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Abstract— To make a spectral representation of
colour practicable for volume rendering, a new low-
dimension subspace method is used to act as the
carrier of spectral information. With that model
spectral light material interaction can be integrated
into existing volume rendering methods at almost
no penalty. In addition, slow rendering methods can
profit from the new technique of post-illumination
— generating spectral images in real-time for arbi-
trary light spectra under a fixed viewpoint. Thus,
the capability of spectral rendering to create dis-
tinct impressions of a scene under different lighting
conditions is established as a method of real-time
interaction. Although we use an achromatic opacity
in our rendering, we show how spectral rendering
permits different dataset features to be emphasized
or hidden as long as they have not been entirely
obscured. The use of post-illumination is an order of
magnitude faster than changing the transfer function
and repeating the projection step. To put the user
in control of the spectral visualization we devise a
new widget, a “light-dial”, for interactively changing
the illumination and include a usability study of this
new light space exploration tool. Applied to spectral
transfer functions, different lights bring out or hide
specific qualities of the data. In conjunction with post-
illumination this provides a new means for preparing
data for visualization and forms a new degree of
freedom for guided exploration of volumetric data
sets.

I. INTRODUCTION

D IRECT volume rendering allows views be-
neath surfaces, showing features inside vol-

umetric data sets. To make certain parts of the
scene visible, a transfer function assigns distinct
colours and opacities (alpha) to the data points.
Our approach is to use spectral reflectances instead

{sbergner,torsten,mktory,mark}@cs.sfu.ca,
http://gruvi.cs.sfu.ca/

of RGB values to set up the transfer function.
Spectral materials in the scene now appear as dif-
ferent colours depending on the illuminating light
(although alpha compositing is not affected). This
changes the appearance of the scene every time a
new light is set. Under this framework, materials
and lights can be specially designed to achieve
certain visual effects. Since we use achromatic
absorption, an object which is obscured by large
regions of high opacity will not be made visible
by re-lighting. It has been our experience, however,
that the extra dimensions of information enabled by
spectral rendering decrease the importance of opac-
ity assignment and occlusion as the fundamental
means of determining feature visibility. Changing
the illumination of a scene thus becomes a new
means for the user to interact with the visualization.
In order to deploy this strategy as a useful tool for
exploration a new user interface is proposed.

Many algorithms gain speed by assuming that
the transfer function is fixed. While this seems a
rather restrictive assumption, we demonstrate in this
paper that we can still manipulate the visualization
to potentially gain more insight into our data set
simply by controlling the light sources. We show
how to do this in real-time for any volume rendering
algorithm. Extending the transfer function mapping
to non-restrictive spectra enables us to exploit to
our advantage certain phenomena of colour that are
usually undesired. Our main idea is to make use of
the concept of metamers. Differing light spectra that
appear perceptually identical under a certain light
are termed metameric. This means that such spectra
differ only by a vector in the null space of the
functions transforming spectra into colours (e.g.,
the spectral curves of the R, G, and B sensors of
a virtual camera). By assigning metameric colours
to certain data intensity ranges (using a spectral
transfer function), we have the ability to visually
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merge these ranges into one colour under a specific
light. By changing the light spectra we can visually
separate these ranges. This has the potential to help
the user explore the relationships between certain
intensity intervals or materials (see §IV-A for more
details).

In the following we distinguish between light,
reflectances and colours. Colour is a psychophysical
quantity of light that is sensed by the human eye. As
depicted in Fig. 1, light is sent out by sources in the
environment and eventually reflected or refracted
by other objects until it arrives at the eye. For
graphics, we can use the spectral power distribution
(SPD) of the electro-magnetic (EM) wave – the
wavelength-dependent magnitude of the EM field’s
Poynting vector [20] – with visible wavelength
range 400 nm to 700 nm, instead of full optical
physics. When talking about physical correctness
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Fig. 1. Light may reflect off many surfaces before it reaches
the eye where it is perceived as “colour”.

and error we have to keep in mind that for visu-
alization, expressiveness of images comes before
photo-realism or physical accuracy. Furthermore,
there are typically data sets, such as CT or MRI,
that do not contain sufficient information on the
original object. However, spectra can be used to
great benefit in visualization. In particular, their
additional dimensionality allows for more versatile
image manipulation. This is the central idea behind
the interaction we propose.

Spectral colour models aspire to preserve the
necessary physical properties of spectra to allow il-
lumination calculations without perceivable errors.
To minimize computational costs we use a new low-
dimensional linear representation called the spectral
factor model of colour described in §III.

Our new technique of post-illumination described
in §V allows one to efficiently re-render a scene

for changing light sources. For the interactive ma-
nipulation of a spectral rendition via our post-
illumination scheme a new “light-dial” widget is
devised in §IV-B. This paper is an extension of
our previous work [2]. Here, we (1) show details
on the spectral factor model (§III), (2) extend
various rendering algorithms to incorporate post-
illumination (§VI), and (3) present a usability study
including a keystroke-level analysis as well as a
usability inspection of the new interface (see §VII).

II. RELATED WORK

A. Volume Rendering

The past five years have seen great advances
in the area of real-time volume graphics. Much-
improved consumer hardware (referred to as GPU)
is available that has been efficiently exploited for
volume rendering using texture mapping capabil-
ities as well as many new features of modern
graphics cards [6]. Other improved data structures
such as an adjacency list and an RLE based data
structure were introduced to speed up the splat-
ting algorithm tremendously [11], [17]. Fourier
Volume Rendering [14], [21] enables software-
only real-time rendering (with quality degradation).
Our method of image-based spectral re-lighting
can be incorporated into existing volume rendering
methods as discussed later in §VI. A performance
comparison shows that the speed of projection for
arbitrary viewpoint is only slightly compromised
gaining interactive light manipulation.

To change the colour scale in the rendered im-
age Kaneda et al. [10] linearly combine renditions
of different Fourier basis transfer functions. This
requires multiple rendering passes. Their approach
is restricted to re-colouring pseudo-colour images,
while we seek to combine correct spectral light–
material interaction with fast re-rendering.

Finally, Noordmans et al. [16] have integrated
a spectral colour model into the volume rendering
pipeline. To speed up their rendering, they go from
rendering full/actual spectra to rendering coeffi-
cients of materials that are assumed to occupy dis-
tinct spectral bands. The difference in our approach
is to gain performance by using an optimized
linear colour model throughout the entire rendering
process. This allows us to perform full spectral
multiplications with minimal computational effort.
The rendering is not restricted to a given number of



TO APPEAR IN TVCG 3

materials, as for Noordmans et al. Our method also
provides more freedom in the way spectra change
while interacting within the scene. This is essential
for more advanced illumination models. Further,
we discuss guidelines, not addressed by Noordmans
et al., of how to sensibly create and use artificial
spectra, an important issue for volume rendering
and for computer graphics in general.

B. Representing Light

The most straightforward method of dealing with
spectral information is to simply carry spectrally
point-sampled data through any rendering calcula-
tion. Sufficiently sampling at a uniform interval,
however, would mean too many samples1.

Linear models express an SPD as a weighted sum
of basis functions. They have typically been based
on eigenfunction expansions of collections of spec-
tral power distributions. Such finite-dimensional
models offer optimal representation, in terms of
variance-accounted-for, and generally have low di-
mension (6 to 8). Peercy [18] made good use of
such models in an attempt to integrate spectra into
surface graphics. However, one is still left with
a matrix multiply at each interaction with matter
and this presents a stumbling block for using the
method.

III. SPECTRAL FACTOR MODEL

We present a new colour-vector representation
that adopts the strength of linear models while
avoiding spectral multiplication: light interaction
is reduced to a simple extension of RGB-colour
componentwise multiplication — a spectral factor
model [5].

The linear colour model we use here is based on
an extension of the idea of using spectral sharp-
ening in colour constancy algorithms in computer
vision [8] to spectral bases. In graphics we usually
multiply RGB componentwise to form colour. In
surface graphics, for example, illuminant RGB is
multiplied times surface RGB in order to gener-
ate a product RGB. When lighting changes, we
would like to model RGB change as a simple
diagonal transform. This is not physically accurate,

1Real surfaces and illuminants are typically measured at
more than 100 sample points and represented using 31 samples
from 400 nm to 700 nm at 10 nm intervals.

but can be made more so by a preliminary matrix
transformation of camera sensors to generate an
intermediary colour space. This transform is in fact
included in many digital cameras, and is called
“spectral sharpening”, since camera sensors are
thereby made effectively more narrowband. For
multiple light-surface interactions, however, such a
simple transform will not lead to enough accuracy
and we must fall back on full spectra.

Here we can apply the same idea to the linear
model basis set: we form combinations of the basis
set vectors that are optimally narrowband. That
is, we pre-‘sharpen’ the basis by a simple matrix
transform and then agree to operate within the
sharpened basis for all surface or volume interac-
tions [5]. Note that no information is lost by such
a transform, and accuracy to within the adopted
dimensionality of the underlying finite-dimensional
model is maintained.

Then indeed we can represent spectral interac-
tions in terms of the low-dimensional coefficients
(typically 5 to 7) and calculate interactions using
componentwise multiplication of the coefficients.
Using the new basis, the multiplication of spectral
functions in the linear subspace is reduced to a
simple componentwise multiply involving the coef-
ficients εi of the current light, E(λ), times coeffi-
cients σi for the next interaction surface, reflectance
or transmission function S(λ). If

C(λ) = E(λ)S(λ) (1)

then, projected into the d-dimensional linear sub-
space, we have approximately

γi ' εi σi , i = 1..d . (2)

where γi are the basis coefficients for the colour
signal C(λ). Note that instead we could simply be
using sums of delta function spectra similarly, but
then would be giving up the power of the basis
set to accurately model actual spectra. Here we
retain simplicity and low dimensionality without
abandoning physical spectra.

IV. INTERACTION ICON

While material assignment has been used suc-
cessfully in volume rendering before [4], using
full spectra provides a good deal more freedom in
designing transfer functions. A careful strategy is
required to sensibly make use of this freedom. A
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(a) (b) (c)

Fig. 2. Spectral raycasting of the engine data set under three different lights. The parts of the engine have three different
materials assigned. The images were generated using post-illumination — no re-rendering took place, just an image-based
post-processing.

user-oriented integration of spectral concepts into a
volume rendering pipeline will have to consider the
following steps:

1) Materials and light sources have to be chosen
or designed with close attention to their use
in volume rendering: both metamers, with
C1(λ) and C2(λ) yielding the same RGB,
can and should be used to pick out particular
regions of interest.

2) Materials are assigned to spectral transfer
function values in order to create distinct
perceptual discrimination.

3) Finally, we are able to navigate through dif-
ferent visualizations by controlling the light
source. Since multiple dimensions (n weights
for n light spectra) are involved we create a
new interaction icon.

While the second step is a straightforward ma-
terial based transfer function design, steps one and
three deserve further discussion.

A. Material Design

By assigning distinct reflectances we are able
to separate the appearance of materials. However,
we also have metameric materials that under a
particular light source result in colours that are
identical for our visual sensors. Hence, we have
the ability to merge certain materials and therefore
guide the user’s attention towards or away from
these materials. Fig. 2 illustrates this effect. Un-
der light 1 (Fig. 2a) both materials of the block
look the same. The entire engine is perceived

as a homogeneous structure. Blending to light 2
(Fig. 2b), the metamer effect breaks down and the
materials become distinguishable. This process of
newly emerging details is likely to be noticed by
the user.

Another principle in spectral material design is
to make use of the effect of colour constancy. In
Fig. 2 we have created light sources, in connection
with materials, that will leave the colour of one
material the same and change only the colour of
the materials we intend to influence with that light
— the engine block keeps it’s green colour under
both lights.

Since traditional colour theory usually describes
only phenomena that occur in the real world, this
restricts us to non-artificial metameric materials.
However, it would be desirable to design materials
that disappear entirely from the image, if so desired
by the user. In colour science, these materials are
called metameric blacks [23], i.e., materials with
zero RGB under some specific set of lights. Such
a material is assigned to the surrounding recon-
struction noise in Fig. 2. This ‘smoke’ becomes
visible as we blend over to light 3 in Fig. 2c. In
the other images it is rendered as well, but under
the first two lights it remains black. In rendering,
alpha compositing still takes place, so occlusion of
other materials is in fact not undone. Nevertheless,
it is possible to introduce materials that only scatter
light but do not actually have an alpha value to
diminish light that comes from the back. If those
X-ray materials turn black under a certain light they
entirely disappear from the image sum and free the
view to things that they obscure. Since they will
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always have an X-ray like look, it is not possible
to draw crisp surfaces with such materials. This idea
is applied in our implementation of spectral Fourier
volume rendering discussed in section VI.

While metamers can be used to reduce complex-
ity in images, constant colours are useful when
blending from one light source to another. Having
some things change their appearance while others
remain the same is likely to grab the observer’s
attention. Thus, such materials can be used to
guide the user’s attention to certain aspects of
the data during interactive exploration. Within the
same visualization (without any change of the trans-
fer function) we are able to emphasize and de-
emphasize particular regions of interest in connec-
tion with particular light sources. Therefore we can
help the user understand the relationships between
these materials.

Having an idea of what colour constellations are
desirable for visualization, we now have the task of
finding spectra for lights and materials that fit these
criteria. One approach is to use materials previously
acquired from real world scenes. Nevertheless, for
most applications it would be impractical to have
to look for real materials and lights that fit the
desired properties (metamerism, colour constancy,
metameric blacks). For that purpose we employ
a design procedure [1] that combines real spectra
with new artificial but physically-based ones gen-
erating a set of lights and reflectances.

B. Navigating Visibility

We can design materials and lights such that
each light influences exactly one material. Hence
a linear combination of the lights will create a
mixed rendition of the scene. Assuming that we
have m materials and n lights, we have an n-
dimensional space to navigate to produce different
visualizations. This is a difficult task for the user.

We developed an interaction metaphor that in-
cludes all light sources within one interaction wid-
get, which we call the “light dial”. This is a two-
dimensional n–gon slider, mapping a 2D space into
the n-dimensional parameter space (see Fig. 3).
Our n light sources are the vertices of the n–gon.
Any position on the plane characterizes a weighted
sum of the light sources that make up the n-gon.
This way, the higher-dimensional parameter space
is mapped to a 2D topology of nodes.

Fig. 3. The light dial – interface to control the mixture
of lights using normalized inverse distances of the mixture
selector (yellow circle) to the light nodes (bulb icons) (see
Eq. 3).

Each control node has a position on the screen
and represents a light source, and the mouse is
used to freely move the mixture selector over and
between the nodes (e.g., the yellow dot position
in Fig. 3). Position is used to determine a scalar
weight for each node, with a value that grows as the
selector comes closer to a node. We can compute
a weight Li(x) applied to the light for a selector
position x in the following manner:

Li(x) =
n∏

k=1, k 6=i

‖x− xk‖
‖xi − xk‖

. (3)

To make the weights usable for combining light
sources, we normalize the sum of all weights Li

to one and scale it with a separate intensity slider.
When the position of the dot coincides with the po-
sition of a light bulb in the widget, the influence of
all other light sources is eliminated. The influence
of a source can be entirely removed by switching it
off. Hence, the light dial allows one to focus on the
influence of a single light to the materials used in
the scene. It has not been designed to navigate the
full n-D space at once. Instead, the intention is to
conveniently slide from one pure light to the next
pure light.2 Additionally, it is possible to correlate
dimensions (making lights have similar intensity)
by moving two light bulbs closer to each other.

2Nevertheless, it is still possible to navigate the entire space
of weight combinations. Imagine a concentric arrangement of
the light bulbs around the light dot in the middle: all lights have
the same weights. Now, a light bulb may be dragged instead of
the dot, moved closer to or farther away from the center (where
the dot is). Since only one distance is changing, it is possible
to change only one weight. To actually have just one weight
changing, the separate overall intensity slider would have to be
moved correspondingly.
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This modifies the shape of the 2D mapping of the
parameter space and allows the user to reach new
parameter constellations.

To summarize, our light dial implements three
different interaction metaphors:

1) move yellow dot (change weights by dis-
tance) — the object is weighted towards the
lights we want to see it under,

2) move light nodes — group lights, or drag
lights away to lower their influence (mathe-
matically speaking: change shape of 2D map-
ping of higher-dimensional parameter space,
correlate dimensions by decreasing spatial
distance in widget plane), and

3) switch lights on/off (reducing dimensionality,
comparable to taking a light node and moving
it far away; deactivation of the light allows it
to keep its position in the mapping plane.)

This makes the 2D dial a convenient interface to
navigate through the colour schemes. The light dial
metaphor may be useful for other tasks, such as
navigating between different points of view, con-
trolling alpha values of different segments, etc. A
more thorough evaluation of this widget is provided
in §VII.

V. POST-ILLUMINATION

By fading between different lights the whole
scene changes its appearance. To make this tech-
nique usable for data exploration, we propose the
method of post-illumination. It allows to re-render
the scene at interactive frame-rates by separating
shading and compositing from the actual compu-
tation of an RGB colour. Fig. 4 illustrates the
notation that is adopted in this section. Looking at
the rendering integral as discussed by Max [15] it
is possible to factor out the light source yielding
the following equation:

Ii(x,ωi, λ) = L(λ) · Ĩi(x,ωi, λ), (4)

It describes the irradiance Ii depending on the
wavelength λ and the position x on a ray of length
D from direction ωi. In this model the point x can
either be a voxel in the volume or a pixel on the
projection screen at which we collect the incoming
light. The second term, Ĩi, is a ratio indicating
which portion of light L is transferred through the
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Fig. 4. Illustration of symbols and abbreviations used in §V.

scene. It is calculated as

Ĩi(x,ωi, λ) = Ĩi(d,ωi, λ)T (x,ωi, λ,D)+ (5)
D∫

0

Ĩr(x− sωi,ωi, λ) · T (x,ωi, λ, s)ds,

where T (x,ω, λ, s) = e
−

sR
0

τ(x−tω,λ)dt
is the ex-

tinction integral that accounts for the effect of
absorption τ . The first term is the irradiance from
outside the volume at a point d = x − Dωi.
Since the light source L(λ) is factored out from
the integral, the radiance Ir is modified to become a
ratio Ĩr. This ratio can be understood as the amount
of irradiance that is scattered from direction ωr.
More precisely, it is formed as

Ĩr(x,ωr, λ) =∫
4π

ρ(x,ωr,ωi, λ)·

(
Ĩi(x,ωi, λ) + ĨL

i (x,ωi, λ)
)

dωi,

(6)

containing the product of the bi-directional reflec-
tion distribution function ρ (BRDF) and the irra-
diance integrated over all unit directions ωi. Here,
the shadowed amount of direct light from source L

is captured by ĨL
i and the indirectly scattered light

is the recursive term Ĩi from Eq. 5.

Our implementation uses raycasting with a local
illumination model. This simplifies ĨL

r to just be-
come the reflectance of the local material, weighted
by the Phong shading coefficients (ambient, diffuse
and specular). Even anisotropic and iridescent ef-
fects could be incorporated here as a wavelength
dependent weighting. As for the local illumination,
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Ĩi is zero for all directions other than along the
ray ωi = ωr. Furthermore, our shadowing ratio
ĨL
i is constant 1 for all voxels and directions (no

shadowing). An example rendition incorporating
the use of specular lighting is shown in Fig. 2,
where we can observe specular highlights at the
solid inner rings inside the engine. The images are
generated using an achromatic absorption (alpha
blending). Nevertheless, the use of metamers and
metameric blacks enables us to influence the visi-
bility of additional structures even after the spectral
image has been generated by simply changing the
illuminating light spectrum.

The postponed multiplication of the light source
allows one to generate new images for different
light spectra without repeating the projection and
compositing. After all light bouncing and transmis-
sion is complete, only one matrix multiplication in
the linear colour model per final image pixel is left
to calculate the updated RGB image for the scene.
This gives the necessary speedup for interactive re-
illumination.

VI. SPECTRA IN VOLUME RENDERING
TECHNIQUES

Many benefits accrue to different rendering meth-
ods from incorporating a spectral colour model.
Here we explain how several classic techniques
(a non-exhaustive list) are impacted by spectral
extensions.

A. Raycasting

This technique is a straightforward implementa-
tion of a simplified version of the rendering integral
discussed in §V. Raycasting provides high render-
ing quality, but due to random memory access it is
not very fast in its standard implementation. This
technique derives the biggest profit from using post-
illumination. Rendering reflectances to the screen
takes only slightly longer than RGB rendering [2].
Once the spectral image is generated, it can be
illuminated with different light sources, via a 3 ×
7 matrix transformation per pixel, combining the
illumination matrix and the colour transform to
produce RGB. The examples previously shown in
Fig. 2 illustrate the visual effect of post-illumination
applied to the raycasted dataset of an engine.

(a) (b)

Fig. 5. Spectral Splatting of hipiph data set. The lower
intensities are assigned a low-alpha material (a) glowing white
under light 1, or (b) being black under light 2.

B. Splatting

Splatting is typically a very fast volume render-
ing method, introduced by Westover [22]. Current
graphics cards are based on RGB compositing.
This is the major constraint when using spectral
rendering. In order to combine fast splatting with
spectral light material interaction we have to limit
the rendering to flat absorption (alpha blending).
There are two ways to build a spectral splatter.
One is to perform a multi-pass rendering until all
channels of the colour model have been projected to
the screen (e.g. two passes for a 6 channel factor
model). The resulting image could then be post-
illuminated just as discussed above. An alternative
approach is to simply use an RGB transfer function
whose colours are made from spectral reflectances
and the active light source. If the colour (RGB)
for a voxel is determined, it can be splatted to the
screen using standard graphics hardware.

One way to further improve performance is to
use vertex programs to do the illumination calcu-
lation at each voxel with spectral light sources and
perform the colour transformation to RGB. The
colour of the light source, its position, and the
colour transformation matrix (size 3× (7 + 1)) are
stored in the vertex program parameter space. The
7-component voxel reflectance is passed utilizing
the primary and secondary colour registers. The
conversion from the 7-component model can be
done by splitting the conversion matrix horizontally
into two 4x4 matrices (last column is zero). These
are applied to the halves of the reflected light colour
vector accordingly. By adding the results the final
colour is obtained. Such operations are basic in
vertex programs and can be done in a few lines of
code. Using the spectral splatter, the 64× 64× 64
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(a) (b) (c)

Fig. 6. Spectral Fourier Volume Rendering of the UNC-Brain data set (CT-scan). Each light illuminates one material keeping
the other two black. The images show three different mixtures of lights illuminating: (a) interiour only, (b) three different regions,
(c) frontal skull. As to the x-ray character of the images the black material entirely disappears from the image (no occlusion).

hipiph dataset in Fig. 5 can be rendered at 18
frames per second still allowing for an interactive
manipulation of the transfer function and spectral
light colour. A similar RGB splatter without spectra
is only slightly faster as it can be seen in Table I.

C. Fourier Volume Rendering

The basic idea of Fourier volume rendering
(FVR), as introduced by Malzbender [14], is to
calculate the projection of a data set to the screen by
extracting a slice of the volume in the frequency do-
main. This makes FVR a very powerful technique,
especially for large data sets. Because the intensities
are simply added up the result is an x-ray like
image. Totsuka and Levoy [21] further improved the
technique by incorporating hemispherical shading
and depth-cueing. Recent extensions by Entezari et
al. even allow for specular highlights [7].

To integrate spectral illumination into FVR our
approach is to render the 7 components of the linear
colour model separately. Post-illumination can be
carried out by projecting only the reflectances and
performing the illumination calculation (multiply-
ing the light spectrum) afterwards in the image.
Examples are shown in Fig. 6 and Fig. 7. The
first figure makes extensive use of metameric blacks
to toggle visibility of different segments. Spectral
materials are assigned such that metamers make
different segments merge together; and segments
coloured with metameric blacks entirely disappear
from the image sum for a certain light source. FVR
is a fast technique for pure software implementa-
tion. Using spectra and post-illumination in FVR,
allows re-interpreting the spectra in the transfer

function in a fast image-based operation and makes
an expensive rerun of the pre-processing unneces-
sary. Specific parts of the data can be separated,
merged, or faded out without changing the transfer
function. This not only improves the visual quality
of the renderings but also adds a new degree of
interaction to FVR.

(a) (b)

Fig. 7. Spectral Fourier Volume Rendering of a tomato
(MRI) rendered with (a) two metameric materials, and (b) the
same materials being non-metameric under a different light.

D. Summary

An evaluation of the performance of different
spectral rendering techniques is provided in Table
I. The techniques are from left to right: spectral
raycasting and separate post-illumination (PI) in
comparison with plain RGB raycasting, spectral
splatting vs. RGB splatting, and spectral Fourier
volume rendering (SFVR). All timings were taken
on a 2.4 GHz Pentium 4 with a GeForce 4 using
a constant image size of 512 × 512. The time is
given in frames per second for projecting a frame
/ re-illuminating a frame. The last column also
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Dataset Fill Spec-RC PI-RC RGB-RC Spec-Splat RGB-Splat Spec-FVR/PI-FVR
hipiph 97% 0.22 9.2 0.24 18.5 22.2 50/166 (1s)
tomato 72% 0.15 11.6 0.17 0.78 1.7 5.8/34.5 (85s)

uncbrain 62% 0.15 13.3 0.17 0.3 0.4 15.8/30.3 (85s)
engine 79% 0.13 10.7 0.15 0.5 0.6 8.7/47.6 (85s)

frog 69% 0.08 12.0 0.09 0.31 0.38 (n/a)

TABLE I
PERFORMANCE OF DIFFERENT SPECTRAL RENDERING TECHNIQUES (IN FPS), COMPUTING IMAGES FROM A NEW

VIEWPOINT. Fill DENOTES THE AMOUNT OF NON-BLACK SCREEN PIXELS. PI IS POST-ILLUMINATION (FOR FIXED

VIEWPOINT) ON THE SPECTRAL IMAGE. DATASET DIMENSIONS: HIPIPH 643 , TOMATO 2562 × 64, UNCBRAIN 2562 × 145,
ENGINE 2562 × 128, FROG 500× 470× 138

contains time for preprocessing for SFVR. PI is in-
dependent of the rendering technique. Nevertheless,
the timings are given for images from the spectral
raycasting. The method has been optimized to only
consider pixels of non-zero reflectance. Thus, the
screen fill correlates to the PI timings. Note that
PI is an image-based operation and not necessarily
faster than object based methods, as it is the case for
the spectral splatting of hipiph. As discussed above,
our variant of the spectral splatter recomputes the
projection for re-illumination, because compositing
is done in RGB. Note that the images of SFVR in-
ternally do not actually have the size of the display
but instead are obtained from the extracted slice
from the frequency cube. Thus, the timing of PI
on SFVR is not directly comparable to the spectral
raycasting. The two major conclusions that can
be drawn from the table are: 1.) the performance
of spectral rendering compared with corresponding
RGB techniques (e.g., spectral splatting) shows
very competitive framerates, and 2.) the use of post-
illumination is an order of magnitude faster than
changing the transfer function and repeating the
projection step.

VII. USABILITY ASSESSMENT OF THE LIGHT
DIAL

To utilize spectral volume rendering, users would
typically (1) set up materials and lights prior to
a visualization session and then (2) examine data
by setting up transfer functions and manipulating
lights to change visibility (as established in section
IV). Designing a good interface for setting up ma-
terials and lights is complex; our interface has the
appropriate functionality but non-ideal usability. We
leave development of a good material/light designer
for future work. Designing good transfer function

editors is also challenging, but is not unique to
spectral volume rendering. Hence, we focus on
evaluating our proposed light-dial for navigating
visibility.

We evaluated the light dial and its conventional
counterpart — a multiple-slider interface having a
separate intensity slider for each light. The follow-
ing two methods of evaluation were chosen:

1) Keystroke-level analysis [3] to compare inter-
face speed, and

2) Expert assessment of the interfaces via us-
ability inspection [13].

A. Keystroke-Level Analysis

In keystroke-level analysis, tasks are broken into
keystroke-level actions (clicking a key, dragging the
mouse, etc.). Time for an expert user to complete a
task is predicted by adding together average times
for the keystroke-level actions [3].

We made several assumptions in our keystroke-
level analysis:

1) Some actions (e.g., homing hands on the
mouse) are the same for both interfaces and
can therefore be ignored.

2) Both interfaces are constrained such that the
largest mouse movement is 5 cm.

3) An average mouse movement is half the
largest movement.

We used component actions and times from [3]
to predict time required to adjust settings in each
interface, and considered several situations (e.g.,
turning one or all light(s) on). We considered the
interfaces with and without shortcuts (i.e., click-
ing at the desired end location without dragging).
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Shortcuts work for any slider in the multiple-sliders
interface and the yellow slider in the light dial, but
not for light sliders in the light dial since it would
be impossible to know which light a user intended
to move.

Results favour the light dial when only a few
lights are active. With 4 lights or less, the light dial
is equal or faster than multiple-sliders for all tasks.
With more than four lights, the light dial is as good
or better than multiple-sliders when only the yellow
slider must be moved (i.e., to turn on one light, all
lights, or sets of lights that are close together and far
from undesired lights). These results are the same
whether shortcuts are allowed or not.

Setting up constellations with the light dial is
inefficient because dragging lights takes time. How-
ever, as previously mentioned, navigating between
constellations with the light dial is efficient. Since
materials and lights are designed to match, pure
lights (one light source alone) may be most inter-
esting and arbitrary light combinations may be used
less often. Furthermore, users who do set up new
light dial “shapes” may then spend substantial time
moving the main slider within that shape before
altering the shape again. In this case, the cost of set-
ting up the shape may be offset by the speed gained
during the second navigation phase. However, users
who set up arbitrary light combinations quite often
are faster with the multiple-slider interface.

B. Usability Study

a) Method: Three usability experts were
asked to assess the interfaces together and sepa-
rately using usability inspection techniques [13].
All three experts were graduate students in human-
computer interaction at Simon Fraser University.
None had prior knowledge of the spectral volume
rendering project. Evaluations were conducted in-
dependently.

Lights and materials were set up ahead of time.
A 4-light setup was used. Experts were given
descriptions of typical end users and typical tasks
(data exploration, matching the display to target im-
ages, and returning to previous settings). They an-
swered questions about advantages, disadvantages,
and problems with the interfaces, and evaluated
them with respect to the following heuristics: ease
of learning, of use, of exploring a data set, of
matching target images, ease of undo, speed of ex-

ploring, speed of reaching target images, and speed
of undo. Heuristics were assessed on a 5-point
rating scale and other questions were open-ended.
After a written report was completed, evaluators
discussed their opinions with the experimenter.

b) Usability Inspection Results: Fig. 8 dis-
plays average ratings in the heuristic evaluation.
Multiple sliders were easier to learn and use (over-
all), probably because of their familiarity. Explo-
ration and undo were easier with the light dial,
probably because a wide range of light levels
could be explored by simply moving one slider
and relative positions of controls were easier to
remember with the 2D representation. In terms of
speed, the light dial was rated faster for all tasks,
agreeing with the keystroke-level analysis. Having
both interaction techniques available side-by-side
generally got good ratings and appears to be a good
compromise. In this case, a user can choose which
interface to use and the other updates automatically.

Fig. 8. Average ratings in heuristic evaluation.

All evaluators agreed that both interfaces should
be available since each is useful for different tasks.
The multiple-sliders interface was considered useful
for understanding the contribution of each light
and for resetting these contributions exactly during
an undo operation. The light dial was useful for
quickly exploring, turning lights on and off, and
navigating preset constellations. However, judging
the levels of each light in the light dial was difficult.
Some evaluators favoured having both interfaces in
the same dialog box, but others suggested that the
light dial be the main interface and the multiple-
slider interface be accessible as an auxiliary widget.
One report predicted that prolonged use of the light
dial would cause less wrist strain than the multiple-
slider interface. Overall, the usability study indi-
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cated that users can perform basic lighting changes
via the light dial with little training.

VIII. DISCUSSION AND FUTURE WORK

To construct a spectral transfer function from a
set of given materials is just as straightforward as it
is to create a traditional RGB-based visualization.
The important difference is that the manipulation
of the light source allows for more versatile inter-
actions later on. Nevertheless, creating one’s own
spectra still requires substantial work and a number
of deliberate decisions. The actual benefits that
justify the additional work can be summarized as
follows:

1) The scene may bear more information than
it is possible to see with three-dimensional
RGB,

2) the interaction with the scene is more versa-
tile since light changes become a means of
exploration,

3) the user’s attention may be guided by fad-
ing between different visualizations that are
inherent to the incorporated spectra,

4) the visualization may more truthfully reflect
the physical behaviour of given materials.

After the projection step is done, different impres-
sions may arise from the visualization by post-
illuminating the image with different lights. The
user can interact with the image by manipulating
the light. Thus, through one spectral scene setup,
different messages may be conveyed to the ob-
server. Developing this method up to a state of
interactive frame rates for any data and renderer
is seen as a major contribution of this paper.

A different method achieving a similar effect is to
render the dataset with different traditional (RGB-
based) transfer functions and to blend between the
resulting images. Despite the fact that this method
may require more rendering passes, it is a valid al-
ternative to our approach. The important difference
to post-illumination is that we can apply any kind of
light spectrum to the unilluminated image. This is
not possible when combining prerendered images
of RGB-based transfer functions. In our current
framework this advantage is not really used. The
only situation where this can actually be observed
is when designing new lights and seeing their
immediate effect on the scene without rerendering.

This is possible within the framework, but has not
been further evaluated as of yet.

The system presented here opens opportunities
for different types of applications. One direction
would be photo-realistic volume rendering. As our
method computes correct colours for light-material
interactions, it is possible to incorporate real-world
materials into the scene. This could be useful to
create more convincing training scenarios for med-
ical applications. For this it might be interesting to
incorporate the novel ideas of spectral sub-surface
scattering [12].

To date, not much work has been done on interac-
tively rendering spectral BRDFs. Elaborate spectral
reflectance models have been derived [9], [19], but
they are all lacking real-time capacity or perhaps
even general representation of spectral reflectance
properties. Besides increasing realism it is possible
to scale the amount of information contained in an
image. Additional details may gradually be revealed
as different lights illuminate the scene. The use of
spectra increases the dimensionality of the output
image. The actual look of the visualization may be
determined by choosing an appropriate light. To
make this choice more manageable our proposed
‘light-dial’ widget restricts the illuminant to be a
combination of predefined light spectra. The light
dial also offers a very simple interaction and ex-
ploration metaphor once the materials and lights
are set up by an expert. So, the method could be
very good for educational applications (medical and
otherwise), museum exhibits, etc.

A. Conclusions

In volume rendering in general, the focus usually
is not photo-realistic rendering, and that has not
been the case in this paper either. Nevertheless,
the method is based on physical models rooted in
spectral measurements. We have shown how to use
concepts such as metamers and colour constancy in
order to explore a volumetric data set. These effects
are not possible by using traditional RGB.

Based on an improved linear model, a practical
framework for spectral volume rendering has been
developed. To emphasize the use of re-illumination,
we propose a method for rendering spectral scenes
independent from a light source. This allows the
user to obtain different impressions of the data
under different lights, an enhancement of any tech-
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nique that utilizes a transfer function for volume
exploration. The spectral design method allows the
preparation of specific illumination situations to
highlight certain aspects of the data.

We have shown that our techniques are effective
enhancements for transfer functions. While some of
the demonstrated effects could perhaps be achieved
by changing of opacities and assigned colours in
the traditional RGB-based rendering system, a com-
plete re-rendering of the scene becomes necessary.
Post-illumination proves useful for the interactive
exploration of visualizations, especially for high-
quality rendering methods such as ray-tracing.
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