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Abstract

In this paper we introduce algorithms to voxelize polyg-
onal meshes in common sampling lattices. In the case
of Cartesian lattices, we complete the separability and
minimality proof for the voxelization method presented by
Huang et al [5]. We extend the ideas to general 2D lat-
tices, including hexagonal lattices, and 3D body-centred
cubic lattices. The notion of connectedness in the two lat-
tice structures is discussed along with a novel voxelization
algorithm for such lattices. Finally we present the proof
that meshes voxelized with our proposed algorithm satisfy
the separability and minimality criteria.

1. Introduction

The dominant 3D object representations are polygo-
nal surface mesh representations. Most modeling tech-
niques and programs are based on polygonal representa-
tions, where they are most effective. Surface modeling
seems the most natural choice, since most real-world ob-
jects are non-transparent.

In contrast, the objects of study in scientific visualization
are more of an amorphous nature, where polygonal surface
representation does not sufficiently capture the details of the
phenomena. Hence applications in the fields of Computa-
tional Field Simulations (CFS) as well as medical imaging
(e.g Magnetic Resonance Imaging and Computed Axial To-
mography) sample the underlying continuous object of in-
terest on a 3D sampling lattice. Many visualization algo-
rithms have been developed to display this volume data with
high precision or with interactive frame rates [6].

To enhance or interact with 3D volumetric data we need
to merge it with polygonal representations of objects, which
is achieved by discretizing the polygonal data into the vol-
ume lattice.

The discretization step, which is commonly called vox-
elization, can have different goals. Visual fidelity can be
achieved by smooth voxelization, which reduces aliasing
artifacts by quantizing into 8 bit values. On the other hand

surface topological qualities can be maintained by fulfilling
the separability and minimality criteria, this is akin to one
bit quantization of the continuous data. We will focus on
these topological qualities in this paper.

While voxelization on Cartesian lattices has been stud-
ied before we will introduce algorithms for the voxeliza-
tion on optimal regular lattices. These lattices have recently
emerged in the field on volume graphics and show great
promise in storing volumetric data more efficiently, which
can lead to faster rendering algorithms [9, 7, 1, 8, 3]. The
Body-Centred Cubic (BCC) lattice is one lattice that has
been chosen previously for its simple indexing scheme [9].
Hence we will focus on this lattice in this paper.

2. Previous work

Voxelization can be classified into two major categories.
One method of voxelization focuses on topological prop-
erties, and can be seen as a binary voxelization. Another
method focuses on alias-free/smooth representation, which
usually quantizes into 8 bits. In smooth voxelization two
major approaches have emerged. Isotropic treatment of the
volumetric data has lead to a pre-filtering approach, which
applies a filtering step on the analytic surface data equally
in all dimensions before sampling [11, 2]. Another ap-
proach is based on sampling of distance fields, which es-
sentially smoothes the data in the direction of the surface
normal [4, 10].

In this paper we focus on the topological aspects of the
voxelization process. Two major concerns during binary
voxelization are the quality of the voxelized surface and
the efficient implementation of the algorithm. The notion
of separability and minimality were introduced by Huang
et al [5] as necessary conditions for an accurate and ef-
ficient voxelization. The separability condition states that
any voxelization must be thick enough to prevent any rays
from penetrating the surface. This condition guarantees
that a discrete surface will not introduce non-existent holes.
The minimality condition ensures minimum number of pix-
els/voxels are used to maintain separability, which translates
into an efficient representation.



Huang et al [5] provide voxelization algorithms for 2D
and 3D Cartesian lattices. Furthermore they formally prove
the separability and minimality of the resulting voxelized
surfaces. However, their proof does not cover all possible
scenarios and hence is incomplete. We provide a more gen-
eral proof in section 3 which covers Cartesian lattices as
well.

All previous work have been based on Cartesian lattices.
This paper will extend voxelization algorithms to hexagonal
lattices, specifically to body-centred cubic (BCC) lattices.
The lattices are superior over Cartesian lattices for their ef-
ficient distribution of sample points. A good summary of
the theoretical aspects can be found in Theußl et al [9].
Many volume rendering algorithms have been adapted to
such grids [7, 1, 8, 3]. Providing efficient and robust vox-
elization algorithms will be essential for a wide acceptance
of this alternative lattice structure.

2.1. Connectedness

In order to have the notion of a connected surface we
need to ensure that nothing can pass through the surface, i.e.
that the surface separates space. Hence we require that the
voxelized surface also separates two sides of the surface.
Minimality, on the other hand, requires that all voxels set
are absolutely necessary in order to ensure that the discrete
surface separates the two sides.

Since the notion of separability (and hence minimality)
is tightly bound to the notion of connectedness, we have to
examine the connectedness of our underlying lattices. Two
samples in a lattice are connected, when their Voronoi cells
share either a face, edge, or vertex.

In the case of 2D and 3D Cartesian lattices we find
Voronoi cells that are connected by only vertices (2D case)
or only edges and vertices (3D case). These are really de-
generate cases, which lead to special families of connect-
edness (or neighbors). In a Cartesian lattice we can define
the notion of 4 or 8 neighborhoods for the 2D case. Note
that the neighborhood in this case is defined by neighbors
sharing an edge and a vertex respectively. In 3D there are
three possible neighborhoods - 6, 18 and 26 neighborhoods
- where neighbors share a face, an edge, and one vertex re-
spectively.

Binary voxelization is concerned with creating a vox-
elized surface that is n-separable and n-minimal, where n
characterizes the neighborhood notion. The foundation of
the voxelization method discovered by Huang et al [5] is an
observation that separability is a manifestation of topologi-
cal thickness, which can be used to control separability.

Given a plane L we can control the thickness of our dis-
crete voxelization by choosing pixels that lie in between two
parallel planes LA and LB (see figure 1a).

Given the plane L in the Hessian normal form Ax+By+
Cz + D = 0 a pixel centered at grid point (x, y, z) lies

between the (normalized) planes LA and LB when

−t ≤ Ax + By + Cz + D ≤ t (1)

3. 2D lattices
In this section we will outline the algorithm for a general

2D lattice.
The point lattice is the mathematical model used when

describing a regular sampling scheme [3]. A lattice is de-
scribed by a set of basis vectors; moreover, every point in
space is described by an integer linear combination of the
basis vectors of the sampling lattice. This can be expressed
mathematically using the following sampling matrix D:

(

x
y

)

=
[

V1V2

]

[

i
j

]

(2)

V1 and V2 denote the basis vectors and i, and j denote
arbitrary integer indices.

The general Voronoi diagram of this sampling lattice is
shown in Figure 1c. It is easy to convince oneself of this fact
by starting with an orthogonal set of basis vectors (see Fig-
ure 1b), which form a rectilinear grid. By simply rotating
the second basis vector into place, one of the diagonals of
the quad shortens while the other becomes longer. Hence
two new edges appear on the shortened diagonal, which
split the respective vertices. Hence the result is a hexagon
with three parallel sets of edges. The lines perpendicular to
these sets of edges create three principal directions in this
lattice, which we simply denote by l1, l2 and l3. The dis-
tance of the sample point (the cell centre) to the edges of
these parallel edges is denoted by d1, d2 and d3 (see Fig-
ure 2a). Further we denote the angle between the line to be
voxelized and the three principal directions α1, α2, and α3

by picking this angle such that it is always less than or equal
to π/2. Now we can formulate the following theorem:

Theorem 1 The set of all voxels L̂ = {(x, y) : −t ≤ Ax +
By + D ≤ t} where t = max(di cosαi) for i ∈ {1, 2, 3} is
a separable and minimal representation of the line defined
by A, B, and D.

The proof follows in the next two sections.

3.1. Separability proof

Let us assume L̂ is not separable. In this case there has to
exist a path (a series of connected voxels) crossing the vox-
elized line, which creates a hole. I.e. none of the voxels on
that path are in L̂ and the endpoints of that path are on oppo-
site sides of the surface in their entirety. Let us connect the
voxel centres of this path, which create a path-line. This line
intersects L̂ at some place. Let us assume that the intersec-
tion happens between voxels A and B (see Figure 2b) in the
principal direction lk. Let us denote the intersection point
I . Considering the fact, that |AB| = 2dk we can assume,



without loss of generality, that |AI | ≤ dk. The distance
from the voxel centre A to the line L is d = |AI | cos(αk).
By definition, d ≤ max(di cos(αi)) for i ∈ {1, 2, 3}. We
can conclude that d ≤ t and hence A ∈ L̂ according to our
definition of L̂. This is a contradiction to our assumption
that A is not a part of L̂ and hence we have proven that L̂
must be separable.

3.2. Minimality proof

Note, that for a given line orientation the angles α1,
α2, and α3 are identical in each Voronoi cell, such that
we can determine t and the principal direction lk such that
dk cosαk is the largest of all di cos(αi) for i ∈ {1, 2, 3}.

With this principal direction we can construct so called
tunnels which are path of samples that are all co-linear
along the principal direction of lk. It is easily seen that these
tunnels tile the space (see figure 1c).

Let A and B be two pixels in such a tunnel (fig-
ure 2b),line L intersects AB at one point I . Without los-
ing generality we assume that point I is closer to A than
point B. From our assumption t = dk cosαk which means
A ∈ L̂. Since |IB| = 2dk − |IA|, we can deduce that
|IB| > dk, therefore B /∈ L̂.

In fact any point other than A is at least t = dk away
from I . We therefore conclude that for any tunnel formed
in a principal direction there exists exactly one pixel in L̂.
Therefore removing that pixel would lead to a hole in the
surface which makes this surface minimal.

3.3. Cartesian lattice

Huang et al [5] have proposed and proved the following
two theorems.

Theorem 2 Let W be the length of the side of the square
pixel in figure 1b. For t4 = W

2
cosαk the set of pixels L̂ =

{(x, y) : −t4 ≤ Ax + By + D ≤ t4 is a 4-separable and
4-minimal representation of the line defined by A, B, and D.

Theorem 3 Let W be the length of the side of the square
pixel in figure 1b. For t8 =

√

2

2
W cosαk the set of pixels

L̂ = {(x, y) : −t8 ≤ Ax + By + D ≤ t8 is a 8-separable
and 8-minimal representation of the line defined by A, B,
and D.

The respective proofs had to be omitted due to space con-
straints. Please see [12] for details.

4. 3D lattices
While we focus on the BCC lattice for the clarity of the

algorithm, the idea can be easily extended to any lattice
once the Voronoi cell of that lattice is defined.

The Voronoi cell of the BCC lattice is a truncated octa-
hedron (see figure 2c), it meets all of its neighbors through

a face. There are two types of faces in the truncated octahe-
dron, the square face and the hexagonal face. There are six
square faces and eight hexagonal faces.

We can extend the idea used in Section 3 to the 3D case
with the introduction of two criteria as we have two types
of faces. There are seven principal directions, three perpen-
dicular to the square faces l4i and four perpendicular to the
hexagonal faces l6i . The distance of the centre of the cell
to these faces is denoted with d4

i and d6

i . We also denote
the angle between the plane to be voxelized and the seven
principal directions with α4

i and α6

i . We can now formulate
the following theorem:

Theorem 4 The set of all voxels L̂ = {(x, y, z) :
−t ≤ Ax + By + Cz + D ≤ t} where t =
max(d4

i cosαi, d
6

j cosαj) for i ∈ {1, 2, 3} and j ∈
{1, 2, 3, 4} is a separable and minimal representation of the
plane L defined by A, B, C, and D.

Here (x, y, z) denotes the world coordinates according
to our Body-centred cubic sampling matrix D (compare to
the 2D case in equation 2).

The proof of this theorem is analogous to the proofs in
section 3.1 and 3.2.

4.1. Cartesian lattices

Following the ideas of section 3.3 we can adapt theo-
rem 4 to the rectilinear case or the Cartesian case as in
Huang et al [5]. We can show that for the 6-neighborhood
we would only have to consider the 3 principal directions
l4i . In this case our criteria from theorem 4 simplifies to
t = max(d4

i cosαi). Considering that d4

i = W/2 our crite-
rion simplifies to the identical criterion for 6-separable sur-
faces of Huang [5].

Considering 18-separable surfaces we have to include
edge-connected cells besides all face-connected cells. This
means we have to take into consideration 6 new principal
directions l12k , which are formed by connecting the centre
of the Voronoi cell to one of the 12 edge centres. We find
the distance to the edge centres to be d12

k =
√

2

2
W . We can

now easily formulate the criteria for 18-separable Cartesian
surface voxelization - a new result that was not included in
the work by Huang [5].

Theorem 5 The set of all voxels L̂ = {(x, y, z) :
−t18 ≤ Ax + By + Cz + D ≤ t18} where t18 =
max(d4

i cosαi, d
12

k cosαk) for i ∈ {1, 2, 3} and k ∈
{1, . . . , 6} is a 18-separable and 18-minimal representation
of the plane L defined by A, B, C, and D.

Considering 26-separable surfaces, we will treat each
corner as a special (degenerate) hexagon and include
the principal directions l6j (in addition to l4i , and l12k ).
Hence our adapted plane thickness t of theorem 4 is now:
max(d4

i cosαi, d
6

j cosαj , d
12

k cosαk). (A detailed proof



Table 1. Comparative performance of the vox-
elization algorithm for a 2563 Cartesian lattice,
a 2563 BCC lattice (BCC) and a 2273 BCC lat-
tice (BCC 70%)

Mesh 6-sep. 26-sep. BCC BCC 70%
Voxels Voxels Voxels Voxels

batwing 26156 36649 36098 28278
bug 42232 79479 56875 44754

piano 83058 107077 106326 83878
pyramid 131071 196604 165854 130503

has been omitted due to space constraints. Please see [12]
for details).

5. Results
The algorithms we have presented assume that we are

voxelizing infinite planes. To be of practical use the algo-
rithm need to be adjusted to work with polygonal meshes.
This adaptation of our algorithm works similarly to the al-
gorithm presented in [5].

We implemented the BCC voxelizer as well as the regu-
lar Cartesian lattice algorithm. The regular Cartesian lattice
was implemented for 6 and 26 separable surfaces.

We tested the resulting voxelized meshes with a flood-
ing algorithm for n-separability where n ∈ {6, 26} for the
Cartesian lattice. We also developed a flooding algorithm
for the BCC lattice in which case we flood in all 14 direc-
tions. The test was done on a gridsize of 323 and the meshes
are rotated in 5 degree increments from 0 to 360 degree. We
applied the 6-flooding test towards 6-separable surfaces, 26-
flooding towards 26-separable surfaces, and 14-flooding (in
BCC lattices) towards the 14-separable surfaces. The re-
sult of this testing confirms that the surface produced by
our voxelizer is indeed n-separable.

The results in table 1 were obtained from the following
meshes, batwing (639 triangles), bug (912 triangles),piano
(266 triangles), tetrahedron (4 triangles).

In figure 3 we show the rendering of a insect dataset
(courtesy of 3D cafe). In (a) we show the traditional Carte-
sian lattice using 26 separable surfaces. Part (b) uses the
same number of samples for the voxelization into a BCC
lattice and in (c) the size of the underlying sampling lat-
tice was reduced to 70% (which represents the same fre-
quency content as the Cartesian lattice - see Theußl [9] for
details). It can be seen that we preserve more details using
the same number of sampling points in a BCC arrangement
vs. a Cartesian arrangement. The insect legs show notice-
ably more detail in the BCC case than in the Cartesian case.
It is interesting to note that the number of surface voxels
is comparable to the number of 26-connected surface vox-

els of the Cartesian lattice. The second BCC lattice, which
had 70% less samples on its base lattice is comparable in
quality to the Cartesian version. Also the number of sur-
face samples in the 70% smaller version of the BCC lattice
is comparable to the number of surface samples of the 6-
connected Cartesian lattice, as can be seen in table 1.

6. Conclusion and future work
We have presented surface voxelization algorithms

proven to satisfy both separability and minimality con-
straints. We could prove our algorithm for general 2D lat-
tices. In the 3D case we have given an algorithm for BCC
grids and have improved the algorithm for regular Carte-
sian lattices as well. We provided a novel criteria for 18-
separable and 18-minimal surfaces.

We are currently working on a better understanding of
the general 3D lattice Voronoi cell, which will help us in
proving separability and minimality criteria.
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(a) The plane L, and two
parallel planes LA and
LB . Any voxels that lie
in between LA and LB
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(b) A regular Cartesian lat-
tice (also called rectilinear grid,
since the basis vectors are or-
thogonal)
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(c) A general 2D lattice. Note that we
have three principal directions of con-
nectedness – l1, l2, and l3.
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(a) One cell of figure 1c
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(b) A and B are the center of adja-
cent sample points on the lattice, Fk is
the edge/face shared between A and B.
|AB| = 2dk

(c) The Voronoi cell of the BCC
grid

Figure 2. Reference Images 2

(a) Voxelized bug in Cartesian lattice of
size 2563 using 26-separable surface al-
gorithm

(b) Voxelized bug in BCC lattice of size
2563

(c) Voxelized bug in BCC lattice of size
2273

Figure 3. Comparison images of voxelized bugs in different lattices


