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Abstract

The work presented here describes two methods to incorporate via-
ble illumination models into Fourier Volume Rendering (FVR).
The lack of adequate illumination has been one of the impediments
for the wide spread acceptance of FVR. Our first method adapts
the Gamma Corrected Hemispherical Shading (GCHS) proposed
by Scoggins et al. [11] for FVR. We achieve interactive rendering
for constant diffusive light sources. Our second method operates
on data transformed by spherical harmonic functions. This latter
approach allows for illumination under varying light directions. It
should be noted that we only consider diffuse lighting in this paper.
We demonstrate and compare the effect of these two new models
on the rendered image and document speed and accuracy improve-
ments.
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1.  INTRODUCTION
Fourier domain volume rendering (FVR), introduced by
Malzbender [6], and extended by Totsuka and Levoy [12], is a
direct volume rendering algorithm that is significantly different
from all commonly used ones (for an overview of volume render-
ing algorithms see [7]). FVR is based on the Fourier projec-
tion-slice theorem [2]. Therefore the algorithmic complexity for
rendering an  volumetric dataset is  after incurring
a  pre-processing step. All other rendering algorithms
are required to traverse the entire volume and hence have an algo-
rithmic complexity of . By suitably pre-multiplying the fre-
quency data, one can also achieve depth cues and effects similar to
diffuse lighting.

There are two impediments to widespread acceptance of Fourier
volume rendering. The first one is the inability to deal with occlu-
sion. At best, the images produced by FVR resemble X-Ray
images. The Radon transform which is the basis for the existence
of the projection-slice theorem is essentially a summation of the
function values along the rays through the object. Unless funda-
mental advances are brought to include opacity weighted sums into
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the back-projection process, occlusion will remain a major impedi-
ment for widespread acceptance of FVR.

Another major impediment has been the lack of illumination mod-
els in the Fourier domain. Moreover, every time that lighting
attributes are altered the Fourier transform has to be re-computed
and several expensive frequency space operations have to be com-
pleted. Lighting is essentially non-linear. Consider diffuse illumi-
nation. A surface or voxel point is illuminated by evaluating the
operator max(0, N.L), where N is the surface normal at the point
under discussion and L is the direction of light pointing on the sur-
face. This is a non-linear operator since max(0, N.(L1+L2)) is not
equal to the sum of max(0, N.L1) and max(0, N.L2). The non-lin-
earity of this operator precludes it’s projection into the Fourier
basis. The achievement of Totsuka and Levoy [12] was the
replacement of the non-linear illumination with the hemispherical
illumination operator. This operator is proportional to the quantity
(1+N.L). Now, the Fourier transform can be applied to all sample
points hemispherically shaded. However, the approximation
results in fairly poor images (see Fig. 4). Scoggins et al. [11] sug-
gested a better approximation by raising the hemispherical reflec-
tion term to the cube. They called it the Gamma-Corrected
Hemispherical Shading (GCHS). Their insight was that culling
back-lit surfaces is equivalent to using the maximum operator.
Hence, if an approximate function treats front-facing surfaces
more favorably than back-facing ones, our goal of shading in the
Fourier domain would be more realizable. However, it should be
noted that the GCHS operators are not linear. On the other hand,
one could still project the polynomial functions onto the Fourier
basis. In this paper, we show how one could achieve the imple-
mentation of common illumination operators in the frequency
domain and increase the effectiveness of FVR. The results
obtained are of higher quality than those obtained in earlier work.

An advantage of the approach of Scoggins [11] is that re-lighting
can be conducted for surfaces. Additional storage is certainly
needed. However, it should be noted that for volumetric data the
expense can be staggering. Re-lighting and re-viewing can easily
be achieved if the function being subjected to a Fourier transform
does not depend on the light and observer attributes. Light and
view directions are often described in a global co-ordinate system.
Spherical harmonic transforms allow the expression of illumina-
tion on a sphere as a linear combination of harmonic basis func-
tions parametrized by the two orientation angles in a polar space.
Through adequate rotations it can be shown that the illumination is
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a linear combination of the transformed light directions. This
allows for quick re-lighting. It should be noted that although there
do not exist explicit surfaces, the spherical harmonic transform
will have an impact on the volumetric-gradient implied surfaces.

Thus, a comprehensive framework for incorporating lighting in the
frequency domain requires the application of both the spherical
harmonics and the Fourier transform. The Fourier back projection
can still be used for quick renderings. However, there is a cost that
is associated with transforming shading operators into harmonic
domains. Memory consumption can be high given the expression
of intermediate operations as convolutions. This work reported
here is an exploration of the research questions that address illumi-
nation operators in the frequency domain. The work in our opinion
is in no way complete.

In Section 2 we discuss previous work in Fourier volume render-
ing and the use of spherical harmonics towards surface lighting
problems. Section 3 describes the Gamma Corrected Hemispheri-
cal shading operator, while Section 4 describes the projection of
this operator onto the Fourier basis. In Section 5 we discuss the use
of spherical harmonics for volumetric shading and explain how
re-lighting can be realized easily. Where necessary, we include
appropriate images to drive home some observations and claims
about our methods. Finally, in Section 6 we offer a summary and
point to the future.

2.  PREVIOUS WORK
Fourier Volume Rendering was first introduced by Malzbender [6]
and Totsuka and Levoy [12] in 1993. Totsuka and Levoy extended
the ideas of Malzbender to include diffuse and depth shading into
Fourier Volume Rendering.

The idea of Fourier volume rendering was combined with the
wavelet transform by Gross et al. [4] as a multi-resolution acceler-
ation to the algorithm. Their method also benefits from the fact
that the Fourier transforms of the wavelets and scaling functions
can be computed analytically. Westenberg et al. [13] propose Fou-
rier Wavelet Volume Rendering. This allows a direct computation
of the wavelet decomposition of the rendered image, which leads
to quick progressive refinement implementations of the volume
rendered images. However, all of the Fourier volume rendering
algorithms are limited to parallel projections and X-ray type ren-
dering. Since the accuracy of the slicing operation has tremendous
effects on the image quality, hardware accelerated slicing may
cause unwanted artefacts. However, there do exist methods that
exploit suitable hardware including texture maps [3].

Spherical harmonics have been applied to diverse problems related
to general reflection functions [14], reflection variations due to
bump-mapped surface [3], re-lighting images in image-based ren-
dering systems [15], and to the acceleration of global illumination
calculations [10]. Spherical harmonics are the analog to Fourier
functions in the spherical coordinate system, with properties simi-
lar to the Fourier basis functions. Signals can be approximated
with a linear equation, but many coefficients are often necessary to
accurately reconstruct signals containing high frequency compo-
nents. Recent work [1][8] has shown that a large number of coeffi-
cients in a spherical harmonic series can be set to zero if the
reflection function being approximated is evaluated in a preferen-
tial local coordinate system.

3.  APPROXIMATE SHADING
Images produced by normal diffuse shading employ a non-linear
function, the max function, to account for visibility for illumina-
tion. Typically the diffuse term is computed by

, (1)

where N is the normalized gradient vector and L is the normalized
light vector. This requires repeating linear transformations, such as
the Fourier transform, whenever lighting changes. If visibility is
ignored, negative image intensity values result. Alternative shad-
ing is afforded by hemispherical formulation and the correspond-
ing operator is computed as:

(2)

Hemispherical shading has been used [5][12] as a substitute dif-
fuse shading function since linear transforms may be applied to the
surface normal data once and re-evaluated in transformed space as
lighting changes. Hemispherical shading is similar to that seen in
an overcast outdoor setting and produces reduced image contrast.
To minimize the visual difference between hemispherical and dif-
fuse shading, one can use gamma correction and scaling given by:

(3)

The Gamma Corrected Hemispherical Shading (GCHS) has been
used [11] to modify hemispherical image histograms so that the
image approximates diffuse shading with the max function. If an
integer gamma correction factor g is selected, an exact shading
polynomial can be obtained in which coefficients ai, , are
derived from a light vector only, and the same number of geomet-
ric terms Vi from unit surface normals only. Therefore, linear trans-
forms may be applied to the Vi and re-evaluated for changing
lights, through ai, without performing a new transform.
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FIGURE 1. Differences between Linear and Cubic approxima-
tions to Max function



To illustrate how gamma correction can significantly reduce visual
differences between hemispherical and diffuse shading consider
Fig. 1. Values on the abscissa measure the inner product of the sur-
face normal vectors, N, and the light vector L. The ordinate values
represent the device display range normalized from zero (0) to one
(1). The curve labeled  characterizes the commonly
used mapping in which negative dot product results are clamped to
zero (0) and positive results are mapped to the entire display range
of the device. The curve labeled  is the hemispheri-
cal shading function in which the full range of the dot product

 is mapped to the display range. This produces positive dis-
play values even for back-facing surfaces which would be set to
zero (0) by the max function. Note that, prior to dividing

 by two (2) to scale to the display range, positive values
of  correspond to values greater than or equal to one (1) in

 and negative  values correspond to those less
than one (1)

Applying a gamma correction of greater than one (1) to
 and then scaling can therefore greatly reduce the dis-

play intensities that correspond to a negative . While values
greater than one (1) are also effected, the error relative to 
can be made to be relatively small by selecting an appropriate
gamma exponent. In this manner, we eliminate the necessity of
employing the max operator for visibility without introducing neg-
ative intensity, and produce images that are visually almost indis-
tinguishable from normal shading (see Fig. 2). The smallest
possible integer exponent is most useful since fewer terms are pro-
duced in a polynomial expansion of the equation, as in [11]. An
exponent of three (3) yields the curve  in Fig. 1,
has been found to be optimal since it is the smallest exponent that
produce an inflection point, allowing the curve to pass through
both 0 and 1. This results in the Error curve of Fig. 1. A more
detailed explanation of the GCHS method and its’ salient features
are available in [11].

4.  FOURIER DOMAIN APPROXIMATE SHADING
The utility of the gamma corrected shading is to approximate the
actual diffuse shading term  with the better approxi-
mation namely, . Since this term is also not linear, a
direct implementation is susceptible to changes in light-source
direction. It is necessary to subject the shaded version of the data
to a Fourier Transform. An alternative is the following: for
changes in light direction, the shading is computed through a linear
combination of various convolutions of versions of the data in the

frequency domain. In this section we show how this can be real-
ized. The operation necessary for gamma-corrected shading is:

(4)

The above computation can be implemented in the Fourier domain
by considering each of the terms separately in the following way.

4.1  Linear 
This has already been shown by Totsuka and Levoy [12]. We sim-
ply remember that a derivative in the spatial domain is synony-
mous with a linear ramp function in the Fourier domain. We first
express the term under consideration as:

(5)

Here, we denote the derivative components with a subscript, i.e.

. The components of the light vector are denoted by

. Now we can conclude that the Fourier transform

(denoted by ) is:

(6)

It should be marked that we use the notation . This
particular term can be computed in a very straightforward manner
[12].

4.2  Quadratic 
A brute-force evaluation would lead to

(7)

We can re-write any combination of two derivatives  and  in
the following way:

(8)

Hence, we can re-write Equation 7 in the following way in the fre-
quency domain:

(9)

Note that convolution is denoted by the symbol .

4.3  Cubic 
The cubic term can be computed similarly. Here we use the fact,
that
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FIGURE 2. (a) Diffuse shading, (b) Gamma corrected
hemispherical shading.
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(10)

From this we conclude

(11)

Equation 6, Equation 9, and Equation 11 show how the compo-
nents of Equation 4 can be implemented in the Fourier domain.
Please note that the normalization with  can be precom-
puted as well, just as Totsuka and Levoy suggested [12]. However,
a problem for efficient implementation remains. The equations
above require a convolution with a full volume. This can only be
precomputed for a constant light source for real-time rendering. A
change in the light direction will require that the terms in
Equation 9 and 11 be recomputed. On the other hand no transfor-
mation of the data is required. Thus, our first method will allow us
to change the light sources albeit at a higher cost. However, for
constant light sources this method can allow for expedient render-
ing as the observer position changes. Our second proposed
method, on the other hand, allows for relighting.

4.4  Results
To demonstrate our methods, we have rendered the data sets shown
in Fig. 3 and Fig. 4. The first example compares linear and cubic
illumination for a synthetic dataset of size 1283. The dataset con-
sists of a sphere with high intensity value inside a bigger sphere
with a lower intensity value. The images in the top row use the
original FVR, which does not incorporate shading information. Of
these two images, the right image uses depth cueing to give higher
intensities to the surfaces closer to the viewer. The middle row
adds linear (hemispheric) shading to the model. These images
demonstrate the added advantage of this illumination model over
basic FVR images. The light intensity diminishes as the surface
normal is away from the light direction. The images in the bottom
row incorporate the GCHS illumination model to allow a more
accurate approximation of the max function. In the images
obtained from the application of this illumination model surfaces
on the right hemisphere are less lit than the left hemisphere. This
variation of intensity is what one expects to observe on diffusively
lit surfaces. Another noteworthy observation is that the images
from linear shading have significantly higher erroneous energy
comparing to the GCHS version (especially visible in Fig. 4). This
result confirms the theory as expounded in Section 3 and charac-
terized by various plots in Fig. 1.

The second set of images in Fig. 4 are obtained from rendering the
UNC brain dataset of size 2563. As in the spherical dataset, the
images in the top row are not influenced by the light in the scene.
The middle row incorporates linear shading and the images exhibit
higher luminosities since a linear approximation of the max func-
tion is employed. The images in the bottom row do not exhibit this
excess intensity. As a result, the surfaces are illuminated more
accurately. This has a dramatic effect on the surfaces facing away
from the light, as displayed in Fig. 4. It should be noted that the
light source is placed to the left of the dataset. 

The rendering speed for the sphere (UNC brain) for original FVR
is 116 frames per second (fps) (27fps) without depth cueing and
79fps (17fps) using depth cueing. For linear and cubic illumination
two volumes are sliced instead of one volume in the original FVR
(the original data set as well as its gradient magnitude volume).
Hence the resulting frame-rates are somewhat lower - 98fps
(21fps) without the depth cueing and 64fps (14fps) with depth cue-
ing. (The depth cueing requires even more computations, which
explains the lower frame rates.) All our experiments were con-
ducted on a Pentium 4 2.2GHz processor equipped with 1.5GB
main memory.

5.  VOLUME SHADING WITH SPHERICAL HAR-
MONICS
A spherical harmonic approximation allows the diffuse shading of
surfaces without repeated 3D Fourier transforms. We will first
introduce spherical harmonics briefly and then explain how they
can be exploited for FVR.
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FIGURE 3. Rendering of a synthetic sphere. (a) traditional
FVR without any shading. (b) using Totsuka and Levoy’s
hemispherical reflections. (c) Our cubic shading term. Col-
umn (1) is without depth cueing. Column (2) includes depth
cueing. In the lit images, light is coming from (1,1,1).
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5.1  Spherical Harmonic and Surface 
Shading
Spherical harmonics are a group of functions that form an
orthonormal basis on the unit sphere. While they are often given in
complex form, a real version of the transform exists and is suitable
for images and scalar which consist of integers and real numbers.
Real spherical harmonics are computed as:

(12)

where are the associated Legendre polynomials, , and
. Spherical harmonics are the analog of the Fourier basis

functions in spherical coordinates, and the transform has properties
similar to that of the Fourier transform. A function f may be
approximated to any degree of accuracy by the expansion:

(13)

where 

(14)

The series is exact for  but in many cases very good approx-
imations may be obtained with only a few terms [1][8]. For
instance, the diffuse shading equation can be approximated well
with low order harmonics. 

Significantly, the effect of the max function can be considered by
setting , or equivalently not integrating over the
lower hemisphere in Equation 14. This leads to a linear shading
equation that prevents significant back-face lighting using the
approximation in Equation 13. The most compact and accurate
approximation is obtained when a surface’s normal corresponds to
the z-axis of the global coordinate system. Though this is generally
not true, it is possible to rotate the spherical harmonic basis to
combine surface normals and lighting direction in a single coordi-
nate system. This, and the interpreting of shading in terms of con-
volution in spherical coordinates, leads to an elegant diffuse
shading equation that both incorporates the max function and is
linear.

First, we express diffuse shading in terms of the general illumina-
tion equation. The radiance due to diffuse reflection originating
from direction  that is reflected into direction  is given by:

(15)

As described in [9], this equation may be interpreted as a convolu-
tion in spherical coordinates. For diffuse shading, ρ is a constant
(set to1/π) and reflection from surfaces facing away from the light
source is handled by applying the max function to the area projec-
tion term . If a local coordinate system is used where the sur-
face normal is the z axis, then . Using spherical
coordinates for direction, this equation may be expressed as a
spherical harmonic series by substituting the spherical harmonic
forms of L and  into Equation 15. The light and max
expansions are given by:

(16)

and

(17)

respectively. Note that under the constraint imposed above -- the
surface normal coincides with the z axis --- for isotropic reflection,
there is no azimuthal dependence. Equation 17 reduces to:

(18)

Equation 15 may now be written as:

(19)

FIGURE 4. Rendering of the UNC brain data set. (a) traditional
FVR without any shading. (b) using Totsuka and Levoy’s
hemispherical reflections. (c) Our cubic shading term. Col-
umn (1) is without depth cueing. Column (2) includes depth
cueing. In the lit images light is coming from left
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However, the integration is performed in the local coordinate sys-
tem in which the reflection function is evaluated, indicated by

, while the light direction is expressed in global
un-primed coordinates . To perform the integration, both
coordinate systems must be expressed in the same coordinate sys-
tem. Spherical harmonics are closed under rotation so  in glo-
bal coordinates may be expressed in terms of a series of other
spherical harmonics evaluated in a local coordinate system with
normal equal to the z axis. For a normal vector with global spheri-
cal coordinates , the rotation is given by:

(20)

where  represents a rotation of local spherical coordi-
nates to their values in the global coordinate system. Following
[8], Equation 20 is substituted in Equation 19 and the integration
performed. The orthogonality property of spherical harmonics
results in a non-zero integral only for p=l. Also, since cpq is zero
except for q = 0, Equation 15 simplifies to:

(21)

where the rotation coefficient is given by [8]:

(22)

Equation 21 may be simplified further for the case of a directional
light source since . Substituting the directional
light term and Equation 22 in Equation 21 yields the final form of
the spherical harmonic rendering equation as:

(23)

Equation 23, reveals shading as a convolution in spherical coordi-
nates since it involves the summation of spherical harmonic coeffi-
cients for the light and reflection functions. As is the case for the
Fourier Transform, this corresponds to a signal space convolution.
Having presented a linear shading equation which includes the
effect of the max function, we now apply this result to shading vol-
umes.

5.2  Spherical Harmonic Volumes
Volume data does not have explicit surfaces, however the gradient
operator is often employed to enhance discontinuity which indicate
surfaces, and to compute per-voxel surface normal vectors for
shading. The normal at a volume coordinate (x, y, z) computed in
this manner is given by:

(24)

Equation 24 provides an orientation that may be used to evaluate
Equation 23 for each voxel. Rather than utilizing the complex form
of the spherical harmonic series, we employ the real form, as
described in [1][8] for two reasons: images are real, and using real
data allows a factor of two savings in memory and speed when per-
forming the Fourier transform on the volume. Additionally, the

real spherical harmonic series may be expressed as products of unit
surface normal vector components [8] obtained from Equation 24
so that computing and storing voxel normals in spherical coordi-
nates is not necessary.

Expressing Equation 23 in terms of the real spherical harmonics
which are functions of normal vector components, and the light in
terms of a unit direction vector (xL, yL, zL) results in a linear equa-
tion for shading the volume:

(25)

where . The 3D Fourier transform of
the shaded volume may be directly computed as:

(26)

Note that the terms in Equation 25 which undergo the Fourier
transform are completely independent of light direction and sur-
face reflection function. Therefore, the transform may be com-
puted once for a given set of volume unit normal vectors and then
used to shade the volume for any directional light source. The
terms which change as a function of light direction may be quickly
computed. 

Shading the entire volume is inefficient since only a slice contrib-
utes to the final image. The individual harmonic Fourier terms for
all l and m planes corresponding to the desired 2D slice may first
be reconstructed and then used to produce the 2D shaded slice for
inverse Fourier transforming. While Equation 26 allows shading in
the Fourier domain, it does require volumes for each  used in
the truncated spherical harmonic series. Fortunately, over 98 per-
cent of the energy in the image may be obtained with only 9 spher-
ical harmonic planes, for l=0,1,2 and  [1][8]. However,
this is a significant burden in memory and reconstruction time.
Possible optimizations and methods to avoid storing the full set of
harmonics are described in the future work section to follow.

5.3  Results
We have again implemented the spherical (synthetic) dataset as
well as the UNC brain from Section 4.4. The results are shown in
Fig. 5 and Fig. 6.

For purposes of comparison, we have included the linear and cubic
illumination techniques from Fig. 3 and Fig. 4. The images show,
that the method based on spherical harmonics (bottom row) creates
similar results to the cubic illumination (middle row). The overall
appearances are greatly improved compared to the hemispherical
illumination model. Moreover, the spherical harmonics method
allows us to change the light source interactively. We first included
an ambient term of 0.3 in all of our earlier visualizations. In Fig. 7
we have removed this influence. The accurate characterization of
diffuse illumination operators results in higher quality images.

Whether we change the light source or the viewpoint - rendering
times are the same. For the sphere (UNC brain) we achieve 21fps
(5fps) for the spherical harmonics without depth cueing. Using
depth cueing this decreases to 13fps (3fps). These frame-rates are
what we expected. The Fourier Transform of ten (10) volumes are
required in memory to implement spherical harmonic shading, cor-
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responding to the nine  terms in Equation 26 for
diffuse shading plus the data volume itself for ambient shading.
Thus memory cost is significantly higher than FVR without shad-
ing and somewhat higher than the GCSH shading described above.
Slice reconstruction within each of these volumes must also be
performed, then multiplying by  and summing to assemble
one image. The other methods discussed only have to slice two
volumes. Hence an increase on the order of five-fold in rendering
time was expected. Further each floating point, complex Fourier
volume needs 8 times the storage of the original byte-size data set.

6.  CONCLUSIONS AND FUTURE WORK
The work presented in this paper attempts to make Fourier Volume
Rendering (FVR) a more viable alternative for the visualization of
volumetric datasets. It has long been shown that the superior com-
plexity of O(N2logN) vs. O(N3) of all other rendering algorithms
will have more of an impact as our data sets grow. Lighting is one
important cue used to derive shape and hence insight from visual-
izations and in this paper we presented two ways for improved illu-
mination in the Fourier Domain. One approach uses an improved
hemispherical reflection term. We showed how this term, although
not linear, can be implemented in the Fourier Domain. Further we
have successfully employed spherical harmonics to cope with the

non-linearity of the shading operation in both the original and
approximate versions. An efficient implementation led to real-time
manipulation (21fps) of the data when both viewpoint and light
source were altered. For constant light sources, we can use the first
method, which allows a nearly five-fold improvement and hence
rendering rates of 116fps.

Novel techniques for incorporating realistic shading into FVR
visualization have overcome the visual differences inherent in
hemispherical shading at the cost of increased computations and
memory use. A valuable insight, from a systems viewpoint, would
be obtained by performing comparison to other volume rendering
methods, such as ray-casting. Due to time and space limitations,
meaningful quantitative comparisons to other methods were not
possible. However, we felt the significant contribution of this work
is the description of the shading techniques. Future work in this
area will develop optimized methods to reduce memory use and
reconstruction time at which point cost comparisons will be useful
and necessary.

Our algorithms, although showing real-time performance, can be
further improved. Some ideas include the folding of 2 volumes
into the real and imaginary part of the signal, which should afford
one a speedup by a factor of two. Similar results can be achieved
by applying the Hartley transform (the real version of the Fourier

FIGURE 5. Rendering of a synthetic sphere. (a) using Totsuka
and Levoys hemispherical reflections. (b) Our cubic shading
term. (c) Our spherical harmonic implementation. Column
(1) is without depth cueing. Column (2) includes depth cue-
ing. In these images light is coming from (1,1,1)
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FIGURE 6. Rendering of the UNC brain data set. (a) using Tot-
suka and Levoys hemispherical reflections. (b) Our cubic
shading term. (c) Our spherical harmonic implementation.
Column (1) is without depth cueing. Column (2) includes
depth cueing. In these images light is coming from left.
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Transform). Other optimizations may be realized by manipulating
the normal vector component terms that are the basis of the real
spherical harmonic transform. Since these are derived from a gra-
dient operation, evaluation of the partial derivative in Fourier
space may allow fewer volumes to be maintained at the expense of
multiple convolutions in the pre-processing step.
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FIGURE 7. Rendering of a synthetic sphere without an ambient
term. (a) using Totsuka and Levoys hemispherical reflec-
tions. (b) Our cubic shading term. (c) Our spherical har-
monic implementation. Column (1) is without depth cueing.
Column (2) includes depth cueing. In these images light is
coming from (1,1,1)
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