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Abstract 2 Previous Work

Manual opacity transfer function editing for volume ren-Transfer functions are an essential part of the volume ren-
dering can be a difficult and counter-intuitive processgering pipeline. Drebin et al. [3] have been using them
This paper proposes a logarithmically scaled editor, ang order to assign material percentages to the given data
argues that such a scale relates the height of the trans{gflues. Levoy [11] used the data value and its derivative
function to the rendered intensity of a region of particulamagnitude in order to visualize boundaries of equal thick-
density in the volume almost directly, resulting in muchhess or strength. Since these methods (also classified as
improved, simpler manual transfer function editing.  data-centrig are not intuitive to use, several researchers

have tried to enhance the user interfaces in order to make
Key words: Volume Graphics, Transfer Functions, Usegata exploration more effective.

Interfaces Recently the concept of material percentage volume
) has been extended by Bergner et al. [2] using spectral
1 Introduction transfer functions and a user interface based on a light-

In volumetric rendering, an opacity transfer function igdial in order to explore various parameter combinations.
used to control what parts of the data are visible (and their Bajaj et al. [1] compute several isosurface metrics of
relative rendered opacities). In the simplest case, classhe data, such as the enclosed area or volume as well as
fication of the data is based on the scalar values of ththe gradient surface integral for the selected iso-value.
data, usually recorded as an 8 or 16-bit integer for eachhese metrics serve as a guide for selecting iso-values
discrete sample point on a grid. When a transfer funar more complex transfer functions. The hope is that the
tion is applied, these values are mapped to a real numh@inima or maxima of these curves represent interesting
typically between 0 and 1 that represents the opacity (pgfaces in the data that are worth visualizing. This is also
unit length) associated with the data point, with 1 beingtnown as the contour spectrum. Pekar et al. [13] suggest
opaque and 0 being transparent. More sophisticated clasaplacian-weighted histograms that compute the gradi-
sification of the data, such as classification that dependsit magnitude over the isosurface, indicating strong tran-
on the gradient magnitude as well as the data value, csition regions at its maxima. They use the divergence
be specified using multi-dimensional transfer functiongheorem in order to compute the histograms efficiently.

[11, 9]. Kindlmann et al. [7] suggest the use of 2D histograms
Transfer functions are often manually created usingf the gradient magnitude as well as the second deriva-
an editable graph, relating the original data values otive of the data in the direction of the gradient. They ar-
the horizontal axes to associated opacities on the vertjue that within transition regions the shape of these his-
cal axis. This paper addresses the vertical scale on thiggrams takes on a particular arch-like structure, which
editable graph, and presents the advantages of usingan be used to guide the user to find interesting transi-
logarithmic scale instead of the usual linear one. tion regions in the data. They further suggest the semi-
After a review of current transfer function approachegutomatic creation of transfer functions, where the user
in Section 2, Section 3 provides the motivation behingimply inputs a surface distance to opacity map in or-
using a logarithmic scale to specify transfer functionsder to visualize the data. This idea has been extended
In Section 4 we compare images produced using tranBY Tenginakai et al. [15] using a more general statistical
fer functions specified on a linear scale with images praapproach using localized k-order central moments.
duced using transfer functions specified on a logarithmic Kniss et al. [9] suggest a local probing of the underly-
scale. Section 5 summarizes our results and looks at pasg data which uses the 2D histograms of Kindimann et
sible future work. al. [7] in order to find boundary regions within the data



interactively. They describe a user interface for the as OPﬂ:‘g'

signment of color and opacity values. However, the el -
fectiveness of this user interface still needs to be invest [ og
gated. =
Other data measures have been investigated for use o6
transfer function design. Curvature as a transfer functic -
criterion has been introduced by Hfacka et al. [5]. A o4
robust computation of curvature and its use for transfe —
functions and non-photorealistic rendering has been su :—0-2
gested by Kindlmann et al. [8]. .A‘ —
Opacity transfer functions have also been efficientl § Data value 255 00
adapted to very noisy ultrasound data byrtigmann et
al. [6]. Figure 1: A typical transfer function widget. The x-axis

All these methods are known data-centricmethods  genotes the data value while the y-axis denotes the opac-
and tend to have fairly counter-intuitive user interfacesisy for the respective data value. The top bar denotes the
A second class of methods known iasage-centricap-  cojours assigned to the respective data values.
proaches try to rectify this by steering the transfer func-
tion design using a set of rendered images. This tends

to be rather computationally challenging, since volumgje differences in the rendered images, allowing us to dif-
rendering tends to be a computationally demanding taskerentiate finer structures in the data, while larger values

The space of all transfer functions is rather large to exorresponded to renderings that appeared nearly opaque,
plore. He et al. [4] use genetic algorithms in order to creobscuring large portions of the finer structures present.
ate a population of transfer functions starting with a useHowever, for smaller, thinner regions of some density in
given or random set of transfer functions. This requireshe data, it was sometimes necessary to use higher opac-
however, a fitness function. Marks et al. [12] attach a uséfy values to get the region to appear in the rendering at
interface to this process which groups the population intg]|.

visually similar re.nderings'and lets the user zoom in, se- These observations about volume renderings are due
lect and refine this population. to compositing an iterative process that closely approxi-
Konig and Goller [10] create a visual interface allow- mates the occlusion along a viewing ray in a volume. It
ing the creation of linear combinations of small opacityturns out that when even a small opacity value is assigned
regions. It also has an interactive color picker. This intg a region in the data of any significant size, the final ren-
terface was realized through the real-time rendering cgered intensity will quickly increase to near-opaque, and
pabilities of a VolumePro graphics card [14]. it's color will be due primarily to the sampled voxels clos-
The goal of this paper is to improve typical data-centrigst to the viewer. Each sample is obscured in part by ev-
user interfaces and hence the data exploration procegsy sample in front of it, resulting in a contribution to the
We will show that a linear mapping of the data value tantensity that is exponentially less as distance through the
the opacity will lead to unintuitive results, which can bevolume increases. We illustrate the situation by graph-

rectified by a logarithmic mapping. ing the intensity of a rendered pixel as a function of both
o ) the distance the viewing ray travels through the volume
3 Logarithmically Scaled Transfer Functions (thickness) of the transfer function value (density) in Fig-

We began to study the graph that a transfer function ediwe 10 (see colour section).
itor employs out of frustration with the counter-intuitive  To put Figure 10 in the context of transfer function
results obtained when rendering volumetric data. A typiediting, consider that the horizontal axis corresponds to
cal opacity transfer widget can be seen in Figure 1, whilehe thickness of a homogeneous region in the volume that
the resulting rendering is depicted in Figure 9 (see colowge wish to visualize (as a percentage of the total vol-
section). ume size) and the vertical axis corresponds to the transfer
We observed that when rendering data sets with rel&anction values that the user could set for the region. The
tively large regions of roughly uniform density, the re-graph displays the intensity that will result from com-
sulting images were most sensitive to detailed changespositing the region by rendering it, as a set of ranges or
the transfer function when the opacity was set nearly toontours. Ideally, if we estimate the size of a particu-
zero. Editing the transfer function within the lowest fivelar homogeneous region relative to that of the volume,
to ten percent of the range often resulted in the most visive can set the intensity of the region such that it corre-



sponds to any one of the intensities on the graph that we

desire. The apparent difficulty is that most of the bands a=max(Ind, 1) 3)
of intensity on the graph are very narrow and are highly _ o
dependent on the size of the region in question. To map a point on the logarithmic graph back to a

The fact that the bands span an extremely narrow rdransfer function value (which is necessary during inter-
gion for depths above 30 percent of the volume mearfgctive editing) the inverse transformation is used:
that for such regions, differences in transfer function val- ,
ues as small as 0.001 (in the region near zero) will visibly o — el ¢ @)
change the image. Even if an entire screen is used for 1l—e2

a transfer function editor, a user must be able t0 Spegzere, is the transfer function value obtained frawh

ify transfer functions to the accuracy of a single pixel e logarithmically scaled value from the graph. The
make such changes. At the same time, values above 0.03 logarithmic mapping i& = ¢—*(1—°"), wherea is a

all map to nearly opaque, resulting in 95 percent of th§ser controlled parameter. Equation 4 results by ensuring

screen space being wasted. _ a bijective mapping from the intervé, 1] onto and into
We propose a better approach by observing that we cggqf.

scale the vertical axis of the graph in any way we wish,
though the horizontal axis scale is fixed by the rende Results

ing method (alpha compositing). If we scale the transfee e \ye present renderings of a data sets using the tradi-
function opacities logarithmically, the result is a graphjony) (linear) opacity transfer functions in comparison to

as in Figure 11 (see colour section). In this graph, thg,, he\y logarithmically scaled opacity transfer functions.
regions of intensity are better distributed, without "push- We start with a synthetic data set which illustrates

ing” any of them off of the graph. Consequently, it WOUIdthe problem nicely. Our data set consists of concentric

be easier, both conceptually and physically, for a user @pheres generated by the following function
precisely control the intensity of a region in the volume.

This should result in more efficient transfer function edit-
ing, which is significant since transfer function editing is (z,,2) = max(0,1 — DQ V2 ¥ 42 1 22]/n) (5)
one of the most time-consuming aspects of creating clearf e ’ d

and informative renderings of medical, mathematical orh is the densitv of the dat le f
generally scientific data sets. wheref(z,y, z) is the density of the data on a scale from

. . 0to1,disthe largest dimension of the volume (in our ex-
Naturally, one can convert a linear transfer function

L e . . ampled = 128), n is the number of spheres (in Figure 2
view into a logarithmically one quite easily. If we denote :
) : . and 3 we used, = 10) and thez, y, andz coordinates
with d the dimension of the data set, thenétrepresent . o .
. o . are in voxel units with the centre of the volume as the ori-
the “optical density” (transparency) of the data set, while .

do would reoresent the corresponding “ohvsical thickd™ Figure 2 is a volume rendering of the dataset with a
ness” of the F()jata set. Adiustin pfor a %i'epcti)\//e manbin linear transfer function, and Figure 3 is a rendering of the

. ) J g' - ) PP %ame dataset with a transfer function that is linear when
from the intervall0, 1] onto and into itself, we can de-

rive the following relationship between the linearly scale(?raph(ad on the logarithmic scale (resulting in an expo-

opacity transfer function of Figure 10 and the logarith- ne\r;\?al func?on)l. that th tial t fer f
mically scaled opacity transfer functiad of Figure 11 i ehcan c (laarytse"el a ef(:;](pc:jnetn 1a h'rlant?] erl_ unc-
(see colour section); ion shows almost all layers of the data, while the linear

transfer function shows roughly half of the layers. We
o' d o expect that in this particular case a linear transfer func-
(p*)"=d" =da+ (1.0 -a) () tion should generate an image where all of the layers are

This assumes an assignment of an “optical density” fo\f|$|ble, increasing uniformly in intensity, a result which

a particular material op — (/d)* , which can be con- :?tkc])r?]liycl:zzglzved if the linear function is drawn on a loga-
sidered a user controlled parameter. The above equationT S N
he applicability of logarithmically-scaled transfer

can be expressed as ) ; L2
functions is not limited to data sets where there are large
1 regions of uniform density. Figure 6 and Figure 7 demon-
o =10 - —In((l-—e Ma+e?) (2)  strate the effect of an exponential transfer function on a
& volume consisting of thin concentric spherical shells only
Whered! is the scaled transfer function value obtaineane voxel in width. The linear transfer function is shown
from «, the transfer function value, and in Figure 4 and the logarithmic transfer function is shown
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Figure 3: rendering using an exponential transfer func-

Figure 2: Rendering using a linear transter function

tion
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Figure 4: A linear transfer function Figure 5: An exponential transfer function

Figure 6: Thin concentric shells rendered with a linear Figure 7: Thin concentric shells rendered with an ex-
transfer function ponential transfer function
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Figure 8: Laplacian-weighted histogram of the head data
set rendered in Figure 12

fluence of data points on the weight of the rendering inte-
gral in Section 3 and through our own use of the rendering
software.

Besides opacity transfer functions, the colour compo-
nent is just as unintuitive in typical transfer function de-
signs. However, this can not be fixed by a logarithmic
scale. We are currently investigating new user interfaces
that allow a more traditional data-centric transfer function
approach, without loosing the intuition typically present
in image-centric transfer function design approaches.
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Figure 14: A linear transfer function for the MRI head, Figure 15: A second transfer function on a linear scale

resulting in the image in Figure 12 resulting in the rendering in Figure 13.
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Figure 16: The same transfer function as in Figure 14
on a logarithmic scale. Both transfer functions result
in the identical rendering depicted in Figure 12.

[7]

(8]

(9]

(10]

[11]

[12]

data.
Visualization '03 IEEE Computer Society, 2003.

Gordon Kindimann and James W. Durkin. Semi-
automatic generation of transfer functions for direct
volume rendering. IfProceedings of the 1998 IEEE

Symposium on Volume visualizatiggages 79-86. [14]

ACM Press, 1998.

Gordon Kindlmann, Ross Whitaker, Tolga Tas-
dizen, and Torsten Bller. Curvature-based transfer
functions for direct volume rendering: Methods and
applications. InProceedings of the IEEE Confer-

ence on Visualization 'Q3EEE Computer Society, [15]

2003.

Joe Kniss, Gordon Kindimann, and Charles Hansen.
Multidimensional transfer functions for interactive
volume renderinglEEE Transactions on Visualiza-
tion and Computer Graphi¢$8(3):270-285, 2002.

Andreas Kinig and Eduard Giler. Mastering
transfer function specification by using volumepro
technology. InSpring Conference on Computer
Graphics 2000 (SCCG 200lyolume 17, pages
279-286, April 2001.

Marc Levoy. Display of surfaces from volume
data. IEEE Computer Graphics and Applicatigns
8(3):29-37, May 1988.

J. Marks, B. Andalman, P. A. Beardsley, W. Free-
man, S. Gibson, J. Hodgins, T. Kang, B. Mir-
tich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and
S. Shieber. Design galleries: a general approach
to setting parameters for computer graphics and
animation. InProceedings of the 24th annual
conference on Computer graphics and interactive
techniques pages 389-400. ACM Press/Addison-
Wesley Publishing Co., 1997.

InProceedings of the IEEE Conference on[13] Vladimir Pekar,

A

Data value

0.0

255
¥ Logarithmic Scale

Figure 17: The same transfer function as in Figure 15
on a logarithmic scale. Both transfer functions result
in the identical rendering depicted in Figure 13.

Rafael Wiemker, and Daniel
Hempel. Fast detection of meaningful isosurfaces
for volume data visualization. IRroceedings of the
IEEE Conference on Visualization 'Opages 223—
230. IEEE Computer Society, 2001.

Hanspeter Pfister, Jan Hardenbergh, Jim Knittel,
Hugh Lauer, and Larry Seiler. The volumepro
real-time ray-casting system. IRroceedings of
the 26th annual conference on Computer graphics
and interactive techniquegages 251-260. ACM
Press/Addison-Wesley Publishing Co., 1999.

Shivaraj Tenginakai, Jinho Lee, and Raghu Machi-
raju. Salient iso-surface detection with model-
independent statistical signatures. Rroceedings
of the IEEE Conference on Visualization :EEE
Computer Society, 2001.



