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Abstract

Manual opacity transfer function editing for volume ren-
dering can be a difficult and counter-intuitive process.
This paper proposes a logarithmically scaled editor, and
argues that such a scale relates the height of the transfer
function to the rendered intensity of a region of particular
density in the volume almost directly, resulting in much
improved, simpler manual transfer function editing.
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1 Introduction

In volumetric rendering, an opacity transfer function is
used to control what parts of the data are visible (and their
relative rendered opacities). In the simplest case, classi-
fication of the data is based on the scalar values of the
data, usually recorded as an 8 or 16-bit integer for each
discrete sample point on a grid. When a transfer func-
tion is applied, these values are mapped to a real number
typically between 0 and 1 that represents the opacity (per
unit length) associated with the data point, with 1 being
opaque and 0 being transparent. More sophisticated clas-
sification of the data, such as classification that depends
on the gradient magnitude as well as the data value, can
be specified using multi-dimensional transfer functions
[11, 9].

Transfer functions are often manually created using
an editable graph, relating the original data values on
the horizontal axes to associated opacities on the verti-
cal axis. This paper addresses the vertical scale on this
editable graph, and presents the advantages of using a
logarithmic scale instead of the usual linear one.

After a review of current transfer function approaches
in Section 2, Section 3 provides the motivation behind
using a logarithmic scale to specify transfer functions.
In Section 4 we compare images produced using trans-
fer functions specified on a linear scale with images pro-
duced using transfer functions specified on a logarithmic
scale. Section 5 summarizes our results and looks at pos-
sible future work.

2 Previous Work

Transfer functions are an essential part of the volume ren-
dering pipeline. Drebin et al. [3] have been using them
in order to assign material percentages to the given data
values. Levoy [11] used the data value and its derivative
magnitude in order to visualize boundaries of equal thick-
ness or strength. Since these methods (also classified as
data-centric) are not intuitive to use, several researchers
have tried to enhance the user interfaces in order to make
data exploration more effective.

Recently the concept of material percentage volume
has been extended by Bergner et al. [2] using spectral
transfer functions and a user interface based on a light-
dial in order to explore various parameter combinations.

Bajaj et al. [1] compute several isosurface metrics of
the data, such as the enclosed area or volume as well as
the gradient surface integral for the selected iso-value.
These metrics serve as a guide for selecting iso-values
or more complex transfer functions. The hope is that the
minima or maxima of these curves represent interesting
places in the data that are worth visualizing. This is also
known as the contour spectrum. Pekar et al. [13] suggest
Laplacian-weighted histograms that compute the gradi-
ent magnitude over the isosurface, indicating strong tran-
sition regions at its maxima. They use the divergence
theorem in order to compute the histograms efficiently.

Kindlmann et al. [7] suggest the use of 2D histograms
of the gradient magnitude as well as the second deriva-
tive of the data in the direction of the gradient. They ar-
gue that within transition regions the shape of these his-
tograms takes on a particular arch-like structure, which
can be used to guide the user to find interesting transi-
tion regions in the data. They further suggest the semi-
automatic creation of transfer functions, where the user
simply inputs a surface distance to opacity map in or-
der to visualize the data. This idea has been extended
by Tenginakai et al. [15] using a more general statistical
approach using localized k-order central moments.

Kniss et al. [9] suggest a local probing of the underly-
ing data which uses the 2D histograms of Kindlmann et
al. [7] in order to find boundary regions within the data



interactively. They describe a user interface for the as-
signment of color and opacity values. However, the ef-
fectiveness of this user interface still needs to be investi-
gated.

Other data measures have been investigated for use in
transfer function design. Curvature as a transfer function
criterion has been introduced by Hladůvka et al. [5]. A
robust computation of curvature and its use for transfer
functions and non-photorealistic rendering has been sug-
gested by Kindlmann et al. [8].

Opacity transfer functions have also been efficiently
adapted to very noisy ultrasound data by Hönigmann et
al. [6].

All these methods are known asdata-centricmethods
and tend to have fairly counter-intuitive user interfaces.
A second class of methods known asimage-centricap-
proaches try to rectify this by steering the transfer func-
tion design using a set of rendered images. This tends
to be rather computationally challenging, since volume
rendering tends to be a computationally demanding task.

The space of all transfer functions is rather large to ex-
plore. He et al. [4] use genetic algorithms in order to cre-
ate a population of transfer functions starting with a user-
given or random set of transfer functions. This requires,
however, a fitness function. Marks et al. [12] attach a user
interface to this process which groups the population into
visually similar renderings and lets the user zoom in, se-
lect and refine this population.

König and Gr̈oller [10] create a visual interface allow-
ing the creation of linear combinations of small opacity
regions. It also has an interactive color picker. This in-
terface was realized through the real-time rendering ca-
pabilities of a VolumePro graphics card [14].

The goal of this paper is to improve typical data-centric
user interfaces and hence the data exploration process.
We will show that a linear mapping of the data value to
the opacity will lead to unintuitive results, which can be
rectified by a logarithmic mapping.

3 Logarithmically Scaled Transfer Functions

We began to study the graph that a transfer function ed-
itor employs out of frustration with the counter-intuitive
results obtained when rendering volumetric data. A typi-
cal opacity transfer widget can be seen in Figure 1, while
the resulting rendering is depicted in Figure 9 (see colour
section).

We observed that when rendering data sets with rela-
tively large regions of roughly uniform density, the re-
sulting images were most sensitive to detailed changes in
the transfer function when the opacity was set nearly to
zero. Editing the transfer function within the lowest five
to ten percent of the range often resulted in the most visi-

Figure 1: A typical transfer function widget. The x-axis
denotes the data value while the y-axis denotes the opac-
ity for the respective data value. The top bar denotes the
colours assigned to the respective data values.

ble differences in the rendered images, allowing us to dif-
ferentiate finer structures in the data, while larger values
corresponded to renderings that appeared nearly opaque,
obscuring large portions of the finer structures present.
However, for smaller, thinner regions of some density in
the data, it was sometimes necessary to use higher opac-
ity values to get the region to appear in the rendering at
all.

These observations about volume renderings are due
to compositing, an iterative process that closely approxi-
mates the occlusion along a viewing ray in a volume. It
turns out that when even a small opacity value is assigned
to a region in the data of any significant size, the final ren-
dered intensity will quickly increase to near-opaque, and
it’s color will be due primarily to the sampled voxels clos-
est to the viewer. Each sample is obscured in part by ev-
ery sample in front of it, resulting in a contribution to the
intensity that is exponentially less as distance through the
volume increases. We illustrate the situation by graph-
ing the intensity of a rendered pixel as a function of both
the distance the viewing ray travels through the volume
(thickness) of the transfer function value (density) in Fig-
ure 10 (see colour section).

To put Figure 10 in the context of transfer function
editing, consider that the horizontal axis corresponds to
the thickness of a homogeneous region in the volume that
we wish to visualize (as a percentage of the total vol-
ume size) and the vertical axis corresponds to the transfer
function values that the user could set for the region. The
graph displays the intensity that will result from com-
positing the region by rendering it, as a set of ranges or
contours. Ideally, if we estimate the size of a particu-
lar homogeneous region relative to that of the volume,
we can set the intensity of the region such that it corre-



sponds to any one of the intensities on the graph that we
desire. The apparent difficulty is that most of the bands
of intensity on the graph are very narrow and are highly
dependent on the size of the region in question.

The fact that the bands span an extremely narrow re-
gion for depths above 30 percent of the volume means
that for such regions, differences in transfer function val-
ues as small as 0.001 (in the region near zero) will visibly
change the image. Even if an entire screen is used for
a transfer function editor, a user must be able to spec-
ify transfer functions to the accuracy of a single pixel to
make such changes. At the same time, values above 0.05
all map to nearly opaque, resulting in 95 percent of the
screen space being wasted.

We propose a better approach by observing that we can
scale the vertical axis of the graph in any way we wish,
though the horizontal axis scale is fixed by the render-
ing method (alpha compositing). If we scale the transfer
function opacities logarithmically, the result is a graph
as in Figure 11 (see colour section). In this graph, the
regions of intensity are better distributed, without ”push-
ing” any of them off of the graph. Consequently, it would
be easier, both conceptually and physically, for a user to
precisely control the intensity of a region in the volume.
This should result in more efficient transfer function edit-
ing, which is significant since transfer function editing is
one of the most time-consuming aspects of creating clear
and informative renderings of medical, mathematical or
generally scientific data sets.

Naturally, one can convert a linear transfer function
view into a logarithmically one quite easily. If we denote
with d the dimension of the data set, then letρd represent
the “optical density” (transparency) of the data set, while
dα would represent the corresponding “physical thick-
ness” of the data set. Adjusting for a bijective mapping
from the interval[0, 1] onto and into itself, we can de-
rive the following relationship between the linearly scaled
opacity transfer functionα of Figure 10 and the logarith-
mically scaled opacity transfer functionα′ of Figure 11
(see colour section):

(ρα′
)d = dα′

= dα + (1.0− α) (1)

This assumes an assignment of an “optical density” for
a particular material ofρ = ( d

√
d)α′

, which can be con-
sidered a user controlled parameter. The above equation
can be expressed as

α′ = 1.0− 1
−a

ln((1− e−a)α + e−a) (2)

Whereα′ is the scaled transfer function value obtained
from α, the transfer function value, and

a = max(ln d, 1) (3)

To map a point on the logarithmic graph back to a
transfer function value (which is necessary during inter-
active editing) the inverse transformation is used:

α =
e−a(1−α′) − e−a

1− e−a
(4)

whereα is the transfer function value obtained fromα′,
the logarithmically scaled value from the graph. The
main logarithmic mapping isα = e−a(1−α′), wherea is a
user controlled parameter. Equation 4 results by ensuring
a bijective mapping from the interval[0, 1] onto and into
itself.

4 Results

Here we present renderings of a data sets using the tradi-
tional (linear) opacity transfer functions in comparison to
our new logarithmically scaled opacity transfer functions.

We start with a synthetic data set which illustrates
the problem nicely. Our data set consists of concentric
spheres generated by the following function

f(x, y, z) = max(0, 1− d2n

d

√
x2 + y2 + z2e/n) (5)

wheref(x, y, z) is the density of the data on a scale from
0 to 1,d is the largest dimension of the volume (in our ex-
ampled = 128), n is the number of spheres (in Figure 2
and 3 we usedn = 10) and thex, y, andz coordinates
are in voxel units with the centre of the volume as the ori-
gin. Figure 2 is a volume rendering of the dataset with a
linear transfer function, and Figure 3 is a rendering of the
same dataset with a transfer function that is linear when
graphed on the logarithmic scale (resulting in an expo-
nential function).

We can clearly see that the exponential transfer func-
tion shows almost all layers of the data, while the linear
transfer function shows roughly half of the layers. We
expect that in this particular case a linear transfer func-
tion should generate an image where all of the layers are
visible, increasing uniformly in intensity, a result which
is only achieved if the linear function is drawn on a loga-
rithmic scale.

The applicability of logarithmically-scaled transfer
functions is not limited to data sets where there are large
regions of uniform density. Figure 6 and Figure 7 demon-
strate the effect of an exponential transfer function on a
volume consisting of thin concentric spherical shells only
one voxel in width. The linear transfer function is shown
in Figure 4 and the logarithmic transfer function is shown



Figure 2: Rendering using a linear transfer function Figure 3: rendering using an exponential transfer func-
tion

Figure 4: A linear transfer function Figure 5: An exponential transfer function

Figure 6: Thin concentric shells rendered with a linear
transfer function

Figure 7: Thin concentric shells rendered with an ex-
ponential transfer function



Figure 8: Laplacian-weighted histogram of the head data
set rendered in Figure 12

in Figure 5. The depiction of fine structures is clearly su-
perior in the logarithmic transfer function case.

Perhaps the difference is best shown on a real dataset.
In Figure 8, 12-17 we display a Laplacian-weighted his-
togram [13] of a human head dataset (MRI of dimensions
256x256x129), followed by two transfer function assign-
ments and renderings of the data.

The rendered head images and the corresponding
transfer functions, shown both on a linear and logarith-
mic scale, illustrate the situation where a small change
in the transfer function can have a very visible effect on
the rendered image (here the blue region is visible only
in Figure 12). Scaling the transfer function logarithmi-
cally makes the change in the transfer function far more
perceptible to the observer and easier to execute for the
user, since less pixel accuracy with a pointing device is
required on the logarithmic scale.

5 Conclusion and Future Research

The principles behind volume rendering are derived from
radiation theory, a realistic and physically-based model.
However, the primary purpose of volume rendering is
typically not to create fully realistic renderings, but to aid
in the understanding of the data set in question, revealing
as much detail of the data as is desired. Transforming the
transfer function opacity scale to a logarithmic one takes
the physically-based model into full consideration, and
without altering it gives the user a model that they can
treat as linear, correlating the magnitude of their changes
to the transfer function to the magnitude of the changes
they see in the renderings.

We conclude that transfer function editors with a loga-
rithmic scale (taking into account the size of the volume
in voxels) would ease the cognitive overhead of design-
ing transfer functions by producing a more intuitive and
direct response. We demonstrate this by studying the in-

fluence of data points on the weight of the rendering inte-
gral in Section 3 and through our own use of the rendering
software.

Besides opacity transfer functions, the colour compo-
nent is just as unintuitive in typical transfer function de-
signs. However, this can not be fixed by a logarithmic
scale. We are currently investigating new user interfaces
that allow a more traditional data-centric transfer function
approach, without loosing the intuition typically present
in image-centric transfer function design approaches.
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