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Problem Definition

Given an undirected, unweighted graph with n nodes and m edges that is modified
by a sequence of edge insertions and deletions the problem is to maintain a data
structure that quickly answers queries that ask for the length d(u, v) of the shortest
path between two arbitrary nodes u and v in the graph, called the distance of u and
v. The fastest exact algorithm for this problem is randomized and takes amortized
O(n2(log n + log2 ((m+ n)/n))) time per update and constant query time [6; 11]. In
the decremental case, i.e., if only edge deletions are allowed, there exists a deterministic
algorithm with amortized time O(n2) per deletion [7]. More precisely, its total update
time for a sequence of up to m deletions is O(mn2). Additionally there is a randomized
algorithm with O(n3 log2 n) total update time and constant query time [1]. However
in the decremental case, when only α-approximate answers are required, i.e., when it
suffices to output an estimate δ(u, v) such that d(u, v) ≤ δ(u, v) ≤ αd(u, v) for all
nodes u and v, the total update time can be significantly improved: Let ε > 0 be
a small constant. The fastest prior work was a class of randomized algorithms with
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total update time Õ(mn) for α = 1 + ε [10], Õ(n5/2+O(1/
√

logn)) for α = 3 + ε, and

Õ(n2+1/k+O(1/
√

logn)) for α = 2k − 1 + ε [4].
This leads to the question whether for α = 1+ε (a) a total update time of o(nm)

is possible and (b) a deterministic algorithm with total update time Õ(nm) exists.
As pointed out in [3] and several other places, a deterministic algorithm is

interesting due to the fact that deterministic algorithms can deal with an adaptive
offline adversary (the strongest adversary model in online computation [5; 2]) while
the randomized algorithms developed so far assume an oblivious adversary (the weakest
adversary model) where the order of edge deletions must be fixed before an algorithm
makes random choices.

Key Results

The paper of Henzinger, Krinninger and Nanongkai [8] presents two algorithms for
α = 1 + ε. The first one is a deterministic algorithm with total update time Õ(mn).
The second one studies a slightly relaxed version of the problem: Given a constant β,
let δ(u, v) be an (α, β)-approximation if d(u, v) ≤ δ(u, v) ≤ αd(u, v) +β for all nodes u
and v. The second algorithm is a randomized algorithm with total update time Õ(n5/2)
that can guarantee both a (1 + ε, 2) and a (2 + ε, 0) approximation.

The results build on two prior techniques, namely an exact decremental single-
source shortest path data structure [7], called ES-tree, and the (1+ ε, 0)-approximation
algorithm of [10], called RZ-algorithm. The RZ-algorithm chooses for all integer i with
1 ≤ i ≤ log n, Õ(n/(ε2i)) random nodes as centers and maintains an ES-tree up to
distance 2i+2 for each center. For correctness it exploits the fact that the random choice
of centers guarantees the following invariant (I): For every pair of nodes u and v with
distance d(u, v) there exists with high probability a center c such that d(u, c) ≤ εd(u, v)
and d(c, v) ≤ d(u, v) The total update time per center is O(m2i) resulting in a total
update time of Õ(mn). The deterministic algorithm of [8] derandomizes this algorithm
by initially choosing centers fulfilling invariant (I) and after each update (a) greedily
generating new centers to guarantee that (I) continues to hold and (b) moving the
root of the existing ES-trees. To achieve a running time of Õ(mn) the algorithm is
not allowed to create more than Õ(n/(ε2i)) many centers for each i. This condition
is fulfilled by dynamically assigning each center a set of Ω(2i) vertices such that no
vertex is assigned to two centers.

The improved randomized algorithm uses the idea of an emulator, a sparser
weighted graph that approximates the distances of the original graph. Emulators were
used for dynamic shortest-paths algorithms before [4]. The challenge when using an
emulator is that edge deletions in the original graph might lead to edge deletions, edge
insertions, or weight increases in the emulator, requiring in principle the use of a fully
dynamic shortest-path algorithm on the emulator. Bernstein and Roditty [4] deal with
this challenge by using an emulator where the number of distance changes between any
two nodes can be bounded. However, the RZ-algorithm requires that the number of
distance changes between any two nodes changes at most R times before it exceeds R
for any integer R with 1 ≤ R ≤ n. As the emulator used by Bernstein and Roditty does
not fulfill this property, they cannot run the RZ-algorithm on it. The new algorithm
does not construct such an emulator either. Instead it builds an emulator where the
error introduced by edge insertions is limited and runs the RZ-algorithm with modified
ES-trees, called monotone ES-trees, on this emulator. The analysis exploits the fact
that the distance between any two nodes in the original graph can only increase after
an edge deletion. Thus, even if an edge deletion leads to changes in the emulator that
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decrease their distance in the emulator, the corresponding ES-trees do not have to be
updated, i.e., the distance of a vertex to its root in the ES-tree never decreases. The
analysis shows that the error introduced through the use of monotone ES-trees in the
RZ-algorithm is small so that the claimed approximation ratio is achieved. However,
since the ES-trees are run on the sparse emulator the overall running time is o(mn).

Open Problems

The main open problem is to find a similarly efficient algorithm in the fully dynamic
setting, where both edge insertions and deletions are allowed. A further open problem
is to extend the derandomization technique to the exact algorithm of [1].

Another challenge is to obtain similar results for weighted, directed graphs. We
recently extended some of the above techniques to weighted, directed graphs and
presented a randomized algorithm with Õ(mn0.986) total update time for (1 + ε)-
approximate single-source shortest paths [9].
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