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Abstract

In this paper we derive piecewise linear and piecewise cu-
bic box spline reconstruction �lters for data sampled on
the body centered cubic (BCC) lattice. We analytically de-
riv e a time domain representation of these reconstruction
�lters and using the Fourier slice-projection theorem we de-
riv e their frequency responses. The qualit y of these �lters,
when used in reconstructing BCC sampled volumetric data,
is discussedand is demonstrated with a raycaster. More-
over, to demonstrate the superiorit y of the BCC sampling,
the resulting reconstructions are compared with those pro-
duced from similar �lters applied to data sampled on the
Cartesian lattice.

CR Categories: G.1.1 [Numerical Analysis]:
Approximation|Bo x Splines; G.1.2 [Numerical Analy-
sis]: Interpolation|Bo x Splines

Keyw ords: Body Centered Cubic Lattice, Reconstruction,
Optimal Regular Sampling

1 In tro duction

With the advent of the theory of digital signal processing
various �elds in scienceand engineering have been dealing
with the discrete representations of (assumably) contin uous
phenomena. As scienti�c computing algorithms mature and
�nd applications in a spectrum of scienti�c, medical and en-
gineering �elds, the question of the accuracy of the discrete
representations gains an enormous importance. The the-
ory of optimal sampling deals with this issue: given a �xed
number of samples, how can one capture the most amount
of information possible from the underlying contin uous phe-
nomena; hence, such a sampling pattern would constitute
the most accurate discrete representation.

The study of optimal regular sampling patterns is not
new [8, 17, 13]. If we are considering an object (or signal)
with a spherically uniform spectrum (i.e. no preferred direc-
tion of resolution), the problem of optimal regular sampling
can be answered using the solution to the optimal sphere
packing problem. This is due to the fact that the sparsest
regular (lattice) distribution of samples in the spatial do-
main demands the tigh test arrangement of the replicas of
the spectrum in the Fourier domain. Therefore, the opti-
mal sampling lattice is simply the dual lattice of the densest
sphere packing lattice.

The spherepacking problem [6] can be traced back to the
early 17th century . Finding the densestpacking of spheres
is known as the Kepler problem. The fact that the face
centered cubic (FCC) packing attains the highest density
of lattice packings was �rst proven by Gau� in 1831 [6].
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Further, the Kepler conjecture { that the FCC packing is
an optimal packing of spheres in 3D even when the lattice
condition is not imposed { was not proven until 1998 by a
lengthy computer-aided proof [9].

While the optimal regular sampling theory is attractiv e
for its theoretical advantages, it hasn't beenwidely employed
in practice due to the lack of signal processingtheory and
tools to handle such a sampling lattice. This paper makes
a signi�can t contribution in order to overcomethis problem
by designing box spline reconstruction �lters for the body-
centered cubic lattice (BCC), the dual of the FCC lattice.

An intro duction to multi-dimensional sampling theory can
be found in Dudgeon and Mersereau [8]. A lattice can be
viewed as a periodic sampling pattern. Periodic sampling
of a function in the spatial domain gives rise to a periodic
replication of the spectrum in the Fourier domain. The lat-
tice that describes the centers of the replicas in the Fourier
domain is called the dual, reciprocal, or polar lattice. The
reconstruction in the spatial domain amounts to eliminat-
ing the replicas of the spectrum in the Fourier domain and
preserving the primary spectrum. Therefore, the ideal re-
construction function is the inverseFourier transform of the
characteristic function of the Voronoi cell of the dual lattice.

2 Literature Review

The design of reconstruction �lters is a very rich area of
signal processingand approximation theory. The literature
in the domain of signal processingtypically usesconstraints
in the Fourier Domain in order to guide the �lter design
process(see e.g. [1, 19, 3]), which often results in discrete
�lter weights (or \taps"). These �lters resample a given
regular sampling pattern on a new regular sampling pattern.
Approachesfrom approximation theory often useconstraints
in the spatial domain in order to design contin uous �lters,
that allow the reconstruction of sampleswith arbitrary o�set
from the given sampling lattice ([18, 14, 16]).

While all these design approaches yield one-dimensional
�lters, in the areasof image processingand volume rendering
we need to interpolate higher-dimensional functions. The
common approach is to designthe �lter in onedimension and
then to extend the �lter into higher dimensions through a
separableextension (tensor product) or through a spherical
extension. While separable extensions are justi�ed due to
the separability of the sampling lattice, spherical extensions
often su�er from the fact that it is di�cult to guarantee
zero-crossingsof the �lter at all replicas of the frequency
response. These problems of spherical extensions remain in
all sampling lattices. If we are dealing with optimal sampling
patterns, a separableextension cannot be applied, since the
sampling lattice itself is not separable.

The use of optimal sampling in image processingis lim-
ited, due to the overhead of dealing with the hexagonal lat-
tice and the possibly small e�ciency gain of 13%. How-
ever, Van De Ville et al. [21] recently presented a B-spline
family of interpolation �lters for 2D hexagonally sampled
data. They describe the Voronoi cell of the sampling lattice,



which is a hexagon, in terms of superposition of building
block functions. These functions can be described in the
Fourier domain analytically . They formulate their hexag-
onal B-spline family in terms of successive convolutions of
these functions.

In volume graphics optimalit y of BCC sampling has been
explored and demonstrated by Theu�l et al. [11]. How-
ever, spherical extension of interpolation �lters as used in
that paper resulted in rather blurry and unsatisfying results.
Theu�l et al [10] have studied di�eren t ad-hoc approaches
for reconstruction and derivativ e reconstruction on BCC lat-
tices with mix results. Also isosurfaceextraction on the op-
timal sampling lattice has been studied with inconclusive
results [5, 4].

In order to exploit the theoretical optimalit y of the BCC
lattice, reconstruction �lters are needed with proven zero
crossingsof the frequency responseat all replicas of the spec-
trum. To the best knowledgeof the authors no BCC interpo-
lation �lters have yet beenproposedwhich can be rigorously
shown to possessthese properties. We will seethat with the
methods developed in this paper, the predicted theoretical
advantagesof BCC lattices can be demonstrated in practice.

3 The BCC Lattice

A lattic e is de�ned as an in�nite array of points in which
each point hassurroundings identical to those of all the other
points [2]. In other words, every lattice point has the same
Voronoi cell and we can refer to the Voronoi cell of the lattice
without ambiguit y. The lattice points form a group under
vector addition in the Euclidean space. A lattice can be
represented by a matrix that gathers a set of basis vectors,
indexing the lattice points, into columns. The BCC lattice is
a sub-lattice of the Cartesian lattice. The BCC lattice points
are located on the corners of the cube with an additional
sample in the center of the cube as illustrated in Figure 1.
An alternativ e way of describing the BCC lattice is to start
with a Cartesian lattice (i.e. Z3) and retain only those points
whose coordinates have identical parit y.

Figure 1: The BCC Lattice

The simplest interpolation kernel on any lattice is the
characteristic function of the Voronoi cell of the lattice. This
is usually called nearest neighbor interpolation. More so-
phisticated reconstruction kernels involve information from
the neighboring points of a given lattice point. With this in
mind, we focus in the next section on the geometry and the
polyhedra associated with the BCC lattice.

3.1 Polyhedra Asso ciated with the BCC Lattice

Certain polyhedra arisenaturally in the processof construct-
ing interpolation �lters for a lattice. The Voronoi cell of the
lattice is one such example. The Voronoi cell of the Carte-
sian lattice is a cube and the Voronoi cell of the BCC lattice
is a truncated octahedron as illustrated in Figure 2a.

We are also interested in the cell formed by the nearest
neighbors of a lattice point. The �rst neighbors of a lattice
point are de�ned by the Delaunay tetrahedralization of the
lattice; a point q is a nearest neighbor of p if their respec-
tiv e Voronoi cells share a (non-degenerate) face. The �rst
neighbors cell is the polyhedron whose vertices are the �rst
neighbors. Again, this cell is the same for all points on the
lattice.

For example, by this de�nition there are six �rst neighbors
of a point in a Cartesian lattice; the �rst neighbors cell for
the Cartesian lattice is the octahedron. For the BCC lattice
there are fourteen �rst neighbors for each lattice point that
form a rhombic dodecahedronthat is illustrated in Figure 2b.

The geometry of the dual lattice is of interest when we
consider the spectrum of the function captured by the sam-
pling operation. The Cartesian lattice is self dual. However,
the dual of the BCC lattice is the FCC lattice. The FCC
lattice is a sublattice of Z3 and it is often referred to as D 3

lattice [6]. The general D n family of lattices are sometimes
called checkerboard lattices. The checkerboard property im-
plies that the sum of the coordinates of the lattice sites is
always even. We will use this property to demonstrate the
zero crossings of the frequency response of the reconstruc-
tion �lters at the FCC lattice sites. The Voronoi cell of the
FCC lattice is the rhombic dodecahedron as illustrated in
Figure 2c whose characteristic function is the frequency re-
sponseof the ideal reconstruction �lter for the BCC lattice.
Figure 2d shows the �rst neighbors cell of the FCC lattice;
the cuboctahedron.

a) b)

c) d)

Figure 2: The Voronoi cell of the BCC lattice is the truncated octa-
hedron (a), and its �rst neighbor cell is the rhombic dodecahedron
(b). For the FCC lattice, the rhombic dodecahedron is the Voronoi
cell (c), and the cuboctahedron is the �rst neighbor cell (d).

4 Reconstruction Filters

The nearest neighbor interpolation kernel in 1D is the Box
function. It is the characteristic function of the Voronoi cell
of the sampleson the real line. The nearestneighbor interpo-
lation on the BCC lattice is similarly de�ned in terms of the
Voronoi cell of the lattice which is a truncated octahedron
(Figure 2(a)). In this scheme,a point in spaceis assignedthe
value of the sample in whoseVoronoi cell it is located. Since
the Voronoi cell tiles the space, its characteristic function
induces an interpolation scheme for that lattice. Based on
the fact that the periodic tiling of the Voronoi cell yields the



a b

Figure 3: a) one dimensional linear box spline (Triangle function).
b) the two dimensional hexagonal linear box spline

constant function in the spatial domain, Van De Ville [21]
provesby meansof the Poissonsummation formula that the
frequency response of such a kernel does in fact vanish at
the aliasing frequencies.

4.1 Linear Bo x Spline

DeBoor et al [7] analytically de�ne the box splines, in n-
dimensional space, by successive directional convolutions.
They also describe an alternativ e geometric description of
the box splines in terms of the projection of higher dimen-
sional boxes (nD cubes). A simple example of a one dimen-
sional linear box spline is the triangle function which can
be obtained by projecting a 2D box along its diagonal axis
down to 1D. The resulting function (after proper scaling) is
one at the origin and has a linear fall o� towards the �rst
neighbors as illustrated in Figure 3a.

The properties and behaviors of box splines are studied in
[7]. For example, the order of the box splines can be deter-
mined in terms of the di�erence in dimension between the
higher dimensional box and the lower dimensional projec-
tion. For instance, the triangle function is a projection of a
2D cube into 1D, hence it is a �rst order box spline.

Our construction of box splines for the BCC lattice is
guided by the fact that the rhombic dodecahedron(the �rst
neighbors cell of the BCC lattice) is the three-dimensional
shadow of a four-dimensional hypercube (tesseract) along
its antip odal axis. This fact will be revealed in the following
discussion. This construction is reminiscent of constructing
a hexagon by projecting a three-dimensional cube along its
antip odal axis; seeFigure 3b.

Integrating a constant tesseract of unit side length along
its antip odal axis yields a function that has a rhombic do-
decahedron support (see Figure 3b), has the value two1 at
the center and has a linear fall o� towards the fourteen �rst
neighbor vertices. Since it arises from the projection of a
higher dimensional box, this �lter is the �rst order (linear)
box spline interpolation �lter on the BCC lattice.

Let B denote the Box distribution. The characteristic
function of the unit tesseract is given by a product of these
functions:

T (x; y; z; w) = B(x) B(y) B(z) B(w): (1)

1Note that the BCC sampling lattice has a sampling density
of two samples per unit volume.

Let v = < 1; 1; 1; 1 > denote a vector along the antip odal
axis. In order to project along this axis, it is convenient to
rotate it so that it aligns with the w axis. Let

R =
1
2

[� 1 � 2 � 3 � 4 ] =
1
2

2

6
4

� 1 � 1 1 1
� 1 1 � 1 1

1 � 1 � 1 1
1 1 1 1

3

7
5 (2)

This rotation matrix transforms v to < 0; 0; 0; 2 > .2 Let
x = < x; y; z; w > ; now the linear kernel is given by

L R D (x; y; z) =
Z

T (R T x ) dw:

Substituting in equation (1) we get

L R D (x; y; z) =
Z 4Y

i =1

B(
1
2

� i � x ) dw: (3)

We illustrate an analytical evaluation of this integral in
Section 5.

4.2 Cubic Bo x Spline

By convolving the linear box spline �lter kernel with itself
we double its vanishing moments in the frequency domain.
Hence the result of such an operation will have a cubic ap-
proximation order [20]. As noted by de Boor [7], the con-
volution of two box splines is again a box spline.

An equivalent method of deriving this function would be
to convolve the tesseract with itself and project the result-
ing distribution along a diagonal axis (this commutation of
convolution and projection is easy to understand in terms
of the corresponding operators in the Fourier domain { see
Section 4.3). Convolving a tesseract with itself results in
another tesseract which is the tensor product of four one-
dimensional triangle functions.

Let � denote the triangle function. Then convolving the
characteristic function of the tesseract yields

T c(x; y; z; w) = �( x) �( y) �( z) �( w): (4)

Following the same 4D rotation as in the previous section,
we obtain a time domain representation of the cubic box
spline �lter kernel:

CR D (x; y; z) =
Z 4Y

i =1

�(
1
2

� i � x ) dw: (5)

Again, we will illustrate in Section 5 how to evaluate this
integral analytically .

4.3 Frequency Resp onse

From the construction of the rhombic dodecahedron dis-
cussedearlier, we can analytically derive the frequency re-
sponseof the linear function described by equation (3).

From equation (1), it is evident that the frequency domain
representation of the characteristic function of the tesseract
is given by the product of four sinc functions:

~T (! x ; ! y ; ! z ; ! w ) = sinc(! x ) sinc(! y ) sinc(! z ) sinc(! w ):

2By examining equation (2), one can seethat each vertex of the
rotated tesseract, when pro jected along the w axis, will coincide
with the origin or one of the vertices of the rhombic dodecahedron:
< � 1

2 ; � 1
2 ; � 1

2 > , < � 1; 0; 0 > , < 0; � 1; 0 > or < 0; 0; � 1 > .



While in the previous section the origin wasassumedto be at
the corner of the tesseract, for the simplicit y of derivation,
we now consider a tesseract whose center is at the origin.
The actual integral, computed in Equation 3 or Equation 5
will not change.

By the Fourier slice-projection theorem, projecting the
tesseract in the spatial domain is equivalent to slicing ~T
perpendicular to the direction of projection. This slice runs
through the origin. Again we make use of the rotation (2)
to align the projection axis with the w axis. Thus in the
frequency domain we take the slice ! w = 0.

It is convenient to intro duce the 3 � 4 matrix

� =
1
2

[� 1 � 2 � 3 � 4 ] =
1
2

2

4
� 1 � 1 1 1
� 1 1 � 1 1

1 � 1 � 1 1

3

5 (6)

given by the �rst three rows of the rotation matrix R of
equation (2). The frequency response of the linear kernel
can now be written as

~L R D (! x ; ! y ; ! z ) =
4Y

i =1

sinc(
1
2

� i � ! ); (7)

where ! = < ! x ; ! y ; ! z > .
The box spline associated with this �lter is represented

by the � matrix. The properties of this box spline can be
derived basedon this matrix according to the theory devel-
oped in [7]. For instance, one can verify C0 smoothness of
this �lter using � .

We can verify the zero crossingsof the frequency response
at the aliasing frequencies on the FCC lattice points. Due
to the checkerboard property for every ! on the FCC lat-
tice, � 4 � ! = (! x + ! y + ! z ) = 2k for k 2 Z; therefore,
sinc( 1

2 � 4 � ! ) = 0 on all of the aliasing frequencies. Since
� 4 � ! = � � 1 � ! � � 2 � ! � � 3 � ! , at least one of the � i � !
for i = 1; 2; 3 needsto be also an even integer and for such i
we have sinc( 1

2 � i � ! ) = 0; therefore, there is a zero of order
at least two at each aliasing frequency, yielding a C0 �lter.

The cubic box spline �lter can be similarly derived by
projecting a tesseractcomposedof triangle functions. Again,
the frequency responsecan be obtained via the Fourier slice-
projection theorem.

Since convolution in one domain equals multiplication in
the other domain, the frequency responseof (4) is

~T c(! x ; ! y ; ! z ; ! w ) = sinc2(! x ) sinc2(! y ) sinc2(! z ) sinc2(! w ):

By rotating and taking a slice as before we obtain:

~CR D (! x ; ! y ; ! z ) =
4Y

i =1

sinc2 (
1
2

� i � ! ): (8)

We can seethat the vanishing moments of the cubic kernel
are doubled from the linear kernel. We could also have ob-
tained Equation 8 by simply multiplying Equation 7 with
itself, which corresponds to convolving the linear 3D kernel
with itself in the spatial domain.

The box spline matrix for the cubic kernel is � 0 = [� j� ].
One can verify the C2 contin uit y of this box spline using � 0

and the theory in [7].

5 Implemen tation

In this section we describe a method to evaluate the linear
and the cubic kernel analytically .

Let H denote the Heaviside distribution. Using the fact
that B(x) = H (x) � H (x � 1) we can expand the integrand of
the linear kernel (Equation 3) in terms of Heaviside distribu-
tions. After simplifying the product of four Box distributions
in terms of H , we get sixteen terms in the integrand. Each
term in the integrand is a product of four Heaviside distribu-
tions. Since x; y; z are constants in the integral and the in-
tegration is with respect to w, we group the x; y; z argument
of each H and call it t i , using the fact that H ( 1

2 x) = H (x),
we can write each term in the integrand as:

I =
Z b

a
H (w + t0) H (w + t1) H (w + t2) H (w + t3) dw:

The integrand is non-zero only when all of the Heaviside
distributions are non-zero and since the integrand will be
constant one we have:

I = max(0; b � max(a; max(� t i ))) :

Similarly , for the cubic kernel in Equation 5 we substitute
�( x) = R (x) � 2R (x � 1) + R (x � 2), where R denotes the
ramp function. We obtain eighty one terms, each of which
is a product of four ramp functions. Using R ( 1

2 x) = 1
2 R (x),

we can write each term in the integrand as a scalar fraction
of:

I =
Z b

a
R (w + t0) R (w + t1) R (w + t2) R (w + t3) dw:

This simpli�es to a polynomial times four Heaviside distri-
butions that we can evaluate analytically:

I =
Z b

a

4Y

i =1

(w + t i ) H (w + t i ) dw

=
Z b

c

4Y

i =1

(w + t i ) dw:

where c = min(b;max(a; max(� t i ))) and one can compute
the integral of this polynomial analytically .

5.1 Simpli�cation of the Linear Kernel

An alternativ e method of deriving the linear kernel can be
obtained through a geometric argument.

All of the polyhedra discussedin Section 3 are convex and
therefore may be described as the intersection of a set of half
spaces.Further, each face is matched by a parallel antip odal
face; this is due to the group structure of the lattice. If a
point a is in the lattice and vector b takes it to a neigh-
bor then a + b is in the lattice; then the group property
enforces a � b be a point in the lattice as well, hence the
antip odal symmetry. As a consequencethe polyhedra lend
themselves to a convenient description in terms of the level
sets of piecewiselinear functions.

Consider the rhombic dodecahedron, for example. Each
of its twelve rhombic facescan be seento lie centered on the
edgesof a cube such that the vector from the center of the
cube to the center of its edge is orthogonal to the rhombic
face placed on that edge.

So the interior of the rhombic dodecahedronthat encloses
the unit cube in this way can be described as the intersection
of the twelve half spaces

� x � y �
p

2; � x � z �
p

2; � y � z �
p

2: (9)



Now consider the pyramid with apex at the center of the
polyhedron and whose base is a face f with unit outward
normal n̂ f . Notice that for any point p within this pyramid,
the scalar product p � n̂ f is larger than p � n̂ f 0, where n̂ f 0 is
the outward normal for any other rhombic face f 0. Thus if
we de�ne a function

� : R3 � ! R
� : (p) 7�! max

n̂ f
p � n̂ f ; (10)

its level setsare rhombic dodecahedra. We can usethe axial
symmetries of the half spaces(9) to write the function (10)
for the rhombic dodecahedron in the compact form

� (x; y; z) = max(jxj + jyj; jxj + jzj; jyj + jzj):

For a �xed s, all the points in the spacewith � (x; y; z) < s
are the interior of the rhombic dodecahedron, � (x; y; z) = s
are on the rhombic dodecahedron and � (x; y; z) > s are on
the outside of the rhombic dodecahedron. Therefore for all
s � 0 the function � (x; y; z) describesconcentric rhombic do-
decahedra that are growing outside from the origin linearly
with respect to s.

Using this fact, one can derive the function that is two
at the center of the rhombic dodecahedron and decreases
linearly to zero at the vertices, similar to the linear kernel
described in Equation 3, to be:

L R D (x; y; z) = 2max(0; 1 � max(jxj + jyj; jxj + jzj; jyj + jzj)) :
(11)

6 Results and Discussion

The optimalit y properties of the BCC sampling imply that
the spectrum of a Cartesian sampled volume matches the
spectrum of a BCC sampled volume with 29.3% fewer sam-
ples [11]. On the other hand, given equivalent sampling den-
sity per volume, the BCC sampled volume outperforms the
Cartesian sampling in terms of information captured during
the sampling operation. Therefore, in our test cases,we are
comparing renditions of a Cartesian sampled dataset against
renditions of an equivalently denseBCC sampled volume as
well as against a BCC volume with 30% fewer samples.

In order to examine the reconstruction schemesdiscussed
in this paper, we have implemented a ray-caster to render
images from the Cartesian3 and the BCC sampled volumet-
ric datasets. The normal estimation, neededfor shading, was
based on central di�erencing of the reconstructed contin u-
ous function both in the Cartesian and BCC case. Central
Di�erencing is easy to implement and there is no reason to
believe that it performs any better or worse than taking the
analytical derivativ e of the reconstruction kernel [15].

We have chosen the synthetic dataset �rst proposed in
[12] as a benchmark for our comparisons. The function was
sampled at the resolution of 40 � 40 � 40 on the Cartesian
lattice and at an equivalent sampling on the BCC lattice of
32 � 32 � 63. For the sake of comparison with these vol-
umes a 30% reduced volume of 28 � 28 � 55 sampleson the
BCC lattice along with a volume of 30% increasedsampling

3 In order to ensure fair comparison of Cartesian vs. BCC
sampling we should compare our new interp olation �lters with
�lters based on the octahedron of �rst neighbors cell (see Sec-
tion 3.1). However, tri-linear �ltering is the common standard in
volume rendering and since tri-linear �lters are superior to the
octahedron based �lters, we will compare our new �lters to the
tensor-pro duct spline family instead.

(a) BCC 32 � 32 � 63 (b) Cartesian 40 � 40 � 40

(c) BCC, 30% reduced (d) Cartesian, 30% incr eased

Figure 4: Comparison of BCC and Cartesian sampling, cubic recon-
struction

resolution of 44 � 44 � 44 for the Cartesian sampling was
also rendered. The images in Figure 4 are rendered using
the cubic box spline on the BCC sampled datasets and the
tri-cubic B-spline on the Cartesian sampled datasets. The
imagesin Figure 5 document the corresponding error images
that are obtained by the angular error incurred in estimat-
ing the normal (by central di�erencing) on the reconstructed
function. The gray value of 255 (white) denotes the angular
error of 30 � between the computed normal and the exact
normal.

The optimalit y of the BCC sampling is apparent by com-
paring the images Figure 4(a) and Figure 4(b) as these are
obtained from an equivalent sampling density over the vol-
ume. While the lobesare mainly preserved in the BCC case,
they are smoothed out in the case of Cartesian sampling.
This is also con�rmed by their corresponding error images
in Figure 5. The image in Figure 4(c) is obtained with a
30% reduction in the sampling density over the volume of
the BCC sampled data while the image in Figure 4(d) is ob-
tained with a 30% increasein the sampling density over the
volume of the Cartesian sampled data. One could match the
qualit y in Figure 4(c) with Figure 4(b) and the Figure 4(d)
with the Figure 4(a), this pattern can also be observed in
the error images of Figure 5. This matches our predictions
from the theory of optimal sampling.

We also examined the qualit y of the linear kernel on this
test function. The renditions of the test function using the
linear kernel on the BCC lattice and tri-linear interpolation
on the Cartesian lattice are illustrated in Figure 6.

Since 98% of the energy of the test function is concen-
trated below the 41st wavenumber in the frequency domain
[12], this sampling resolution is at a critical sampling rate
and hence a lot of aliasing appears during linear interpola-
tion. We doubled the sampling rate on each dimension and
repeated the experiment in Figure 7. Figure 8 demonstrates
the errors in the normal estimation. Due to the higher sam-



(a) BCC 32 � 32 � 63 (b) Cartesian 40 � 40 � 40

(c) BCC 30% reduced (d) Cartesian, 30% incr eased

Figure 5: Angular error of the computed normal versus the exact
normal, cubic reconstruction. Angular error of 30 � mapped to white

pling density, the errors in normal estimation are consider-
ably decreased;hence we have mapped the gray value 255
(white) to 5 � of error.

Renditions of the Marschner-Lobb function with this
higher sampling resolution using cubic reconstruction and
the corresponding error images are illustrated in Figure 9
and in Figure 10.

Throughout the imagesin Figure 4 through Figure 10, one
can observe the optimalit y of the BCC sampling compared
to the Cartesian sampling.

Real volumetric datasets are scanned and reconstructed
on the Cartesian lattice; there are �ltering steps involved in
scanning and reconstruction that tune the data according to
the Cartesian sampling so the spectrum of the captured data
is anti-aliased with respect to the geometry of the Cartesian
lattice. Therefore, the ultimate test of the BCC interpo-
lation can not be performed until there are optimal BCC
sampling scannersavailable.

However, for examining the qualit y of our reconstruction
�lters on real world datasets we used a Cartesian �lter to
resample the Cartesian datasets on the BCC lattice. While
prone to the errors of the reconstruction before resampling,
we have produced BCC sampled volumes of the tooth and
the UNC brain datasets with 30% reduction in the number
of samples. The original tooth volume has a resolution of
160� 160� 160and the BCC volume after the 30% reduction
has a resolution of 113 � 113 � 226; similarly for the UNC
dataset, the original Cartesian resolution of 256� 256� 145
wasreducedby 30% to the BCC resolution of 181� 181� 205
. The result of their rendering using the linear and the cubic
box spline in the BCC caseand the tri-linear and tri-cubic
B-spline reconstruction in the Cartesian case is illustrated
in Figure 11 and Figure 12. These images were rendered at
a 5122 resolution on an SGI machine with sixty four 1.5GHz
Intel Itanium processorsrunning Linux.

(a) BCC 32 � 32 � 63 (b) Cartesian 40 � 40 � 40

(c) BCC: Error image (d) Cartesian: Error image

Figure 6: Comparison of BCC and Cartesian sampling, linear inter-
polation. In the error images, angular error of 30 � mapped to white

7 Conclusion

In this paper we have derived an analytic description of lin-
ear and cubic box splines for the body centered cubic (BCC)
lattice. Using geometric arguments, we have further derived
a simpli�ed analytical form of the linear box spline in Equa-
tion 11, which is simple and fast to evaluate (simpler than
the trilinear interpolation function for Cartesian lattices).

Further we have also derived the analytical description of
the Fourier transform of these novel �lters and by demon-
strating the number of vanishing moments we have estab-
lished the numerical order of these �lters. We believe that
these �lters will provide the key for a more widespread use
of BCC sampled lattices.

Our images support the theoretical results of the equiv-
alence of Cartesian lattices with BCC lattices of 30% fewer
samples.

8 Future Researc h

As we have obtained the linear interpolation �lter from pro-
jection of the tesseract, we can obtain odd order splines
by successive convolutions of the linear kernel (or alterna-
tiv ely { projecting a tesseract which is the tensor product
of higher order one-dimensional splines). However, the even
order splines and their analytical forms do not seemto be
easily derived. We are currently investigating this case.

The easeof deriving the frequency response of these in-
terpolation �lters lends itself to a thorough error analysis on
this family.

Further, the computation of the cubic box spline in Equa-
tion 5 currently entails the evaluation of 81 terms. This
makesthe evaluation of the cubic kernel computationally ex-
pensive. We are currently investigating simpli�cations simi-
lar to that of the linear kernel discussedin Section 5.1.

Except for the �rst order box spline, the spline family are
approximating �lters, henceresearch on exact interpolatory



(a) BCC 64 � 64 � 126 (b) Cartesian 80 � 80 � 80

(c) BCC, 30% reduced (d) Cartesian, 30% incr eased

Figure 7: Linear interpolation at a higher resolution

�lters, similar to those of Catmull-Rom for the BCC lattice
is being explored.
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(a) BCC 64 � 64 � 126 (b) Cartesian 80 � 80 � 80

(c) BCC, 30% reduced (d) Cartesian, 30% incr eased

Figure 9: The cubic reconstruction at a higher resolution

(a) BCC 64 � 64 � 126 (b) Cartesian 80 � 80 � 80

(c) BCC, 30% reduced (d) Cartesian, 30% incr eased

Figure 10: The error images in the cubic reconstruction at a higher
resolution. Angular error of 5 � mapped to white

(a) BCC 30% reduced, linear
box spline, 12 seconds

(b) Cartesian , tri-linear, 13
seconds

(c) BCC 30% reduced, cubic
box spline, 190 minutes

(d) Cartesian, tri-cubic B-
spline, 27 seconds

Figure 11: The tooth dataset

(a) BCC 30% reduced, linear
box spline, 11 seconds

(b) Cartesian , tri-linear, 12
seconds

(c) BCC 30% reduced, cubic
box spline, 170 minutes

(d) Cartesian, tri-cubic B-
spline, 24 seconds

Figure 12: The UNC dataset


