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Abstract— This article derives a family of dilation matrices for
the body-centered cubic (BCC) lattice, which is optimal in the
sense of spectral sphere packing. While satisfying the necessary
conditions for dilation, these matrices are all cube roots of an
integer scalar matrix. This property offers theoretical advantages
for construction of wavelet functions in addition to the practical
advantages when iterating through a perfect reconstruction filter
bank based on BCC downsampling. Lastly, we factor the BCC
matrix into two matrices that allow us to cascade two two-
channel perfect reconstruction filter banks in order to construct
a four-channel perfect reconstruction filter bank based on BCC
downsampling.

Index Terms— Dilation Matrix, Wavelet Decomposition, Body
Centered Cubic Lattice

I. INTRODUCTION

The sampling lattice determines the spectrum captured by
multidimensional sampling. In three dimensions, the body-
centered cubic (BCC) lattice [1] is known to allow for the
minimum sampling density when the spectral support of the
sampled signal is spherical. This result is due to the fact that
the position of replicas in the frequency domain is determined
by the face-centered cubic lattice (FCC), the reciprocal of the
BCC lattice, which is the structure that produces the densest
possible three dimensional packing structure. Theußl et al. [1],
for example, have exploited the optimality of BCC sampling
by resampling bandlimited signals from Cartesian to BCC
lattices in order to obtain representations with fewer samples.

When used in multidimensional subsampling, efficient lat-
tice structures allow for increased fidelity with a given number
of samples. Nonetheless, the application of BCC subsampling
to the wavelet transform has been thought to be impossible [2]
due to the difficulty in specifying a suitable dilation matrix,
D, which corresponds to the subsampling factor in one-
dimension. Here we overcome this difficulty and present a
design method for determining families of admissible dilation
matrices for multidimensional lattice structures. We then show
how these matrices can be used to design three dimensional
nonseparable perfect reconstruction filter banks, as in the
wavelet transform.

II. THE SAMPLING MATRIX

A sampling lattice can be represented by a sampling matrix
that gathers a set of basis vectors, indexing the lattice points,
into columns. Note that this sampling matrix is not unique
since a different set of basis vectors for the same sampling
process yields a different sampling matrix. The sampling

process is called separable if it can be represented with a
diagonal matrix. The sampling matrix commonly used for
representing the BCC lattice is [1]:

M =





1 −1 1
−1 1 1

1 1 −1



 (1)

One can use this sampling matrix when resampling signals
onto a BCC lattice; however, this matrix is not suitable for
the subsampling operation (dilation), which involves setting
y(n) = x(Dn), where n is an integer vector.

The role of the sampling matrix becomes crucial when
used in dilation equation since iterating on the downsampling
process (as in wavelet transform) amounts to a dilation with
integer powers of the sampling matrix. Different dilation
matrices lead to different regularity properties on the perfect
reconstruction filter bank. Moreover, existence and smoothness
of the wavelet basis functions highly depend on this matrix.

The dilation matrix D defined over the underlying lattice Γ
must satisfy the following properties [3], [4]:

• D leaves Γ invariant, or DΓ ⊂ Γ;
• all the eigenvalues, λi, of D must satisfy |λi| > 1.

If the input signal is sampled on a Cartesian (separable)
lattice (Γ = Z

3), then these properties confine an admissible
subsampling matrix to be an integer matrix whose spectrum
lies outside the closed unit disc.

Putting further restrictions on admissibility, it is of practical
importance if we return to Γ after a relatively small number of
downsampling iterations [2], [4], [5], since we will only have
a small set of lattice structures in the multiresolution pyramid.
This property implies that D be the nth root of a scalar matrix;
i.e., Dn = kI, k ∈ Z for some value of n. This property is
also of theoretical importance since it significantly improves
the construction of smooth wavelet functions as illustrated by
Gröchenig [6].

A necessary condition for D to be a root of a scalar matrix is
for the dilation matrix to have equal magnitude eigenvalues for
Dn has equal eigenvalues 1. This condition helps to preserve
the geometric properties of the original signal in the lower
resolutions since we obtain equal dilations along each of the
eigenvectors: |λ1| = |λ2| = |λ3|.

1If λ is an eigenvalue of D then λn is the corresponding eigenvalue of
D

n
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Unfortunately, the matrix M in Equation 1 has λ1 =
2, λ2 = −2 and λ3 = 1 and hence no dilation is obtained along
the third eigenvector when this matrix is used for subsampling.
Although many sampling matrices generate the same lattice,
Cooklev [2] has hypothesized that the application of BCC
subsampling to the wavelet transform is impossible in practice
due to the difficulties associated with finding an admissible
matrix. Specifically, the subsampling matrix reported in [2],
has λ1 = −2 and λ2 = λ3 =

√
2 and thus dilates unequally in

three dimensions. Therefore, repeated subsampling will never
result in a return to the original lattice.

Our approach to finding suitable D matrices is to derive
additional characteristics for admissible matrices and to reduce
the size of the search space of possible matrices by imposing
structure. We start by using the fact that for a given sampling
matrix M , representing a lattice, every other matrix M̂ ,
representing this same lattice can be obtained via M̂ = MN

with N an integer matrix having |det N | = 1. This is a
result known in point lattice theory [7] and can be easily
proved by observing that if M and M̂ represent the same
lattice, then every point on the span of M is in the span
of M̂ and vice versa. Denoting N =

(

n0 n1 n2

)

and
N̂ =

(

n̂0 n̂1 n̂2

)

as the representation of the lattice
base vectors in the other lattice (ni and n̂i are thus integer
vectors), allows us to write

MI = M̂N̂ (2)

M̂I = MN , (3)

By substituting (3) into (2) we have M = MNN̂ . Since M

is nonsingular, we have NN̂ = I and because both matrices
are integer we conclude that |det N | = 1.

Applying this result to Equation 1, we see that any dilation
matrix representing the BCC lattice must satisfy |det D| =
|det M |; hence, det D = ±4. A direct result of this obser-
vation is that for any matrix representing the BCC lattice at
least three downsampling iterations are required to return to
the original Cartesian lattice. In other words, the smallest value
of n that can result in an integer solution for k in Dn = kI is
n = 3. This becomes apparent by taking the determinants on
both sides of the equation Dn = kI . Since there are no integer
solutions for k in k3 = (±4)n for 0 < n < 3, we choose the
smallest value of n for which an integer solution for k exists.
This choice implies n = 3 and consequently k = detD.

It is also possible to put constraints on the eigenvalues of
D. Let λ1, λ2, λ3 be the eigenvalues of D then λ3

1
, λ3

2
, λ3

3
are

the eigenvalues of D3. Since D3 = (det D)I , the eigenvalues
of D must satisfy λ3

1
= λ3

2
= λ3

3
= det D. We can conclude

that the roots of λ3 = det D are valid eigenvalues of D.
Moreover, these eigenvalues make D an admissible matrix
since |λ1| = |λ2| = |λ3| = 41/3 > 1.

In order to find an admissible dilation matrix D, we need
to find an integer matrix N with |det N | = 1 that properly
transforms M . To impose structure on the problem, we
examined the class of upper-triangular matrices for N . This
selection was made since it is easy to ensure that |det N | = 1
in a triangular matrix and the number of free variables to solve
for is fairly small. In the three-dimensional case, we set

N =





(−1)i a b

0 (−1)j c

0 0 (−1)k



 (4)

with i, j, k ∈ {0, 1}. It is easy to see that |det N | = 1 and
thus D = MN , with M as in (1), will generate the BCC
lattice. Applying the constraint that the eigenvalues of MN

must be roots of λ3 = det D then allows us to solve for the
unknown constants.

Each of the eight possibilities for (i, j, k) results in a family
of solutions, all of which produce admissible D matrices that
are cube roots of the scalar matrix (det D)I . For an integer
matrix D, there is a total of 24 solutions. While dilation with
each of these matrices contracts (or stretches) the spectrum of
the signal differently, similar partitioning of the spectrum of
the signal can be achieved by designing filters with the proper
support for each of these matrices.

Although we can argue that these matrices are theoretically
equivalent, there might be practical advantages in using one
over another. These matrices differ by the way they tile the
space. Consequently their fundamental parallelepipeds 2 and
coset structures differ from each other. Since the downsam-
pling operation effectively replaces samples common to one
fundamental parallelepiped with one sample, the downsampled
value would be a good representative (predictor) for the
original samples if the (Euclidean) distance between the coset
points common to a fundamental parallelepiped is small.

An illustration of two fundamental parallelepipeds along
with their coset points are shown in Figure 1. It is clear
from the figure that not all solutions are equally desirable.

As an example of generating an admissible D, we select
the case in Figure 1a and obtain:

D = M





−1 1 0
0 1 0
0 0 −1



 =





−1 0 −1
1 0 −1

−1 2 1



 (5)

After applying this D once, we convert the original
Cartesian lattice to a BCC lattice. After applying D a second
time (D2), we obtain the samples on the transpose of the
FCC lattice, which is the reciprocal of the BCC lattice [1].
We return to a Cartesian lattice after three downsampling
iterations using D.

III. PERFECT RECONSTRUCTION FILTER BANKS AND

WAVELETS

Nonseparable multidimensional regular perfect reconstruc-
tion filter banks have been studied by Cooklev [2] and
Kovac̆ević [4] that extend the standard techniques of filter
design to two-channel multidimensional transforms. In our
scenario however, we wish to subsample according to the
BCC lattice defined by (5), where the number of channels is

2The fundamental parallelepiped is the (hyper)volume formed by the basis
vectors of the sampling operation; i.e. the columns of the subsampling matrix.
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(a)

(b)

Fig. 1. Fundamental Parallelepipeds and their coset points corresponding to two admissible BCC dilation matrices D = MN as specified in Equation 1
and Equation 4. (a) A solution for N when i = 1, j = 0, k = 1, a = 1, b = 0, c = 0. (b) Another solution for N when i = 0, j = 1, k = 0, a = 3, b =

8, c = −4.

|det D| = 4 (i.e., the number of samples in the fundamental
parallelepiped of the matrix).

However, designing a four-channel three-dimensional
perfect-reconstruction filter bank is challenging due to the
large size of the design space and the fact that the extension
of spectral factorization methods to multiple dimensions is not
straightforward.

As it turns out, we can factor (5) (or equivalently (1))
into two matrices, each having a determinant equal to two.
This factorization implies that a BCC downsampling can
be achieved by a 2D two-channel quincunx downsampling,
followed by a two-channel FCC downsampling stage:





−1 0 −1
1 0 −1

−1 2 1



 =





1 0 0
0 1 1
0 1 −1









−1 0 −1
0 1 0
1 −1 −1





or

D = QF

Note that |det Q| = |det F | = 2.
This possibility has important implications, since it means

that the four-channel PR filter bank can be implemented as a
cascade of two two-channel PR filter banks. We can design
multidimensional two-channel PR filter banks for each stage
using existing methods. Let H

Q
0

and H
Q
1

be a pair of 2D
lowpass and highpass filters that form a regular PR filter bank
for the minor of q11 in Q and let HF

0
and HF

1
be a pair of

3D lowpass and highpass filters that constitute a regular PR
filter bank for F . Using the Noble identities, a regular PR
filter bank for D can be derived [2]:

HD
0

(ω1, ω2, ω3) = H
Q
0

(ω2, ω3)H
F
0

(ω1, ω2 + ω3, ω2 − ω3)

HD
1

(ω1, ω2, ω3) = H
Q
0

(ω2, ω3)H
F
1

(ω1, ω2 + ω3, ω2 − ω3)

HD
2

(ω1, ω2, ω3) = H
Q
1

(ω2, ω3)H
F
0

(ω1, ω2 + ω3, ω2 − ω3)

HD
3

(ω1, ω2, ω3) = H
Q
1

(ω2, ω3)H
F
1

(ω1, ω2 + ω3, ω2 − ω3)

The implications of this approach are that it is possible to

design four-channel PR filter banks with any number of van-
ishing moments using the techniques developed by Cooklev
and Kovac̆ević [2], [4] for 3D two-channel PR filter banks.

However, this method will not yield the class of 3D four-
channel filter banks that cannot be factored in this way.
Designing such filter banks is subject to further research as
a suitable dilation matrix has now been found.

IV. CONCLUSIONS

This paper has presented a technique for designing ad-
missible dilation matrices for nonseparable subsampling. The
proposed method imposes structure on the set of possible
solutions and then solves the resulting equations to produce a
relatively small number of solutions for the BCC case. Differ-
ent dilation matrices result in various subsampling structures,
some of which may be more suitable than others. In the BCC
case, we have also shown how to use the resulting dilation
matrix to generate a four-channel PR filter bank.
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