
Volume Graphics (2003)
I. Fujishiro, K. Mueller, A. Kaufman (Editors)

Rapid Emission Tomography Reconstruction

Ken Chidlow† Torsten Möller‡

Department of Computer Science, Simon Fraser University, Burnaby, B.C., Canada

Abstract
We present new implementations of the Maximum Likelihood Expectation Maximization (EM) algorithm and the
related Ordered Subset EM (OSEM) algorithm. Our implementation is based on modern graphics hardware and
achieves speedups of over eight times current software implementation, while reducing the RAM required to prac-
tical amounts for today’s PC’s. This is significant as it will make this algorithm practical for clinical use. In order
to achieve a large speed up, we present bit splitting over different color channels as an accumulation strategy.
We also present a novel hardware implementation for volume rendering emission data without loss of accuracy.
Improved results are achieved through incorporation of attenuation correction with only a small speed penalty.

Categories and Subject Descriptors (according to ACM CCS): I.4.5 [Image Processing and Computer Vision]: Re-
constructionTransform methods

1. Introduction

Since the introduction of Computed Tomography (CT) into
clinical use in 1972, medical images have allowed radiolo-
gists to view the patients anatomy without the need of in-
vasive surgery. The strength of Transmission Tomography,
such as CT images, is the clarity of the anatomical structure.
On the other hand, in Emission Tomography, the goal is to
image the anatomy’s function. Positron Emission Tomogra-
phy (PET) and Single Photon Emission Computed Tomog-
raphy (SPECT) are common techniques in nuclear medicine
for imaging anatomical function.

A typical SPECT setup is shown in Fig. 1. The subject has
been injected with a radioactive tracer, that radiates photons.
A gamma camera rotates around the subject counting pho-
tons that are emitted. The collimator ensures that the camera
only counts photons that are coming perpendicular to it.

The Radon transform is the line integral projection of a
3D function onto a 2D plane. In medical imaging, a set of
x-ray images from different angles is the Radon transform
of the subject. The problem then is to reconstruct the 3D
object by performing an inverse Radon transform. Filtered
backprojection (FBP) is the correct analytical solution to the

† chidlow@sfu.ca
‡ torsten@cs.sfu.ca

b)

Collimator Gamma Camera

c)

Heart (Studied Organ)

a)

Figure 1: SPECT setup. Photons emitted: a) passes through
the collimator to the camera, b) is absorbed by the collima-
tor, c) misses the camera entirely.

Radon transform with no noise, which is the case in trans-
mission tomography. However, Emission Tomography uses
the attenuated Radon transform, for which FBP is only an
approximate solution. Emission Tomography also has a high
amount of noise, so FBP becomes less accurate. Since Emis-
sion Tomography is fundamentally different than transmis-
sion tomography, a reconstruction algorithm is needed that
models its physics.

A family of reconstruction techniques exist that can cor-

c© The Eurographics Association 2003.

Chidlow and Möller / Hardware EM Reconstruction

rectly modeling the physics of Emission Tomography. These
techniques are iterative and have a high computational cost,
but yield more accurate reconstructions than FBP.

Methods such as the Algebraic Reconstruction Technique
(ART) and Maximum Likelihood Expectation Maximization
(ML-EM, or EM) solve the reconstruction problem by it-
eratively measuring how close the 3D estimation simulates
the known 2D projections followed by correcting the 3D es-
timate. The measuring step is done by projecting the esti-
mation to the same angle as an original camera angle, and
then comparing the projected image to the original image.
This gives us a correction image that we now backproject to
find out how to change our estimate. The problem with itera-
tive techniques is their high computational cost. Computing
a single iteration may take many minutes, and these iterative
techniques have slow convergence rates. The computational
cost has been so high that iterative techniques are not used
clinically for SPECT.

In this work we present an implementation of the EM al-
gorithm, that enables the use of commodity graphics hard-
ware. This achieves an eight fold decrease in reconstruction
time for the same level of accuracy. In Section 2 we discuss
the previous work in accelerated reconstruction techniques.
Section 3 describes the methods we used, and in Section 4
we give the implementation details of our work. These sec-
tions are followed by results and conclusions in Sections 5
and 6, respectively.

2. Previous Work

Dempster et al.2 introduced the EM algorithm for solving in-
complete data problems in 1977, but it was not until Shepp
and Vardi 10 1982, that the EM algorithm was applied to
Emission Tomography. There have been many adaptations
and modifications of the EM algorithm that are used in re-
search in Emission Tomography.

Due to the huge computational cost of the EM algo-
rithm, a lot of research has gone into accelerating it. One
of the most significant modifications is the Ordered Subsets
EM (OSEM) algorithm introduced by Hudson and Larkin 3.
OSEM has better convergence rates than the EM algorithm,
which results in a reduction of the number of iterations
needed.

In research of hardware acceleration, the different ap-
proaches can be divided into three types. The first type is
through specialized hardware. Custom electronic boards are
made with arrays of very large scale integration (VLSI)
chips 4 which perform the necessary calculations for the pro-
jection and backprojection. The second approach is based
on distributed computing where the algorithm is broken up
into parallelizable chunks and distributed across many pro-
cessors 12. This works well as the EM algorithm is highly
parallelizable. The drawback of both of these methods, is

the cost of the hardware involved. In the third method hard-
ware is used to accelerate reconstruction is via the graphics
card. Cabral et al. 1 showed how to implement the backpro-
jection step of the FBP algorithm using graphics hardware.
More recently, Mueller and Yagel 8 used graphics hardware
to reconstruct transmission tomography with the Algebraic
Reconstruction Technique (ART).

The difference between the EM algorithm and ART is
small. Both are iterative techniques that project the estimate
volume against the original camera image to get a correc-
tion image, which is backprojected to correct the estimate.
The difference is in how the correction image is calculated.
In ART, the projection image is subtracted from the origi-
nal image, yielding a correction image that is the distance
between the two. In EM the original image is divided by
the projection image. Mueller’s work was with transmission
tomography, while ours is dealing with emission tomogra-
phy. The difference leads to different projection and back-
projection steps. Our projection adds an attenuation correc-
tion step, explained in Section 3.5. Our backprojection step
is essentially the same as Cabral’s 1 method for FBP, but for
implementation details as explained in Section 4.3.

3. Methods

3.1. Setup

The data collected by the gamma camera comes as a set of
projection images p, with the number of projections in the
set being λ. There is a total of I pixels over all projections in
the set. A single pixel from the projection data is indexed by
pi, 1 ≤ i ≤ I, which contains the counts of photons recorded.
We now reconstruct a volume v with J voxels, indexed by
v j , 1 ≤ j ≤ J, that are the expected number of photon emis-
sions. The weight matrix wi j , gives the probability of a pho-
ton emitted from voxel v j being recorded at detector pi.

The data set we use is a 3D mathematical cardiac-torso
(MCAT) phantom which models the anatomical structures
of the thorax, developed by Tsui et al. 11.

3.2. Filtered Backprojection

Filtered backprojection is almost exclusively used to recon-
struct medical images from CT data. FBP is also used to
reconstruct PET and SPECT despite its shortcomings men-
tioned in Section 1. The FBP algorithm can be separated into
two steps. First the projection data p is filtered, then the fil-
tered data p′ is backprojected across the object space. The
principle of filtered backprojection can be captured in the
following formula:

v j =
∑I

i=1 p′iwi j

λ
(1)

The backprojection step is simply a smearing of a 2D pro-
jection image across the 3D object space. This smearing can
be seen in Fig. 2, where we are looking at a single 2D slice

c© The Eurographics Association 2003.

Chidlow and Möller / Hardware EM Reconstruction

of the 3D object space. Once an angle of projection data has
been smeared across the object space, it is averaged with the
other smeared angles. To average the smeared projections,
we add them all together, and divide by the number of pro-
jections.

(a) 1 projection (b) 2 projections (c) 4 projections

(d) 8 projections (e) 16 projections (f) 64 projections

Figure 2: Example of a backprojection after (a) 1, (b) 2, (c)
4, (d) 8, (e) 16 and (f) 64 projections. This figure is of a slice
of the MCAT dataset being reconstructed. These projections
were not filtered.

3.3. Expectation Maximization

Expectation Maximization has been used to reconstruct
Emission Tomography since Shepp and Vardi 10, although
EM is not the primary reconstruction technique used in clin-
ical applications.

Since this is an iterative algorithm, the iterations are in-
dexed by k. The next estimate volume v(k+1) is dependent
on our current estimate volume v(k). We start with v(1) be-
ing uniform and positive, and in all our examples, each voxel
starts with value 1.0.

v(k+1)
j = v(k)

j

∑I
i=1

(

piwi j

∑J
m=1 wimv(k)

m

)

∑I
i=1 wi j

(2)

We now divide this equation up into four parts that are easier
to manipulate.

3.3.1. Projection

The projection step is how we go from having a 3D volume
to having a series of 2D images that correspond to the projec-
tion images captured by the gamma camera. For each pixel
i, we define our projection estimate βi:

βi =
J

∑
j=1

v jwi j (3)

That is for each pixel in a projection image, we sum up the
value of all the voxels that effect that detector. As seen in

Reconstruction kernel

j

i

v

p

Figure 3: Weight wi j is calculated by uniformly sampling
the ray from pixel i through voxel j’s reconstruction kernel.

Fig. 3, the weight wi j is the integral along the ray from pixel
pi through voxel v j’s reconstruction kernel. This is typically
approximated by uniformly sampling the ray.

Computing the projection is effectively taking an x-ray of
our volume. A projection of the volume after just one itera-
tion can be seen in Fig. 4 (a).

3.3.2. Correction Images

The next step in the EM algorithm is calculating the correc-
tion images, Ω. This is done by taking the original projection
images that the gamma camera took and dividing them by
our calculated projection images, on a pixel by pixel basis.

Ωi = pi/βi (4)

Equation 4 shows the computation of the correction images,
while Fig. 4 shows an example. As shown in Fig.4 a, we see

(a) β (b) p (c) Ω

Figure 4: Correction Image Calculation. (a) is a projection
after one iteration, (b) is an original projection, and (c) is a
correction image.

that after 1 iteration, our volume is still quite blurry. When
we create a correction image, Fig. 4 (c), dark parts of the im-
age indicate that the projection was too bright, and light parts
of the image show where the projection was too dark. Notice
that in Equation 4 it is possible to have a denominator βi of
zero. In this case we set Ωi to be zero, which will darken the

c© The Eurographics Association 2003.

Chidlow and Möller / Hardware EM Reconstruction

estimate volume in the corresponding voxels, explaining the
dark sides of Fig. 4 (c).

3.3.3. Backprojection

Now that we have our correction images Ω, notice that the
backprojection equation, Eq. 5 of the EM algorithm is the
same process as that of FBP, Eq. 1. Here we are just back-
projecting the correction images instead of the filtered pro-
jection images, and we do not divide by λ, which is compen-
sated for when we update the volume. Backprojecting the
correction image results in a volume of scaling factors Ψ. A
similar smearing results from the following equation as that
seen in Fig. 2.

Ψ j =
I

∑
i=1

Ωiwi j (5)

3.3.4. Update Volume

Once the backprojection is done, we have a volume of cor-
rection factors Ψ and we multiply voxel by voxel with our
estimate volume v(k) to yield our new estimate v(k+1). Here,
the sum of the weights is pre-computed, and in simple cases
it is the number of projections λ for each j. This is because
the weight of every voxel is one on each projection.

v(k+1)
j =

v(k)
j Ψ j

∑I
i=1 wi j

=
v(k)

j Ψ j

λ
(6)

3.4. Ordered Subset EM

In the projection step of the EM algorithm, we project the
volume at each projection angle in p. Then all correction
images are calculated and all Ω’s are backprojected. This is
done to obtain a scaling factor for the estimate volume. To
improve the convergence rate, we can divide the projections
into sets, and do a sub-iteration on each set. Using subsets
allows us to calculate a scaling factor at a smaller cost, so we
can compute scaling factors more often. This is the Ordered
Subsets EM algorithm from Hudson and Larkin 3.

Once the number of subsets have been chosen, the projec-
tions are divided evenly into the subsets. If we have M sub-
sets, then the first subset gets projection 1, M+1, 2M+1 etc.
Although it is possible to change the number of subsets after
each iteration, and change the way that the projections are
divided into subsets, our implementation does not currently
handle these cases.

This greatly decreases the number of iterations required
for reconstruction. As seen in the results section, we work
with both OSEM and EM for different purposes. When we
run EM, our goal is to closely examine convergence rates.
OSEM is much faster than EM, so we use it for speed tim-
ings.

3.5. Attenuation Correction

Attenuation correction is the modeling of the probability of
an emitted photon from a voxel attenuating through material
and reaching the gamma camera. For example, it is much
more likely for bone to attenuate a photon than flesh. To
model this, we require information regarding the location
of materials in the volume. We combine our knowledge of
the attenuation coefficients at each voxel to create a volume
called an attenuation map. The best attenuation maps come
from CT scans which measure the transmission properties of
the subject.

Updating Equation 2 to include attenuation correction re-
quires a change in both the projection and backprojection
stages.

A j = e−(µ j l) (7)

where µ j is the attenuation coefficient of voxel v j and l is the
length of a voxel, yielding A j , the attenuation factor of voxel
v j . Let ray ri extending from pixel pi have sample points
S1..Sn in order from pi to v j , as seen in Fig. 3. Now the
projection Equation 3 is updated to be:

βi =
J

∑
j=1

v j(Πn
m=1ASm)wi j (8)

Likewise, the backprojection equation, Eq. 5 becomes:

Ψ j =
I

∑
i=1

Ωi(Πn
m=1ASm)wi j (9)

Consider a small example where a detector pi is directly
in line with 3 voxels, v1, v2 and v3, with v1 being the closest
to the detector and v3 the farthest, as seen in Fig. 5. Each
of these voxels have corresponding attenuation factors A1,
A2, A3 and weights wi1, wi2, wi3 are all 1, since these vox-
els are directly in line with pi. Without attenuation correc-
tion the projection step simulates transmission tomography,
where βno−AC = v1 +v2 +v3. When accounting for attenua-
tion, βAC = v1A1 +v2A2A1 +v3A3A2A1. As a result attenua-
tion corrected projections are effected more by material that
is close to the camera.

v A v Av A1 1 2 2 3 3pi

Figure 5: Example setup with pixel pi directly in line with
three voxels, each with a value and attenuation factor.

In the backprojection step, a correction value Ωi is
distributed over the voxels of the correction volume Ψ j
weighted by wi j . In the three voxel example, without attenu-
ation correction we get Ψ1 = Ψ2 = Ψ3 = Ωi. With attenua-
tion correction the backprojection equations are Ψ1 = ΩiA1,
Ψ2 = ΩiA1A2 and Ψ3 = ΩiA1A2A3. Our implementation

c© The Eurographics Association 2003.

Chidlow and Möller / Hardware EM Reconstruction

does not do this step. We have chosen to only use the atten-
uation map in the projection step. The motivation for doing
this is to reduce the computational burden while achieving
a similar convergence. Unmatched projector / backprojector
pairs have been used in image reconstruction before, some-
times yielding an increase in the rate of convergence 6. See
Zeng and Gullberg 14 for a detailed unmatched projector /
backprojector pairs comparison.

4. Implementation

4.1. Projection

The projection step in the EM algorithm is a classic problem
in scientific visualization. Taking a volume and projecting it
to a 2D image can be done via a number of methods includ-
ing ray casting 9, 3D texture slicing 1, splatting 13, and shear
warp 5. Since we are trying to use hardware to accelerate re-
construction we will focus on methods that utilize the graph-
ics cards texture mapping capabilities. In particular, we will
focus on 3D texture slicing for its speed and other properties.

One advantage of using a 3D texture slicer is that the vol-
ume data is transferred to the graphics card once, and then
sliced as many times as needed. As data transfer between
the graphics card and main memory is relatively slow, tex-
ture slicing becomes advantageous. In 3D texture slicing, we
place the estimate volume in texture memory on the graph-
ics card, and then take a series of 2D slices of the texture
and accumulate or blend the slices in the frame buffer. This
pipeline resides almost entirely in hardware, leaving only the
calculation of the slicing coordinates to be done in software.

A major disadvantage of using graphics hardware in the
reconstruction process is the lack of precision of the hard-
ware. The standard frame buffer bit depth for PC based
graphics cards is 8-bits for each of the 4 channels, RGBα.

The volume we are reconstructing is kept as a float and is
non negative. When the volume is put into texture memory,
it gets stored as an 8-bit number, resulting in a loss of pre-
cision. Although we have a method that accounts for num-
bers with an integer component larger than 255 (see Section
4.5), the 8-bit maximum, we have not prevented loss of pre-
cision in the fractional part. We simply round each value to
the nearest integer.

3D texture slicing is used for our projection step because it
is doing exactly what would be done in software. In the soft-
ware version, when the projection angle is not axis aligned,
voxels are bilinearly interpolated, and then added along the
ray. The texture slicing does tri-linear interpolation in hard-
ware, then composites the whole slice into the frame buffer.
Although the order of operations is different, the same work
is done. When a projection is completed, the frame buffer
image is read to main memory.

4.1.1. Projection with Attenuation Correction

The projection stage requires extra steps when accounting
for attenuation correction. In software this is done by com-
puting an angular dependent attenuation volume for each an-
gle in the projection set. This is done to optimize the code
for speed, as the attenuation coefficient multiplications are
done in a pre-computation step. In the MCAT dataset, this
requires 64 volumes of size 1283 with each voxel being a 32-
bit floating point number, implying that this approach trades
memory use for reduction in computation. With a separate
attenuation volume for each projection angle, the software
now only needs to multiply each voxel in the estimate vol-
ume to the corresponding attenuation volume voxel, and add
the results together. We could take the same approach for
our hardware implementation, but the time required for the
amount of data transferred between main memory and the
graphics card would negate much of the performance gain
from using the graphics hardware.

Instead we will utilize the blending operations available,
setting the blending state to yield the same calculation. Be-
sides needing a blending equation that implements Equa-
tion 8, we also need the ability to read the values in the frame
buffer into main memory where we can accumulate without
loss of precision. To solve this problem we slice the 3D tex-
ture from front to back using a four step procedure: slice,
blend, read and clear.

We keep the product of the A j’s encountered along the
pixel’s ray in the α channel of the Frame Buffer (FBα).
When a new slice is taken, its color component can be multi-
plied by its own A j and by FBα and then added to the frame
buffer color channel FBcolor . When we need to read out the
frame buffer to main memory, we only clear the FBcolor and
leave the FBα intact.

This procedure is accomplished by first setting the 3D tex-
ture color channel to the product of the estimate volume and
the attenuation volume, v jA j . The textures α channel is set
to be the attenuation volume A. Computing the 3D texture
and transferring the texture to the graphics card occurs once
for each set of projections. When blending a slice into the
frame buffer, we need different blending equations for the α
channel and the color channel. The slice’s α channel, αslice
needs to be multiplied by the value in FBα, which keeps
the product of the A j’s encountered. The slice’s color chan-
nel Cslice needs to be multiplied by FBα and then added to
FBcolor . This way, FBcolor can be read and cleared as of-
ten as needed, but does not need to be read and cleared after
every single slice that is blended into the frame buffer.

This rendering procedure is described in the pseudocode
of Figure 6. In the pseudocode, the variable “limit” is the
input parameter and is the maximum number of slices that
can be accumulated in the frame buffer without overflow.

c© The Eurographics Association 2003.

Chidlow and Möller / Hardware EM Reconstruction

Slice3DTexture(limit)
projection[] = 0;
glBlendColor(1,1,1,0);
glBlendFunc(GL_DST_ALPHA,

GL_CONSTANT_COLOR);
glClear(frame_buffer);
for (i = 1; i <= total_slices; i++)
{
if (i % limit == 0)
{

projection[] += glReadPixels(screen);
glBlendColor(0,0,0,1);
glBlendFunc(GL_ZERO,

GL_CONSTANT_COLOR);
draw_full_screen_polygon();
glBlendColor(1,1,1,0);
glBlendFunc(GL_DST_ALPHA,

GL_CONSTANT_COLOR);
}
texture_2d = slice_3Dtexture(i);
render_slice(texture_2d);

}
projection[] += glReadPixels(screen);

return;

Figure 6: 3D texture slicing pseudocode with attenuation
correction.

4.2. Correction Image

Once we have our computed projections βi which are inte-
gers, we calculate the correction images. The original pro-
jections, pi are also integers as they are simply detector
counts. The correction image calculation, Equation 4, gives
us Ωi. The problem with doing this in graphics hardware
is the range of Ωi, which is a non negative real number,
[0 . . .∞). Accordingly, this step is done in software.

With the large data range of Ωi, backprojecting becomes
tricky. First we must scale our data into an integer range,
backproject it, and then scale it back. Before scaling Ωi, we
clamp the correction image data to a more reasonably sized
range. The histogram for the correction images should be
tightly centered around 1.0, especially as we iterate and be-
come close to a solution. This can be seen in the histogram,
Fig. 7, where in the first iteration the values are not centered
around 1.0, but after ten iterations they are. As the histogram
indicates few values greater than 2, we have chosen to clamp
Ωi to the range [0 . . .2], leaving us with Ω′

i . Now that our Ω′
i

are in the range [0 . . .2], scaling the correction images into
8-bit integers is done with a scaling factor of δ = 127. The
scaling can be written as Ωδ

i = Ω′
iδ.

The clamping of the data range has very little effect on the
convergence properties, as the theoretical range maximum
rarely occurs. What we limit is the algorithms potential to
increase the intensity of the voxels to twice the previous in-
tensity per iteration. With this limitation, assuming a limit of
12-bit data, it could take up to 12 iterations for the maximum
intensity to be reached. Our volume data is actually much
smaller than the projection data in values, as a projection
pixel is the sum of the voxels that the pixel beam intersects.

Figure 7: Histogram of correction image. As we iterate, the
histogram becomes more centered around 1.0.

In EM reconstruction it is common to do many iterations,
often upwards of 80. Since the number of iterations required
to correct for the range clamping is an order of magnitude
less than the number of iterations run, this range clamping
does not effect the overall convergence.

4.3. Backprojection

The backprojection step is done by taking one row of each
scaled correction image and smearing it across the frame
buffer, resulting in a 2D slice of our volume. This is then
done for each row, constructing a correction volume slice
by slice. Our backprojection implementation slightly dif-
fers from Cabral’s 1 as ours is implemented on PC graphics
cards that do not have an accumulation buffer. We accumu-
late in the frame buffer via blending with the OpenGL blend
operator blendFunc(GL_ONE,GL_ONE). Unfortunately the
frame buffer only has 8-bits per channel so we need to be
careful not to allow our frame buffer to overflow. The major
bottleneck in this process becomes the data transfer between
the graphics card and main memory, where we can accumu-
late. To minimize the data going to the card, we use 1D tex-
tures, and use the graphics hardware to stretch the 1D texture
over the 2D frame buffer. A discussion of minimizing frame
buffer reads into main memory is presented in Section 4.5.
After the backprojection step is complete, we have a correc-
tion volume Ψδ that is still scaled up by δ.

4.4. Update Volume

Now that we have our correction volume Ψδ as integers, we
need to scale it back to get Ψ as floating point numbers. The
modified equation to get our new estimate volume is now:

v(k+1)
j =

v(k)
j Ψδ

j

δλ
(10)

c© The Eurographics Association 2003.

Chidlow and Möller / Hardware EM Reconstruction

We do this step without use of the graphics hardware because
of the precision required. The estimate volume voxels v j are
32-bit non-negative floating point numbers, as are Ψ j .

4.5. Frame Buffer Extension

In practice, we need more bits for the RGBα channels than
the standard 8 bits per channel available on most PC graph-
ics cards. Our data often uses more than 8 bits per voxel,
so no single slice fits in the frame buffer. Second, we would
like to be able to accumulate in the frame buffer without the
possibility of overflow. The more we can accumulate in the
frame buffer, the less we need to read the frame buffer to
main memory. As graphics cards have not been optimized
for data transfer from the card to main memory, the frame
buffer reads are time consuming. Mueller 8 also needed to
extend the frame buffer, using 16-bit CT data on SGI ma-
chines with 12 bit frame buffer channels.

For this example, we will assume that the input data is
16-bit, even though SPECT data is usually 12-bit or less. We
demonstrate this technique with a simple example of adding
two numbers, 1243 plus 869 equals 2112.

By breaking up our 16-bit value into four pieces that are
four bits each, we can utilize all four channels in the frame
buffer. This can be seen in the example shown in Fig. 8
where two numbers are divided up into four pieces and
added together.

α B G R

0000 0100 1101 1011
0000 0011 0110 0101

0000 0000 0000 0111 0001 0011 0001 0000

Figure 8: Virtual frame buffer extension. This example
shows the decimal numbers 1243 and 869 being added using
all four color channels.

Now we can add 17 values into the frame buffer without
any overflow. When we read the frame buffer back into main
memory we must shift our results to get the original value
back. This is shown in Fig. 9 which starts with the result of
the adding stage shown in Fig. 8.

α 0000 0000
B 0000 0111
G 0001 0011
R 0001 0000

0000 0000 1000 0100 0000

Figure 9: Combining the four channels to get the result. In
this example, the result in decimal is 2112

We achieve only a 4/17ths reduction in data transfer, as
we only read every 17 additions, but when we read, we have
data in all 4 channels instead of just 1. However the graphics
hardware used passes all four channels simultaneously. This
means that we get a full 1/17th reduction in time taken for
the data transfer.

As mentioned earlier, SPECT volume data is often signif-
icantly less than 16 bit, so we can distribute data bits over
multiple channels as needed. We do not actually need to
know the final number of bits needed for the volume data,
as we can check after each iteration what the volume’s max-
imum value is, and dynamically decide the bit distribution,
and the resulting number of frame buffer reads required. We
propose an improvement in Section 5.1.1 to the case where
we split the data unevenly across the color channels over
previous methods.

4.6. Other Applications

Projecting an emission volume is a problem encountered by
Max 7. Part of his work showed volume rendering of clouds
and gases which have emission properties. A problem that
we have in common with Max is that the range of the ac-
cumulation far exceeds the range of the graphics hardware.
To deal with this, Max uses a very small constant scaling
factor so that the accumulation does not exceed the available
hardware range. This has the adverse result of clouds that are
“too tenuous at the edges”. We propose an accurate solution
to this problem in Section 4.1.1.

5. Results

We use Tsui et al. 11’s 3D mathematical cardiac-torso
(MCAT) phantom, which models the anatomical structures
of the thorax. The MCAT phantom is of size 1283 and has
64 projections, with 1282 pixels each.

To measure the accuracy of our reconstruction we com-
pare the reconstructed volumes to the true MCAT phantom
volume, T . Our primary measure of accuracy is the average
Relative Error (RE) to T , defined as follows:

RE =
1
J

J

∑
j=1

|Tj − v j|

Tj
(11)

We also use the Peak Signal to Noise Ratio (PSNR) which is
based on the Root Mean Square Error (RMSE) metric.

RMSE =

√

√

√

√

1
J

J

∑
j=1

(Tj − v j)2 (12)

PSNR = 20log10

(

max(T)

RMSE

)

(13)

PC Timings were obtained on an AMD MP 2000+, with
2GB of RAM, and an NVidia GeForce 4 Ti 4600, running

c© The Eurographics Association 2003.

Chidlow and Möller / Hardware EM Reconstruction

Linux and Windows. The software version timings were per-
formed under Linux, and the hardware timings under Win-
dows. Both the software and hardware versions run under
both operating systems, and the timings are reported on the
operating system that optimal performance was achieved on.
Note that if the system had 1GB or less RAM, it would not
be able to run the software version as quickly, as memory
paging dramatically slows down the PC.

In the reconstructions from both the software and hard-
ware methods, the data occupies a small range. Without
attenuation correction, the reconstructions have the range
[0. . . 16], while attenuation corrected reconstructions are in
the range [0. . . 55]. Although radiologists are trained for
viewing gray scaled images, we found it useful to examine
colored images which can emphasize small changes. Both
color and gray scaled images (scaled up by 4.5) can be seen
in Fig. 13 and Fig. 14 respectively.

5.1. Expectation Maximization

In EM reconstruction, we have surpassed the speed of the
software implementation by more than eight times, without
any loss of accuracy. The error analysis and timings can be
seen in Table 1 and the reconstructed images are in Fig. 11.

No Attenuation EM OSEM
Correction SW HW SW HW

Time (sec) 851 98 130 30.8
Speed up factor 8.7 4.2
RAM (MB) 250 66 250 78
Avg iteration (sec) 10.6 1.2 13.0 3.1
Relative error .256 .260 .256 .259
PSNR 17.6 17.6 17.6 17.6

Table 1: Overall comparison table between software (SW)
and hardware (HW) methods without attenuation for 80 EM
iterations and 10 OSEM iterations.

The projection step does not use the frame buffer exten-
sion with the MCAT dataset, as the volume values are small
enough to allow accumulation of multiple slices. The only
error induced here is from rounding the 32-bit floating point
volume voxels into 8-bit integers to fit into texture mem-
ory. Our implementation of 3D texture slicing achieves 82.3
frames per second (FPS) while accumulating 17 slices in the
frame buffer per read without use of the frame buffer ex-
tension. Our implementation changes the number of slices it
can accumulate in the frame buffer according to the values
in the volume, making sure that no overflow can occur. After
each iteration is completed, the maximum value in the vol-
ume is found and used to determine the number slices per
frame buffer read used in the projection step. This means
that the first few iterations are very fast, but the projection

step slows down as it converges. In the MCAT phantom, the
convergence point has 17 slices being accumulated per read.
The number of reads per projection has an inverse linear re-
lationship with the time required for a projection.

In the backprojection step, the 8-bit scaled correction data
Ωδ is broken into four 2-bit chunks and placed in texture
memory in the RGBα channels. Backprojecting the 64 cor-
rection images on a slice-by-slice basis, reconstructing a cor-
rection volume Ψδ of size 1283 is done in 0.26 seconds.

5.1.1. Error Analysis

When using texture mapping hardware, the result of any cal-
culation is rounded. If the texture contains our data split
across multiple channels, the round off error in a channel
containing upper bits will result in a large error when the
value is combined.

The MCAT dataset and the real datasets that we have ob-
tained all have small enough values that the frame buffer ex-
tension is not needed in the projection step. However, the
frame buffer extension is used in the backprojection step. To
quantify the error introduced by this technique, the following
experiment was conducted. We backprojected 8 bit correc-
tion data without the extension, and read out the frame buffer
after each correction image was backprojected. This was
then used as the true backprojection that the frame buffer
extension based backprojection techniques were compared
to. The results of the experiment are listed in Table 2.

Input Bits in αBGR FB reads Time RE PSNR

0008 64 4.2 - -
0053 8 .93 .0037 63.0
0035 8 .92 .0089 54.9
0044 4 .60 .0057 58.9
2222 1 .26 .0159 49.9

Table 2: Error comparison on frame buffer extension tech-
niques against no extension (top line) in backprojection. The
α channels holds the highest bits while the Red channels gets
the lowest.

The results of this test appear to indicate that the error
is relatively small. Although the error is small per iteration,
over many iterations, it accumulates, resulting in noisy im-
ages (see Fig. 11).

5.2. Ordered Subset Expectation Maximization

In our OSEM experiment, we used 8 subsets of size 8, with
numeric analysis show in Table 1, and visual comparison
available in Fig. 12. The more frequent transfer of data re-
quired in OSEM between the graphics card and main mem-
ory has significantly cut down the performance gain of hard-

c© The Eurographics Association 2003.

Chidlow and Möller / Hardware EM Reconstruction

ware over software. However, our graphics hardware imple-
mentation is still almost 4 times faster than software. There
is also a slight decrease in error in our OSEM implementa-
tion over our EM, as the error from the frame buffer exten-
sion is minimized as mentioned in the following section.

5.2.1. Ordered Subsets in Frame Buffer Extension

Using ordered subsets for the reconstruction does not ef-
fect the projection step, except for the number of projec-
tions made at a time. The backprojection step however can
be altered, as it uses the virtual frame buffer extension based
on the number of correction images that are being backpro-
jected. In the MCAT dataset, we have 64 projections. To read
out the frame buffer only once to main memory, 2-bits are
put in each of the RGBα channels. Remember that the cor-
rection images are scaled, so we know that all 8-bits are used
in the value that are being backprojected. When using Or-
dered Subsets, the size of the subsets determines the bit allo-
cations. For example, if our subset size is 16, then we can use
two color channels, putting 4 bits in each, and we only need
to read out once. With a subset size of 8, we can put 5-bits in
the upper channel (Green), and 3-bits in the lower (Red), and
accumulate all 8 images in the frame buffer while minimiz-
ing the error. This is a different approach than Mueller’s 8

frame buffer extension. By placing the upper 5-bits in the
green channel and the lower 3-bits in the red channel, we re-
duce the size of any round off error caused by the hardware.
Previously, uneven division of bits has had fewer upper bits
and more lower bits. Note the improvement on error in Ta-
ble 2 (second vs. third line) from this change. Mueller’s ap-
proach has an advantage if the values are often small enough
that they do not get divided. We know the average size of
our scaled values, and know that we do not have many val-
ues small enough for this division style to be advantageous.

5.3. Attenuation Correction

The hardware based reconstruction algorithm only uses the
attenuation map in the projection step. The software uses the
attenuation map in both the projection and the backprojec-
tion step. This results in higher error in the hardware re-
construction, and means that a direct comparison is unfair.
In terms of speed, the hardware method does a full OSEM
reconstruction in less time than the software takes just for
the pre-computation step. Using the hardware reconstructed
volume as an initial estimate for the software reconstruction
becomes a viable option, that can cut down on the number
of software iterations necessary. Looking at Table 3 we see
that the hardware method was over 5 times faster than soft-
ware for EM and over 5 times faster using OSEM. Also note
the huge memory consumption for the software version. This
implies that the software version has a scalability problem,
as either increasing the dimensions of the reconstruction, or
the number of projections may require more RAM than rea-
sonable even on high end PC’s.

With Attenuation EM OSEM
Correction SW HW SW HW

Time (sec) 897 174.6 205 47.8
Pre-comp (sec) 55 0 55 0
Speed up factor 5.5 5.4
RAM (MB) 1330 66 1330 78
Avg iteration (sec) 11.2 2.2 20.5 4.8
Relative error .109 .146 .109 .131
PSNR 29.3 28.4 29.3 29.0

Table 3: Comparing software (SW) and hardware (HW)
methods with attenuation for 80 EM iterations and 10 OSEM
iterations.

5.4. Convergence

As seen in Fig. 10, the convergence of EM without attenu-
ation correction is the same for both the hardware and the
software version. The hardware version does not seem to be
effected by the correction image range clamping mentioned
in Section 4.2. However, the range clamping might be the
reason why the convergence of the hardware version is not
the same as software when using the attenuation map. The
slope of the error curve is not as steep in the first few it-
erations for hardware, but seems to be caught up by 15 it-
erations. Not having a backprojection step that utilizes the
attenuation map is why there is still a small difference be-
tween the hardware and software methods.

Figure 10: Relative Error vs Iterations for EM with attenu-
ation correction (AC) and without (NAC) for both software
and hardware.

A slow hardware method is shown here and in Fig-
ures 11, 13 and 14. This version of the hardware method
does not use the frame buffer extension from Section 4.5
in the backprojection step instead we read the frame buffer
after every projection. As a result, it has lower error, pro-
duces smoother images but does take longer to reconstruct.

c© The Eurographics Association 2003.

Chidlow and Möller / Hardware EM Reconstruction

We show these images to demonstrate the potential that the
hardware accelerated methods have.

6. Conclusions

The results of our work indicate that graphics hardware can
be used for iterative reconstruction via the EM algorithm,
with the same level of accuracy and a significant increase in
speed. We achieve a large increase in speed with minimal
error through our new bit splitting method. The error anal-
ysis on bit splitting shows our method has a significant re-
duction in error over previous methods. We incorporated the
ordered subset modification for the EM algorithm to achieve
an increase in convergence rate. We also incorporated the use
of attenuation maps to properly compute the inverse of the
attenuated radon transform. We demonstrated how to accu-
rately implement the hardware accelerated rendering of vol-
umes with emission properties.

7. Future Work

In the near future, graphics hardware will become available
with a higher resolution pipeline. Until now the standard
graphics card pipeline has been 8-bits per channel; how-
ever, two leading graphics processor manufacturers, ATI and
NVidia, are now developing floating point pipelines with up
to 32-bits per channel. With this new technology the errors
added in the methods we presented can be removed from the
reconstruction process, and the reconstructions should be in-
distinguishable from those constructed in software. The new
technology will permit a speed up via removal of the cur-
rent data transfer bottleneck. Without the need to accumulate
in main memory, the data transfer will be lowered, and the
hardware-based reconstruction will be faster than that pre-
sented here.

Our future work includes reconstructing clinical SPECT
datasets. We hope to obtain data of larger dimensions than
1283 and data with more than 64 projections. Since it is un-
common for SPECT data to be higher resolution than 1283,
we plan on obtaining data from other modalities. We will
also implement attenuation correction in the backprojection
step in software and hardware to do a proper error analysis
on reconstruction with attenuation correction. We plan on
hardware reconstruction using a full 3D version of the EM
algorithm. The software version of this algorithm takes over
35 minutes per iteration on the PC system described earlier.

8. Acknowledgments

The authors would like to thank Klaus Mueller for useful
advice, Anna Celler, and Stephan Blinder for medical ex-
planations and datasets, and Troy Farncombe for guidance,
encouragement and datasets! Special thanks to Steve Kilthau
for fruitful discussions, and all the members of GrUVi lab.

The authors would also like to acknowledge the National

Science and Engineering Council of Canada (NSERC), the
Advanced Systems Institute (ASI) of British Columbia and
the Canada Foundation of Innovation (CFI) who partially
funded this research.

References

1. B. Cabral, N. Cam, and J. Foran. Accelerated volume ren-
dering and tomographic reconstruction using texture mapping
hardware. In Symposium on Volume Visualization, pages 91–
98, 1994.

2. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the em algorithm. In J. Royal Stat.
Soc., volume Ser.B, 39, pages 1–38, 1977.

3. H. M. Hudson and R. Larkin. Accelerated image reconstruc-
tion using odered subsets of projection data. In IEEE Trans-
actions on Medical Imaging, pages 100–108, 1994.

4. W. Jones, L. Byars, and M. Casey. Positron emission tomo-
graphic images and expectation maximization: A vlsi architex-
ture for multiple iterations per second. In IEEE Transactions
on Nuclear Science, volume 35, No. 1, pages 620–624, 1988.

5. P. Lacroute and M. Levoy. Fast volume rendering using a
shear-warp factorization of the viewing transformation. In
Computer Graphics (Proceedings of SIGGRAPH 1994), pages
451–458, 1994.

6. D. Lalush and B. Tsui. Improving convergence of iterative
filtered backprojection algorithm. In Medical Physics, vol-
ume 21, pages 1283–1286, 1994.

7. N. Max. Optical models for direct volume rendering. In IEEE
Transactions on Visualization and Computer Graphics, vol-
ume 1, No. 2, pages 99–108, 1995.

8. K. Mueller and R. Yagel. Rapid 3-d cone-beam reconstruc-
tion with the simultaneous algebraic reconstruction technique
(sart) using 2-d texture mapping hardware. In IEEE Transac-
tions on Medical Imaging, volume 19, No. 12, pages 1227–
1237, 2000.

9. P. Sabella. A rendering algorithm for visualizing 3d scalar
fields. In Computer Graphics (Proceedings of SIGGRAPH
1988), volume 22 (4), pages 51–58, 1988.

10. L. Shepp and Y. Vardi. Maximum likelihood reconstruction
for emission tomography. In IEEE Transactions on Medical
Imaging, volume MI-2, pages 113–122, 1982.

11. B. Tsui, X. Zhao, G. Gregoriou, D. Lalush, E. Frey, R. John-
ston, and W. McCartney. Quantitative cardiac spect re-
construction with reduced image degradation due to patient
anatomy. In IEEE Transactions on Nuclear Science, volume
41, No. 6, pages 2838–2844, 1994.

12. S. Vollmar, C. Michel, J. Treffert, D. Newport, M. Casey,
C. Knöss, X. L. K. Weinhard, M. Defrise, and W. Heiss.
Heinzelcluster: accelerated reconstruction for fore and
osem3d. In IEEE Transactions on Medical Imaging, volume
M9C, No. 14, pages 1766–1770, 2001.

13. L. Westover. Footprint evaluation for volume rendering.
In Proceedings of SIGGRAPH 1990, pages 367–376. ACM,
1990.

c© The Eurographics Association 2003.

Chidlow and Möller / Hardware EM Reconstruction

14. G. Zeng and G. Gullberg. Unmatched projector/backprojector
pairs in an iterative reconstruction algorithm. In IEEE Trans-
actions on Medical Imaging, volume 19, No. 5, pages 548–
555, 2000.

c© The Eurographics Association 2003.

(a) (b) (c)

Figure 11: EM, 25 iterations: (a) hardware with Frame Buffer Extension (FBE), (b) hardware without FBE,(c) software.

(a) (b) (c)

Figure 12: OSEM, 5 iterations: (a) hardware using 5-3 split FBE, (b) hardware using 2-2-2-2 split FBE, (c) software.

(a) (b) (c)

Figure 13: Attenuation Correction EM, 25 iterations: (a) hardware using FBE, (b) hardware without FBE, (c) software

(a) (b) (c) (d)

Figure 14: Attenuation Corrected EM, 25 iterations no classification function: (a) hardware using FBE, (b) hardware without
FBE, (c) software, (d) Phantom

