from the cube and 4 cuts are

required to reduce the original 8 vertices to 4 vertices. When

the first vertex is removed, its neighbours become degree four

and cannot themselves be “cut off”. As a result, all vertices

removed must have the same parity, and only two ways exist

to divide the cube into five tetrahedra.

This subdivision is contained, parsimonious, minimal, and

implicit, but not symmetric, because the cut corners and their

neighbours are treated differently, and because the central

tetrahedron is a different shape from the others.

For continuity, note that opposite faces are divided by

opposing diagonals. As shown in [2], [10], [11], [16], the

two possible 5-fold subdivisions must alternate if F is to

be continuous. This is possible in regular meshes but not for

curvilinear meshes such as a torus of odd circumference.
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C. The Freudenthal (6-fold) Subdivision

This subdivision is older than the minimal subdivision,

and is used for numerical computation [13], [14], [15] and

rendering [8], [10], [11]. The vertices on a major diagonal of

the cube are each connected to all vertices of the cube. This

gives 6 tetrahedra packed around the major diagonal as shown

in Fig. 1(b). Three of these tetrahedra are mirror images of

the other three, and are not isomorphic without reflection.

This subdivision is contained, parsimonious, implicit, and

only slightly less minimal than the minimal 5-fold subdivision.

Provided that face diagonals are consistent between adjacent

cubes, this subdivision will be continuous. This is achieved

most simply by using the same major diagonal in each cube,

or by alternating diagonals in adjacent cubes, as in Fig. 1(g).

This choice of one of four major diagonals prevents symmetry

and imposes a strong directional bias on this subdivision.

Other subdivisions into 6 tetrahedra exist [8], but these are

even less symmetric, use non-isomorphic tetrahedra, and do

not guarantee continuity. Since these subdivisions are rarely

used, we will not consider them further.

D. Face-Divided 12-fold Subdivision

This subdivision is constructed from pyramids whose bases

are the faces of the cube [8], [9]. Each face center is joined

to the body center, giving 6 square pyramids. Each of these is

divided into two tetrahedra by an arbitrary face diagonal (see

Figs. 1(c) and 1(d)). Not all vertices are treated equally, so

this subdivision is not symmetrical. Moreover, there are two

possible diagonals per face, giving 64 possible configurations.

In practice, continuity is assured by using the same sub-

division in each cube, in which case opposing faces must

have matching diagonals, and only two unique cases remain.

In the first case (Fig. 1(c)), a main diagonal is picked and

its vertices connected to the body center and to diagonally

adjacent vertices. It is easy to see that this is merely a further

subdivision of the Freudenthal subdivision.

It is also possible to have two vertices on a main diagonal

which belong to no face diagonals (Fig. 1(d)). Because no

such vertices exist in the Freudenthal subdivision, this version

of the face-divided subdivision cannot be obtained by further

dividing the Freudenthal subdivision.

Neither of these two cases is symmetric, parsimonious,

minimal, or exact, and care is required to ensure that the

subdivision is implicit and continuous.

E. The Body Centered Cubic Subdivision

This subdivision, suggested to us by Herbert Edelsbrunner,

is based on a body-centered cubic (BCC) lattice. A vertex is

added to the center of each cell, connected to the vertices of

the cell and to the center of each adjacent cell. This generates

24 tetrahedra each shared between two cells. On average, 12

tetrahedra per cube are generated.

We show this subdivision in Fig. 1(e): unlike other subdi-

visions, it is not possible to show a single cube divided into

tetrahedra. Instead, we show the 24 tetrahedra that intersect

a given cube. Although the BCC subdivision is strongly

symmetric, implicit and continuous, it is not parsimonious (it

adds extra vertices), minimal, contained, or exact.

(i) (xi, yi, zi) (σi)
1 (3, 3, 3) 0.6
2 (4, 4, 3) 0.6
3 (5, 3, 3) 0.6
4 (6, 4, 3) 0.6
5 (7, 3, 3) 0.6
6 (8, 4, 3) 0.6
7 (9, 3, 3) 0.6
8 (8, 8, 5) 2.4
9 (9.5, 3, 9) 1.5

f(x, y, z) =

9∑

i=1

e
−

d
2

i

2σ2

i

d
2

i = (x−xi)
2+(y−yi)

2+(z−zi)
2

Fig. 2. A Small Analytical Dataset Defined As A Sum Of Gaussians

F. Face-Centered 24-fold Subdivision

The face-divided subdivision (see Fig. 1(f)) can be divided

by adding some or all of the face centers [8], [13], [16],

[17], [18], giving subdivisions with 14, 16, 18, 20, 22 or 24

tetrahedra, respectively. The 24 tetrahedra subdivision can also

be obtained by dividing each of the 24 simplices in the BCC

subdivision (Fig. 1(e)) along the plane of the cube’s face.

This subdivision is contained, symmetric, implicit, and

continuous. It is not parsimonious, because it requires an

average of 4 interpolated data points per voxel. Nor is it

minimal, because it has nearly five times as many simplices

as the minimal subdivision.

We had previously claimed [19] that this subdivision could

be made exact by selecting the face and body saddles as the

additional points that define the tetrahedra. This claim was

based on work by Natarajan [20], which assumed a maximum

of one body saddle. As Nielson [3] shows, however, two

body saddles are possible in a single cube. Thus, the 24-fold

subdivision cannot be made topologically correct, as it has at

most one body point added.

G. Edge-Divided 48-fold Subdivision

The 24-fold subdivision can be further subdivided by adding

edge vertices to obtain a 48-fold subdivision [15], [18], as in

Fig. 1(g), or by dividing the original cube into 8 sub-cubes,

then applying Freudenthal subdivision to the sub-cubes, choos-

ing the main diagonals that coincide with the main diagonals

of the original cube. Since barycentric interpolation is linear,

it is not difficult to prove that this subdivision generates the

same F as the Face-Centred (24-fold) subdivision.

This subdivision is contained, symmetric, implicit, and con-

tinuous, but neither parsimonious nor minimal, as it requires

8 times the original number of vertices, and nearly 10 times

the minimal number of simplices.

V. NUMERICAL RESULTS

To compare the different subdivision schemes quantitatively,

we performed several computational experiments on the small

test function shown in Fig. 2. This function is a sum of

Gaussian distributions, with most of the peaks aligned in a

zigzag along the sampling grid. Although at or beyond the

Nyquist limit for resolution, this dataset neatly illustrates the

worst-case behaviour of simplicial subdivisions.

The atom9 dataset fits into a cube of size 13 × 13 × 13.

We took samples at spacings of 1 = 20 down to 2−5, then

evaluated the maximum absolute error and maximum relative
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Fig. 3. Numerical Errors From Simplicial Subdivision. These graphs show the numerical error between the analytical form of the atom9 dataset and the
interpolated form induced by the various subdivisions for selected cubic cells in the data. Subdivisions with vertices added were tested twice: once by
interpolation from the previously sampled values, once (marked mid) by sampling the analytical form at the added vertices.

error by comparing the analytically correct function with

the interpolated function induced by each subdivision using

MATLAB’s constrained minimization function fmincon.

We did this for each type of cubic subdivision, plus trilin-

ear interpolation. For the 5-fold and 6-fold, which are non-

symmetric, we used subdivisions in each of two orientations.

For the 12-fold, BCC, and 24-fold, which need additional data

points and are thus not parsimonious, we tested subdivisions

that interpolated this new data from the lattice vertices, and

those that obtained the true data by function evaluation.

After studying these results, we chose to focus on absolute

error, since large absolute errors produced more noticeable

artifacts. We therefore selected a number of cubes with abso-

lute errors greater than 10−2, and ran experiments to compute

maxima for different subdivisions and different scales.

Finally, from these experiments, we chose 40 points that

had realized the maximum errors in their respective cubes. We

tracked these points using different subdivisions and different

lattice cube sizes. We plotted the absolute error of the results

on logarithmic scales, using logarithms base 2.

We show some sample graphs in Fig. 3: we note that these

are not exhaustive, but are best viewed as representative of the

numerical behaviour of the induced interpolant. In these there

are some common features:

1) A smaller lattice reduced the error roughly in proportion

to the length of the cube side. (Unfortunately, it blows

up the size proportionally to 1/side3.)

2) For test points near a maximum, we observed a large

increase in accuracy with the first steps of refinement,

with accuracy tapering off with further refinement.

3) The maximum error for trilinear interpolation is similar

to the simpler, simplex-based interpolation schemes.

4) As can be seen from the clumping of the error plots,

the numerical error under the various subdivisions does

not vary significantly. Moreover, it was not uncommon

for the asymmetric subdivisions (5-fold, and 6-fold)

to have both the best and the worst errors. It follows

that geometric (numerical) error is a poor test of the

topological artifacts which we will see in Sec. VI

and Sec. VII. This is particularly worrisome, as many

hierarchical decomposition schemes, such as [18] rely

on measuring numerical (geometric) error to determine

which simplices to remove.

5) Using the real midpoints sampled from the function
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generally reduces the error of the 12-fold, 24-fold, and

BCC subdivisions. The reduction is comparable to that

achieved by halving the cube size, when the midpoints

are interpolated.

VI. ISOSURFACE ARTIFACTS

In addition to numerical tests, we illustrate characteristic

visual artifacts from simplicial subdivisions using atom9 test

dataset and the UNC head. Fig. 4 shows isosurface artifacts

for the various subdivisions compared to a ray-tracing of the

ideal isosurface (Fig. 4(a)), a ray-tracing of an isosurface using

the trilinear interpolant (Fig. 4(b)), and the surfaces generated

by Marching Cubes (Fig. 4(n)).

As predicted, if we use the minimal subdivision without a

parity rule, we get visible cracks in the surfaces in Fig. 4(c).

But if we apply a parity rule, we get either Fig. 4(d) or

Fig. 4(e). Note how different the topologies of the surfaces

in these two images are. This means that the topology of the

surfaces generated is effectively dependent on a coin-toss.

If we move to the Freudenthal subdivisions, Fig. 4(f) and

Fig. 4(g) show that the topology is dependent on the choice

of major diagonal and that pronounced directional biases are

visible, aligned with the major diagonal chosen.

For all its symmetry and theoretical advantages, the body-

centred cubic subdivision in Fig. 4(j) produces even worse

artifacts, seen in close-up in Fig. 4(k). We call these artifacts

“girders”: spurious connections between surfaces that form

through the faces of cubes. To explain how this happens, we

show in Fig. 5(b) a similar 2-D simplicial subdivision of a

square cell. This subdivision is obtained by adding a vertex at

the center of each cell. The central vertex is then connected

to all four vertices of that square cell, and all 4 neighbouring

central vertices. The edges between vertices of each square cell

are suppressed. As with the 3-D BCC subdivision, girders form

when we use this subdivision to interpolate function values.

To show how the girders are formed, consider the zero-

valued vertices in the second and third rows of Fig. 5(a).

Intuitively, we expect these vertices to be connected: that is, we

expect that no contour exists that separates them. The bilinear

interpolation function satisfies this intuitive expectation: a

sample contour at the isovalue 0.20 is shown.

For the pseudo-BCC subdivision, the contour at isovalue

0.20 is shown in Fig. 5(c). Note that the lower row of cell

centers all have the value 0.25, so they separate the zeros

in the second and third rows of vertices: a sample contour at

0.20 is again shown. This contour “encloses” the edge between

the cell centers. It is not difficult to see that the two parallel

girders shown in Fig. 4(k) are caused by the contour enclosing

the edge between cell centers in the same way.

This girder effect is not restricted to interpolation by sim-

plicial subdivision, it has also been observed in data sampled

on a BCC grid [21], and is a major disadvantage of using

barycentric interpolation over BCC grids.

Since the face-divided subdivision schemes depend on a

major diagonal of the cube, we expect to see directional biases

similar to those for the Freudenthal subdivision. These are

apparent in Fig. 4(h) and Fig. 4(i). Although the surfaces

generated are more rounded, they are not much smoother.

For the 24- and 48- fold subdivisions in Fig. 4(l) and

Fig. 4(m), we see identical isosurfaces, as predicted. Although

not entirely smooth, these surfaces do not have visible direc-

tional biases. For applications where directional biases should

be avoided, the 24- fold subdivision is clearly to be preferred.

Since the features in this dataset are at or beyond the

Nyquist limit, we might expect the artifacts to be purely local

in character and of no particular significance in larger data

sets. Unfortunately, this is not true: these artifacts manifest

themselves on the larger scale as texture: that is to say, a

consistent pattern across a large area of the surface.

To illustrate this, we show some isosurfaces from the UNC

head data set in Fig. 6 in medium zoom, where the artifacts

are most apparent. Using the minimal subdivision without a

parity rule results in small cracks below the eye and along

the bridge of the nose in Fig. 6(c). As before, the parity rules

in Fig. 6(d) and Fig. 6(e) prevent cracks, but give different

textures along the bridge of the nose and different topologies in

the eye socket. With the Freudenthal subdivision, we see strong

directional biases in Fig. 6(f) and Fig. 6(g). As expected,

the face-divided subdivisions show diagonal bias in Fig. 6(h)

and Fig. 6(i), although less strongly than the Freudenthal

subdivision. For this particular image, the BCC, 24- and 48-

fold subdivisions all perform acceptably.

These artifacts emphasize high frequencies inherent to em-

pirical data, and it is worth asking whether they also occur in

simulation data. Since this data is often smoother, we expect to

see fewer artifacts, and Fig. 7 demonstrates that this can be the

case. In this case, we rendered isosurfaces for the fuel dataset:

since the dataset is highly symmetric, we would expect the

impact of asymmetric subdivisions to be reduced. Yet, as we

see from this figure, the directional biases result once more in

oriented topological connections. Even though the isosurfaces

are relatively smooth, oriented differences are still visible,

particularly for the Freudenthal subdivision in Fig. 7(e) and

Fig. 7(f). And, although girders are not apparent for the BCC

subdivision in Fig. 7(i), a related artifact appears in the form

of pyramidal pits whose boundaries are defined by the girders:

these pits can also appear in the form of pyramidal peaks.

These images support the observation that cheap subdi-

visions come at the expense of topological and geometric

artifacts that are not well-predicted numerically, while higher-

quality subdivisions require increasingly large numbers of

tetrahedra and therefore of rendered triangles.

In Table II, we consider the output (rendering) cost in terms

of numbers of triangles generated for a sample isosurface. Note

that even the minimal scheme generates more than twice as

many triangles as Marching Cubes. And using the face-centred

subdivision to avoid visual artifacts comes at the cost of seven

times as many triangles.

Of course, some of this cost can be reduced by using a

modified version of Marching Cubes that corresponds to the

topology of the particular subdivision: the set of cases for the

Freudenthal subdivision, for example, can be found in [21].

However, for subdivisions with additional vertices, such as the

face-centred subdivision, these cases become quite complex.
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(a) Isosurface at f=0.12 (b) Trilinear (c) Minimal - No Parity (d) Minimal - Even (e) Minimal - Odd

(f) Freudenthal A (g) Freudenthal B (h) Face-Divided A (i) Face-Divided B

(j) Body-Centred Cubic (k) BCC Close-up (l) Face-Centred (24) (m) Edge-Divided (48) (n) Marching Cubes

Fig. 4. Artifacts In The Atom9 Dataset At f = 0.12

0 1 0 1

0

1 0 1 0 1

0

0 0 0 0

(a) 0.20 Contour (Bilinear) (b) The “pseudo-BCC” Subdivision)

1 0 1 0

0 1 0 1

0 0 0 0

1

0

0

0.5 0.5 0.5 0.5

0.25 0.25 0.25 0.25

(c) 0.20 Contour (BCC)

Fig. 5. “Pseudo-BCC” Subdivision In 2-D, Illustrating “Girder” Formation

VII. DIRECT VOLUME RENDERING ARTIFACTS

Visual artifacts are also visible in volume renderings gener-

ated using Projected Tetrahedra [2]. Fig. 8 shows images of the

atom9 dataset using a simple step transfer function. We used

1-D textures for accurate calculation of the exponential term in

the rendering integral [6], but did not optimize for speed [22],

[23], [24] because we were solely concerned with image

quality. We also did not apply perspective correction [25], be-

cause we used orthogonal projection. Since we were working

with regular cubic meshes, we did not explicitly construct the

tetrahedral mesh, instead rendering the cells in back-to-front

order, one cube at a time. Since the number of tetrahedra used

in each subdivision is a constant multiple of the number of

cubes, we did not measure the memory footprint.

It is not a surprise that the artifacts from Fig. 4 are

still visible, complete with parity differences in the minimal

subdivision (Fig. 8(b) and Fig. 8(c)). Moreover, the discon-

tinuity of the function when using 5 simplices without a

parity rule causes the unpleasant artifacts visible in Fig. 8(a).

The expected axial biases can be seen in Fig. 8(d) through

Fig. 8(g), while girders are visible for the BCC subdivision in

Fig. 8(h). For clarity, this last image is also shown in Fig. 8(i)

with an increased extinction coefficient to make the girders

more apparent. Lastly, both the 24 and 48 simplex versions in

Fig. 8(j) and Fig. 8(k) give reasonable results.
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Area shown 
in zoomed 
images

(a) Full Isosurface (b) Marching Cubes (c) Minimal (None) (d) Minimal (Even)

(e) Minimal (Odd) (f) Freudenthal A (g) Freudenthal B (h) Face-Divided A

(i) Face-Divided B (j) BCC (k) Face-Centred (l) Edge-Centred

Fig. 6. Closeup of Nose of UNC Head. Visual artifacts of simplicial subdivision are visible here in the form of surface texture.

Scheme Triangles Ratio

Marching Cubes 1,029,936 1.0

Minimal (5), No Parity 2,452,378 2.381
Minimal (5), Even Parity 2,453,046 2.382
Minimal (5), Odd Parity 2,452,370 2.381

Freudenthal (6), Axis 000 - 111 3,011,206 2.924
Freudenthal (6), Axis 001 - 110 3,003,346 2,916

Face-Divided (12) A 4,830,508 4.690
Face-Divided (12) B 4,832,860 4.692
Body Centred Cubic (BCC) (12) 5,980,476 5.807

Face-Centred (24) 7,250,428 7.040
Edge-Divided (48) 11,855,532 11.511

TABLE II

NUMBER OF TRIANGLES GENERATED FOR ISOSURFACES OF THE UNC

HEAD USING EACH SUBDIVISION.

For larger datasets, volume-rendered artifacts are less promi-

nent than for isosurfaces. In Fig. 9, we show volume-rendered

images of the fuel data set. The no-parity minimal subdivision

shows diagonal discontinuities in Fig. 9(a). These discontinu-

ities do not appear in the parity-based minimal subdivisions,

but the small peak at lower left has a protusion that poinsts to

the upper left in Fig. 9(b) but to the lower right in Fig. 9(c).

In Fig. 9(d) and Fig. 9(e), the expected diagonal bias is seen

in the boundary of the central (larger) peak, in a faintly

visible diagonal fuzziness, and in diagonal protrusions in the

smaller peaks. Fig. 9(f) and Fig. 9(g) also show boundary

problems, diagonal smearing and apparent directional biases

in the smaller peaks. While the BCC subdivision shows no

immediate artifacts in Fig. 9(h), girder artifacts show up as a

pale grid elsewhere in the data with the same transfer function

(Fig. 9(i). And finally, as expected, face-centred and edge-

centred subdivisions show few and manageable artifacts.

Interestingly, the isosurface artifacts are worse for the empir-

ical UNC head data set, but the volume rendering artifacts are

worse for the simulated fuel data set. For example, the artifacts

other than topological variations in Fig. 7 are less obvious than

those in Fig. 6. And the artifacts in Fig. 9 are more obvious

than those visible in a volume rendering of the UNC head

dataset (omitted due to space constraints). Since empirical

data tends to have a lot of high-frequency information and

noise, techniques such as isosurfaces which emphasize high-

frequency information can reasonably be expected to show

worse high-frequency artifacts. However, the noise applies
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(a) Marching Cubes (b) Minimal (None) (c) Minimal (Even) (d) Minimal (Odd)

(e) Freudenthal A (f) Freudenthal B (g) Face-Divided A (h) Face-Divided B

(i) BCC (j) Face-Centred (k) Edge-Centred

Fig. 7. Isosurface Artifacts in Fuel Dataset. Subdivision artifacts include surface texture, directional bias, sharp features and topological variations.

an implicit smoothing pass to volume rendering. In contrast,

simulation data tends to have less high-frequency information

and is less vulnerable to isosurface artifacts, but volume

rendering artifacts are not smoothed by the effects of noise.

VIII. SAMPLING THEORY AND SUBDIVISIONS

In addition to considering numerical, topological and ge-

ometric artifacts, we also compared the interpolating kernels

induced by the subdivisions with the interpolating kernels of

the trilinear interpolant and the ideal (sinc) filter. We start by

briefly reviewing the standard sampling theory assumptions.

Usually, no a priori information is present for the (con-

tinuous) underlying function that is sampled. It is instead

assumed that the function is band-limited. Since the function

is given on a regular rectangular grid, the aliased spectra in the

frequency domain are also replicated on a regular grid. The

frequency support of the function is then [−π/Tx, π/Tx] ×
[−π/Ty, π/Ty]×[−π/Tz, π/Tz], where Tx, Ty, and Tz are the

sampling distance in x, y, and z direction [26]. This frequency

π/T is known as the Nyquist limit.

In order to reconstruct a continuous function from these

sampled values, we would have to multiply with a box function

in the frequency domain. This is equivalent to convolution

with the Sinc function (sinc(x) = (sinπx)/πx) in the spatial

domain. Hence the 3D Sinc function shown in Fig. 10(k) is

generally considered to be the ideal reconstruction kernel. [27]

However, Sinc interpolation is expensive to compute, since

it is an IIR filter (infinite impulse response), and requires the

entire sampled dataset to be processed to compute a single

interpolated value. As a result, many approximations to the

Sinc interpolation have been suggested [27], [28].

Applying an m×m×m filter at a point costs O(m3). For

trilinear interpolation, m = 2 and the cost is acceptable. For

higher-order (i.e. larger) filters, m increases and the cost is

unacceptable. Trilinear filtering is also attractive topologically

as it satisfies the intuitive expectation of connectedness in

Sec. IV-E, guarantees that maxima and minima occur at grid

vertices, and has a closed form for saddle points [3].

Figs. 10 and 11 show the interpolating kernels for each

subdivision in both spatial and frequency domains. These

kernels were computed by setting the central vertex in a

3 × 3 × 3 array of samples to 1.0 and all other vertices to 0,

applying the simplicial subdivision to the neighbouring cubes,

and sampling the interpolated value at 256 × 256 × 256. For
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(a) Minimal (None) (b) Minimal (Even) (c) Minimal (Odd)

(d) Freudenthal A (e) Freudenthal B (f) Face-Divided A (g) Face-Divided B

(h) BCC (i) BCC (increased opacity) (j) Face-Centred (k) Edge-Centred

Fig. 8. Direct Volume Renderings of Atom9 Dataset Using Projected Tetrahedra

comparison, we also show the trilinear filter (j), the ideal (sinc)

filter (k) and the nearest neighbour filter (l).

In Figs. 10(a) and 10(b), we show the minimal subdivision

in both versions: normal and reverse parity, corresponding to

the two different no-parity rules possible. It is not possible

to compute interpolating kernels for the even and odd parity

subdivisions, since a interpolating kernel must be uniformly

applied throughout the space and these subdivisions vary

throughout the space. We can see, however, that the two

no-parity rules apply directional biases to the data and, in

Figs. 11(a) and 11(b), significant side-lobes exist where we

would prefer a compact kernel.

In Figs. 10(c) and 10(d), we again show the Freudenthal

subdivision with two different dominant axes. In this sub-

division the kernel aligns with the major axis in the spatial

domain, and is flattened in the frequency domain along the

corresponding major axis, shown in Figs. 11(c) and 11(d).

Similarly, the first face-divided subdivision shown in

Figs. 10(e) and 11(e) displays the same axial bias to a lesser

extent. This bias is unsurprising because this subdivision

is itself a subdivision of the Freudenthal subdivision. Since

accurately interpolated vertices are added and more simplices

used, the error is predictably less.

Fig. 10(f) and Fig. 11(f) show the interpolating kernel for

the alternate face-divided subdivision from Sec. IV-D. Here,

the major diagonal is no longer explicitly visible since it is

perpendicular to the simplices used. Accordingly, the kernel

is flattened with respect to the major diagonal, but the bias

still exists. In the frequency domain, this causes elongation

along the axis shown in Fig. 11(f).

For the BCC subdivision, we see in Fig. 10(g) that the

girders in the rendered images match the similar thin structures

in the interpolating kernel. Moreover, Fig. 11(g) shows us that

the kernel in the frequency domain is far from ideal.

Finally, in Figures 10(h), 10(i),11(h) and 11(i), we see that

the face- and edge- centred subdivisions have kernels that are

reasonably compact and well-distributed but not ideal.

We also note that all of the subdivisions show visible fingers

stretching out in the frequency domain along the orthogonal

and diagonal axes. One would expect these to result in high-

frequency noise or artifacts in the images. If we consider

Fig. 4, we see that the surfaces have sharp protruding corners

along the orthogonal and diagonal axes, as expected. These

protrusions are precisely what cause the texturing effect visible

in Fig. 6 and Fig. 7, and we believe they represent the fingers

in the interpolating kernel. Again, these sharp protrusions are

not limited to isosurfacing, but are an intrinsic part of the

interpolating kernel and can be seen, albeit faintly, in Fig. 8.

IX. CONCLUSION

We have reviewed the various simplicial subdivisions pro-

posed for 3-D applications, and examined the geometric ar-

tifacts that result from each. We have also considered the

sampling artifacts in the Fourier domain for each of these

subdivisions. None of the subdivisions is entirely satisfactory:

some care is called for when selecting one for use.
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(a) Minimal (None) (b) Minimal (Even) (c) Minimal (Odd)

(d) Freudenthal A (e) Freudenthal B (f) Face-Divided A (g) Face-Divided B

(h) BCC (i) More BCC Artifacts (j) Face-Centred (k) Edge-Centred

Fig. 9. Closeups of Projected Tetrahedra Volume Rendered Images for the Fuel Dataset.

Unsurprisingly, there appears to be a trade-off between size

(as measured by parsimony and minimality) and accuracy

(as measured by symmetry, consistence and exactness). For

applications where visual artifacts are not a concern, either

the minimal (5-fold) or Freudenthal (6-fold) subdivisions can

be used. For isosurface rendering and segmentation, either

simplicial subdivision should be avoided entirely, or cubes

should be subdivided into at least 24 tetrahedra. For the

Projected Tetrahedra method of volume rendering, large-scale

texture is small enough that any subdivision may be used, but

directional biases may still appear.

We know of no reason to use a 48-fold subdivision except

for hierarchical applications [18]. Instead of interpolating

additional vertices for this subdivision, additional samples

should be taken (which is, in effect, what Zhou, Chen &

Kaufman do). But if we increase the input size by a factor

of 5 or more, how much do we gain from the simplicity of

the tetrahedron’s interpolation function?

We would argue that simplicial subdivisions should only be

used where they are necessary for the correct operation of an

algorithm, such as [2], [4], [5], [6], [12], [16]. In almost all

other cases, Nielson’s topologically correct trilinear cases [3]

will generate fewer triangles, require fewer interpolated points,

and give a topologically correct surface.

Our analysis of tetrahedral subdivisions took place in the

context of regularly sampled grids. Although most of the

analysis also applies to curvilinear grids, or irregular grids

using hexahedra, additional work is possible in these realms:

for example, although simpler, it would be useful to extend

the analysis to prisms in irregular grids. It might also be prof-

itable to construct a more rigorous taxonomy of all possible

tetrahedral subdivisions, similar to that in [8].
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