Modified Marching Octahedra for Optimal Regular Meshes
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Figure 1: The body-centred cubic mesh

1 Mesh Construction

Theufll et al. [TheuBl et al. 2001] showed that volumet-
ric data sampled on a body-centred cubic (BCC) lattice is
nearly 30% more efficient than data sampled on a cubic lat-
tice, and produced volume renderings using splatting. We
extend this work to generate isosurfaces based on the BCC
lattice, and also on the hexagonal-close packed (HCP) grid.
This sketch presents a modified version of marching octahe-
dra that simplifies the BCC mesh to an octahedral mesh to
reduce the number of triangles generated for the isosurface.

The marching cubes technique [Lorenson and Cline 1987;
Wyvill et al. 1986] uses a cubic cells: the Delaunay complex
of the samples. The Delaunay complex for HCP uses tetrahe-
dra (tets) and octahedra (octs). The Delaunay complex for
BCC (Fig. 1(a)) has two superimposed cubic meshes, shown
in blue (primary lattice) and green (secondary lattice), with
diagonals between the two meshes, shown in red.

2 (Modified) Marching Octahedra

Tetrahedral cells can be dealt with by marching tets [Bloo-
menthal 1988]. We define six cases for marching octs using
the same methodology as for marching cubes and marching
tets. Only one case is ambiguous (Fig. 2). The faces of
an oct are triangular, not square, so the cracks of marching
cubes [Diirst 1988] do not occur, and we can choose either
case without causing cracks in the surface. Although tets
use fewer triangles than cubes for isosurfaces, there are many
more tets in the BCC grid than cubes in the cubic grid. We
address this by grouping tets into octs.

In the BCC lattice, octs composed of groups of four
tets share each edge of the secondary lattice, as shown in
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Figure 2: Case 3 of Modified Marching Octahedra

Fig. 1(b). We refer to the shared edge as the spine of the
oct. If the two vertices “above” the isosurface are along the
spine of the oct, marching tets renders the surfaces shown in
Fig. 2(b). If not, marching tets renders the surfaces shown
in Fig. 2(a). We use the location of the spine to choose case
3A or 3B, guaranteeing that the surface generated is topo-
logically equivalent to that generated by marching tets. By
substituting octs for tets, we attempt to reduce the number
of triangles rendered for an isosurface on a BCC lattice.

3 Expected Triangle Counts

We estimate the number of triangles generated by assum-
ing that O(N2/3) cells intersect each isosurface, ignoring
constants. We adjust N for BCC and HCP to reflect the
29.3% saving in samples noted above, and multiply by an es-
timate of the number of triangles generated per cell - 2.85 for
cubes, 1.25 for tets, 4.07 for octs (modified). This gives the
following estimates for similar quality sampling: 2.85N 2/3
(cubes), 3.42N?/3 (HCP), 3.75N%/3 (BCC), 4.23N?*/? (BCC
with octs). We are evaluating triangle counts experimen-
tally: preliminary results are similar to these estimates.
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