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Abstract— In this paper we cast the problem of tomography
in the realm of computer graphics. By using PBRT (physically
based rendering toolkit) we create a scripting environment that
simplifies the programming of tomography algorithms such
as Maximum-Likelihood Expectation Maximization (ML-EM)
or Simultaneous Algebraic Reconstruction Technique (SART, a
deviant of ART). This allows the rapid development and testing
of novel algorithms with a variety of parameter configurations.
Additionally, it takes advantage of speed-up techniques that are
common and well-researched in the graphics community, such as
multi-resolution techniques based on octree’s or similar space-
partitioning data structures as well as algorithms accelerated
through graphics hardware (GPU). Using our framework, we
have evaluated different attenuation correction schemes during
the back projection of ML-EM and SART.

Index Terms— Nuclear imaging, SPECT, medical reconstruc-
tion, photon tracing.

I. INTRODUCTION

A main motivation for performing medical imaging pro-
cedures is to provide diagnostic information about changes in
anatomy and/or functions of the patient body in order to assist
doctors during the diagnostic process. Single photon emission
computed tomography (SPECT), one of such imaging tech-
niques, creates images of the radioactive tracer distribution
after it has been injected into the patients blood system. As the
diagnosis relies heavily on the accuracy of the reconstructed
image a lot of effort goes into maximizing information content
of this data and minimizing the influence of the effects which
may distort it.

Past research already resulted in a broad range of methods
for quantitatively accurate SPECT-reconstruction. Each of
these methods is a distinct attempt to address a number of
effects that are known to diminish the quality and quantitative
accuracy of the reconstructed images. The effects that play
the major role have been identified as attenuation, collimator
blurring, and Compton scatter. While compensating for the
first two effects has become quite standard in research envi-
ronments and is slowly making its way into clinical software,
a correction for scatter that would be exact, fast and practical
for clinical use, is still not available.

A main application area of computer graphics software is
the entertainment industry, especially the creation of special
effects and their use in computer games. A key factor of
development of an intriguing movie or game is to produce a
convincing rendition of the world. Here, we desire to preserve
as much physical correctness as possible.1 This is especially
true for the visual appearance of a scene, which is determined
by computing the amount and distribution of light in the scene.
Since interactivity is a crucial property for the entertainment
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computational power of existing computer systems we are more precisely
interested in achieving the least necessary level of correctness to obtain images
that are perceptually indistinguishable from physical reality. After decades of
prolific research and with the rapid evolution of consumer graphics cards this
level has just recently been attained.

value of such games, much effort has been devoted to finding
efficient and correct approximations of the light distribution to
allow for real-time interaction of the user with the scene. This
is the intersection point between the two disciplines that we
seek to address in this paper. Here, we are seeking to create
a system, which would allow for development and testing of
different configurations of correction methods. Additionally,
we want to take advantage of the progress that has been
achieved in the field of computer graphics extending some
of its methods to nuclear medicine reconstructions. While our
algorithms are applicable to any tomographic reconstruction,
we focus on SPECT imaging, since our clinical partners work
directly with such data.

II. RELATED WORK

Although algorithms based on Monte Carlo simulations [1]
as well as highly accurate analytical solutions [16] to the
problem of scattering in SPECT imaging have been investi-
gated they often require complex and long computation. The
quantitative accuracy that these methods provide, while being
very useful in a research environment, is mostly not needed in
a standard clinical setting. State-of-the-art graphics algorithms
take into account effects of volumetric absorption (participat-
ing media) [8], [11] and multiple scattering [6], [10], which
correspond to attenuation and scatter correction, respectively.
This is where the link to quantitative reconstructions becomes
apparent.

Furthermore, rendering algorithms taking a BSDF (bi-
directional scatter distribution function) of light into account
can be used to model the effect of Compton scatter in
a reconstruction scene setup. A distance dependent loss of
resolution, the so-called depth of field, may be used to model
collimator blurring. These are just a few examples to illustrate
the adjacency of the fields of physically based computer graph-
ics and quantitative reconstruction. Another major motivation
arising from this is to perform parts of the reconstruction
process on accelerated graphics hardware [3], [22].

Maximum Likelihood Expectation Maximization (ML-
EM) [13] that can be derived from Bayesian statistics by
assuming uniform prior probability of causes. This implies
that initially all locations in the patient body are considered
equally likely to be the source of detected radiation. Ordered
Subset Expectation Maximization (OS-EM) [5] is performing
ML-EM for a given number of projections and is iterating
through the different subsets. For algebraic reconstructions
techniques (ART) the solution is interpreted to lie on an
intersection of hyperplanes. The normal vectors are in the
rows of the systems matrix. The error is iteratively minimized
by orthogonal projections onto the hyperplanes. SART is
computing the system’s matrix treating the volume slices
separately using bi-linear interpolation within voxel cells of
a slice [4]. Both of these algorithms (ML-EM,SART) will
be investigated in their convergence behaviour under different
attenuation correction schemes. Ultimately, we seek to provide
a scalable framework that can be adjusted to account for a
number of quality degrading effects.



III. RADIATIVE TRANSFER EQUATIONS

Linear radiative transfer is the link between Computer
Graphics and Medical Image Reconstruction. The two are
inverse problems of each other. The derivation is based on pre-
vious work in the context of volume rendering by Krüger [9],
or more extended, Max [11].

For each position p we distinguish an outgoing radiance,
or source term Lo, and the incoming radiance Li. The source
term consists of emitted radiation Le and the amount of
incoming radiance Li that is scattered towards direction ω:

Lo(p, ω) =Le(p, ω)+

σsµ(p, ω)

∫

Ω

p(p,−ω′ → ω)Li(p, ω′)dω′.
(1)

Here, the phase function p describes the scattering properties
of the material and is integrated over all incoming directions
ω over the sphere Ω. The scattering coefficient σs in multipli-
cation with the material density µ forms the scattering cross
section. The only component remaining to be defined is the
incident radiance Li that is described as

Li(p, ω) =Tr(p0 → p)Lx(px,−ω)+
∫ D

0

Tr(p
′ → p)Lo(p

′, ω)dt.
(2)

This is the integral equation of transfer formed along ray
p′ = tω + p, which leaves the scattering medium at px =
Dω + p. Here, the attenuation between two points is defined

as Tr(p → p′) = e−
∫

t

0
σtµ(p+sω,ω)ds where the attenuation

coefficient σt is the sum of the scattering σs and the absorption
σa, multiplied with density µ it becomes the attenuation cross
section. Lx can be thought of as an external source Lo of
photons at the boundary of our scattering volume that just
emits without scattering. It is a useful construct to terminate
the recursive mutual inclusion of Lo and Li.

The computational problem of the above two equations is
twofold. For one we have to compute continuous integrals.
This we can do by discretization and through Monte-Carlo
techniques. The other problem is that both terms Lo and Li

include each other recursively. One helpful common assump-
tion is to limit the number of scattering events of the photons
to zero or just a few. This is similar to the recursion depth
of the above expressions. Any common graphics rendering
algorithm can be interpreted as a special case of Eq. 1 and
Eq. 2 as discussed in [8].

For reconstruction purposes we are interested in estimating
the activity distribution f(p) of the radioactive tracer, which
is assumed to locally radiate into all directions evenly. Hence,
we use Le(p, ·) = f(p). If we further assume no scattering,
we can reduce the computation of a detector response gi (a
pixel in the sinogram at position pi), to a simple line integral:

gi =

∫ D

0

f(pi + sω)Tr(pi + sω → pi)ds (3)

It can be expressed in discretized form as

g
(k)
i =

M
∑

j=1

f
(k)
j aij , (4)

or equivalently be brought into vectorized form as

g(k) = Af (k), (5)

with f (k) and g(k) denoting the activity estimate and forward
projection, respectively, after the k-th iteration. The weights

aij we call the throughput that is the relative amount of
radiation from volume point j arriving at detector pixel i. See
Eq. 8 and App. A for a definition.

The reconstruction process for ML-EM can be stated
as [13]:

f
(k+1)
j = f

(k)
j

∑

i aij g̃
(k)
i

∑

i aij

(6)

using the correction ratio g̃
(k)
i = gi

g
(k)
i

.

SART comes in a very similar form even though its deriva-
tion is based on different principles, i.e. the reconstruction
problem as in Eq. 5 is solved algebraically, the resulting
reconstruction process differs mainly in the correction being
computed and applied in a subtractive/additive manner rather
than by multiplying a correction ratio:

f
(k+1)
j = f

(k)
j +

∑

i

[

bij
gi−aif

(k)
∑

j
aij

]

∑

i bij

. (7)

In this notation ai is a row vector of the systems matrix A.
We are using two systems matrices here, A = (aij) for the
forward projection and B = (bij) for the backward projection.
The usual technique is to keep B = A. A discussion of the
effect of choosing B different from A is subject of section V.
The projection from the activity volume to the sinogram is
a linear operator. It may be represented in discrete matrix
form (the system matrix), but it does not have to. This is
the point where our implementation makes a difference in
that we neither create nor store this matrix, still allowing for
reconstruction both ways, forward and backward projection.

IV. METHODOLOGICAL CONTRIBUTION: USING PBRT
FOR IMAGE RECONSTRUCTION

The focus of this work is to exploit the performance of
computer graphics technique, such as ray tracing [14] and
photon mapping [7]. As basis for our techniques we chose
PBRT (Physically Based Rendering Toolkit [12]). PBRT is
easily extendible through plug-ins and it already provides
support for a variety of sampling and integration methods (for
surfaces and volume regions). Different scene configurations,
as described below, enable us to model different stages of
the reconstruction process using the rendering capabilities of
PBRT.

Alternatives to PBRT include POV-Ray2 and vuVolume3.
The latter is designed for a slightly different problem setting,
namely high performance volume rendering - not reconstruc-
tion. It is mentioned here, because of its potential use as an
efficient forward projector and is intended as a future extension
to the framework. PBRT is preferable because its level of gen-
erality is high enough to cover a broad range of reconstruction
specific problem settings. PBRT is flexible enough to allow
easy modifications to incorporate novel reconstruction ideas.

Currently, we have developed a modular setup that allows
to map different reconstruction algorithms into the rendering
process of PBRT. For iterative algorithms we are using a fixed
scene setup for the forward and backward projection steps. The
major difference is that the projection area for a given camera
angle is used two ways, as depicted in Fig. 1. It is either
used as an area light source (backward projection) or as a
camera (forward projection). In the first case the volume data,
which is surrounded by photon sources, captures the photon

2www.povray.org/
3GrUVi-Lab own volume rendering research framework available for public

download at http://sourceforge.net/projects/vuvolume/.
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Fig. 1. Illustration of the spatial arrangement used for forward and backward
projection. The scene combines volume regions for the attenuation µ-map and
the estimated activity.

distribution. It is implemented as a 3-dimensional camera that
samples the incoming flux at discrete volume locations. In the
forward projection the volume becomes a three-dimensional
radiating volume that is emitting photons with a distribution
of the current activity estimate f (k). The participating medium
can be set up to have a certain density distribution and
additional scattering, absorption, and emission properties. The

Fig. 2. The activity distribution is reconstructed at the intersection of the
projective light sources. These illuminate the volume with an intensity pattern
(e.g. a correction images). For illustration purposes this projection is caught
by a plane at the bottom of the scene.

light sources surrounding the volume (see Fig. 2) use the
structural information from the experimental projections or,
later in the process, calculated correction projections to update
the reconstructed volume.

We use the same geometrical scene setup for forward and
backward projection (ML-EM approach) or select a subset of
the projections (OS-EM). We use several light sources (one
for each projection) simultaneously to cast the correction pro-
jections onto the volume. As mentioned above, the difference
between forward and backward projection is in the direction
in which the light is propagated. Essentially, we are inverting
the path of the photons, which - according to the Helmholtz
reciprocity principle - is physically plausible.

After the scene is set up for the forward projection, it is
the choice of a volumetric integration method that will decide
about the complexity of the effects that are being modeled.
In our current setup only direct photon paths are considered.
To model first and higher order scattering an additional pre-
processing step of volumetric photon mapping has to be
performed. We are experimenting with photon tracing in both
forward and backward directions. It is possible to follow
photons through the volume considering different scattering
properties. These are captured by the phase function p. This
function p is also known as Bi-directional Scatter Distribution

Function (BSDF) as used in Eq. 1. It essentially describes
the probability distribution for different outgoing directions
for a given incoming direction of a photon of given energy.
Computationally we perform a Monte-Carlo simulation of the
photon paths.

Our current implementation works for ML-EM and SART.
The sampling and integration of the volumetric scene is
governed by a number of well defined parameters that can
be controlled by the user (e.g., number of sampling rays per
camera pixel, jittered or regular). It is possible to reconstruct
volumes of different resolution, independent of the resolution
of the given projections. Thus, a multi-resolution approach can
be incorporated, starting at a coarse resolution for the recon-
struction volume and then using finer sampling in subsequent
iterations.

V. DIFFERENT ATTENUATION CORRECTION SCHEMES IN

THE BACK PROJECTION

Using our framework as a test environment for different
algorithmic configurations we are particularly interested in the
effects of different attenuation correction schemes in the back
projection of ML-EM and SART. As already mentioned in
the explanation on Eq. 7 we may used different projection
operators (i.e. systems matrices) in the forward and back-
ward projection. While attenuation correction in the forward
projection step is well defined it is not quite clear which
scheme for the back projection provides optimal convergence
behaviour. Therefore we implemented different methods and
applied them to the two different reconstruction algorithms.
When tracing a ray back into the volume we can perform
attenuation weighting in different ways, as depicted in Fig. 3.
The different forms of attenuation correction shown there can
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Fig. 3. Different attenuation correction schemes to be used in the back
projection step. The dashed line indicates the underlying µ-map. The effect
of the parameter µ-scale is to multiplicatively weight the attenuation.

be implemented through a scaling α, weighting the µ-map

bi↔j = e−α
∫

t

0
µ(p+sω,ω)ds. (8)

This coefficient α is also referred to as µ-scale in the following
text. Performing forward, uniform, or inverse attenuation cor-
rection can be implemented by choosing α to be 1, 0, or −1,
respectively. For α = 1, bij = aij . This is the setup we have
used in our evaluation as discussed in the following section.
A discretized form of Eq. 8 is derived in appendix A.



VI. RESULTS FOR ITERATIVE RECONSTRUCTION METHODS

For our tests we are using the MCAT phantom [15] with a
resolution of the projections of 128× 128. Our software runs
on a computer with 2.2 GHz AMD Athlon CPU. The timing
of the forward projection is independent of the resolution of
the reconstructed volume, because ray tracing is an image-
order algorithm. This means that its runtime linearly scales
with the effort spent on sampling the scene. It is influenced
by the number of pixels in the projection and the number of
rays cast per pixel. A forward projection step takes about 89s
for all 64 projections for a low-discrepancy sampling with 8
rays per pixel [12]. Other timings are 44.8s and 16s with four
and one ray per pixel, respectively. A full backward projection
of all 64 correction images on a 1283 volume takes 292s. For
a 643 volume this reduces to 38.6s and on 323 it just takes
4.3s. This emphasizes that tremendous speedup can be gained
from a multi-resolution reconstruction.

We have run the iterative reconstruction for both methods,
SART and ML-EM employing different settings for the atten-
uation in the back projection step as mentioned in section V.
The results of this experiment are shown in Fig. 4. The
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Fig. 4. Convergence when using different attenuation correction schemes.

shown curves indicate convergence behaviour of the algorithm
under different configurations. The root mean squared error

is calculated at RMSE = ‖f (k) − f‖/
√

J , where J is the
number of elements in f or # of voxels and ‖·‖ denotes
the 2-norm. The key point in this graph is that uniform
attenuation correction (using µ-scale=0) outperforms forward
attenuation correction. This is the case for both ML-EM and
SART. Furthermore, inverse attenuation correction (µ-scale<
0) potentially improves convergence of SART. This can only
be observed up to a certain level. The one divergent curve
for µ-scale= −.55 indicates the amount of inverse attenuation
where the method becomes instable. While we do not consider
this a final result with respect to attenuation correction, we do
see this as an interesting pointer for further investigation.

The reconstructions after the few iterations of our rendering-
based SART implementation are shown in Fig. 5.

The framework allows for flexible adjustment of different
reconstruction algorithms and their inherent parameters. At-
tenuation and scatter can be incorporated into the system, by
adjusting the absorption and scatter properties of the medium.
In particular, the phase function will allow for an effective
implementation of the Klein-Nishina formula for Compton
scatter.
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Fig. 5. Effect of inverse attenuation correction in SART (middle, µ-
scale=−.45) compared to no-AC (left) and the truth volume (right).

VII. GPU-BASED ACCELERATION OF MEDICAL

RECONSTRUCTION

Recent developments in programmable graphics processing
units (GPUs) have made them capable of general purpose
computation [18], so they are no longer limited to traditional
graphics rendering tasks for which they were originally de-
signed. GPUs can be modeled as a streaming architecture;
a massively parallel computational model where each screen
pixel is a (limited) processor.

For medical image reconstruction, previous research in
using GPUs for acceleration ([3], [21]) has shown speed
increases of over an order of magnitude compared to pure
software implementations. This is significant because iterative
methods which may have once been too computationally
expensive are now fast enough to become practical for clinical
use.

One important feature of current generation graphics hard-
ware is the fragment shader which allows for a wide range
of calculations to be done in a highly parallelized manner.
Floating point precision has also been recently introduced in
commodity graphics hardware which allows GPUs to manip-
ulate 16 and 32-bit numbers per color channel instead of only
8-bit numbers. Details can be found in [19], [17], and [20].

Our GPU accelerated EM reconstruction implementation
extends Chidlow and Möller’s work [3] and modernizes it to
make better use of current graphics hardware. GPUs that were
available at the time of their research were limited to 8-bits of
precision per colour component. They devised a careful bit-
splitting strategy where the 16- bit input data was split into
four pieces before it was transferred to the graphics card. After
rendering, they read back the values and recombined them into
main memory using the CPU to achieve 16- bits of fixed point
precision. The volume being reconstructed was stored in main
memory using floats and stored on the graphics card in texture
memory as 8-bit channels using their bit-splitting approach.
They could account for values greater than 255, but lost the
fractional part of the number since each value was rounded to
the nearest integer.

Our implementation uses the floating point precision
pipeline. Forward projection and back projection is accom-
plished similarly to [3], with some exceptions. The bit-splitting
and recombining of values using the CPU is no longer needed.
Instead of reading values from the framebuffer and accumulat-
ing values in main memory, we render to an off-screen floating
point pixel framebuffer with blending enabled.

In the EM correction step, since we no longer have to
encode values as bytes, we’re able to have correction values
greater than 2.0. Chidlow’s implementation had to clamp
correction values to the range [0..2] and encoded them as
[0..255], with 1.0 corresponding to 127. The clamping limited
the algorithm’s potential, by only allowing an increase in a
voxel’s intensity by a factor of two at each step. However,
without this restriction, the increased convergence rate is only
noticeable for a small number of iterations. As noted in [3],
the number of iterations required to correct for their range



clamping is an order of magnitude less than the number of
iterations run in a typical reconstruction (upwards of 80 for
EM). In practice, OSEM may gain more from the removal of
the clamping since a small number of iterations is typical.

Quality is comparable to a pure software implementation.
Performance is 1.3× faster than the previous GPU implemen-
tation (see table I), whereas the previous GPU implementation
is 9.4× faster than a pure software implementation. Results
were obtained on an AMD Athlon 2000 CPU and a GeForce6
6600GT GPU.

Time (sec) Avg iteration (sec)

EM no AC Chidlow 45.0 1.1
EM no AC Float 34.5 0.86
EM with AC Chidlow 67.5 1.7
EM with AC Float 47.2 1.2

TABLE I

COMPARISON BETWEEN CHIDLOW’S AND FLOATING POINT

RECONSTRUCTIONS FOR 40 EM ITERATIONS.

VIII. SUMMARY

We are pursuing two different goals with this research. On
the one hand the presented framework gives us a flexible and
scriptable environment allowing the testing of novel algorithms
(e.g. different system matrix configurations, multi-resolution
approaches, etc.). Secondly, by building a bridge to common
computer graphics algorithms we are able to speed up the
underlying reconstruction by taking advantage of the vast
body of research on real-time rendering improvements from
GPU accelerated algorithms as mentioned above. Two main
directions for future work are the use of photon mapping
for scatter correction and reconstruction on an optimal grid
structure.

IX. APPENDIX A: SYSTEMS MATRIX ELEMENTS

The effect that radiation fj at a grid location xj has
on a detected value gi at position xgi

is determined by
accumulating the throughput bi↔xsl

of each of the points
xsl

= xgi
+ l∆sω sampled at distance ∆s along a ray of

direction ω, orthogonal to the projection screen. The i ↔ j
indexing is equivalent to ij, but emphasizing the fact that
this weighting is independent of whether photons are traveling
from detector to volume location of vice versa. More details
of be shown as we work towards the result in Eq. 12. The
derivations presented here are based on Chidlow’s thesis [2].

First, we need to be able to determine the throughput
of a single sample position xsl

, which is governed by the
attenuation properties at the positions 1..L up to the one under
consideration. Each of them can be computed by discretizing
Eq. 8 as follows

bi↔xsl
= e−α∆s

∑ L
l=1 µ(xsl

). (9)

Its equivalent recursive form

bi↔xsl+1
= bi↔xsl

e−α∆sσtµ(xsl
) (10)

is what makes implementation practicable. The distribution of
the attenuation, the µ-map, is given on a discrete grid as µj

at grid point locations xj . It can be interpolated at a sample
point position xsl

using a reconstruction kernel h:

µ(xsl
) =

J
∑

j=1

µjh(xsl
− xj), (11)

where J is the number of points in the grid. The actual number
of points iterated over in the implementation is much smaller
because of the limited support of kernel h.

The same method of interpolation is now used to determine
the contribution of the throughput of all ray points xs1..M

to
a grid point xj , which gives us the final throughput between
grid point j and projection pixel i:

bi↔j =
M
∑

m=1

bi↔xsm
h(xsm

− xj). (12)

Here and in the previous equations we have neglected the
fact that the discretization of the integral only supplies us
with an approximate value for the actual throughput. The one
given here is ’actual’ in the sense of what is implicit in the
implementation. The elements aij can be seen a special case
of bij with α = 1.
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