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Figure 1: CT scans of a lobster and a tooth, represented on Cartesian and body-centered cubic grids (left and right images, respectively). The
representation via body-centered cubic grids requires approximately 30% less samples.

Abstract

The classification of volumetric data sets as well as their rendering
algorithms are typically based on the representation of the underly-
ing grid. Grid structures based on a Cartesian lattice are the de-facto
standard for regular representations of volumetric data. In this pa-
per we introduce a more general concept of regular grids for the
representation of volumetric data. We demonstrate that a specific
type of regular lattice – the so-called body-centered cubic – is able
to represent the same data set as a Cartesian grid to the same ac-
curacy but with 29.3% fewer samples. This speeds up traditional
volume rendering algorithms by the same ratio, which we demon-
strate by adopting a splatting implementation for these new lattices.
We investigate different filtering methods required for computing
the normals on this lattice. The lattice representation results also in
lossless compression ratios that are better than previously reported.
Although other regular grid structures achieve the same sample effi-
ciency, the body-centered cubic is particularly easy to use. The only
assumption necessary is that the underlying volume is isotropic and
band-limited - an assumption that is valid for most practical data
sets.
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1 Introduction

Different grid structures have been studied extensively in various
fields like chemistry [18], solid state physics [1], condensed matter
physics [10], or crystallography [7]. Researchers in these fields
have studied the structure of atoms and molecules, which are often
placed in a regular grid structure. This structure is optimized for
energy states 1 and results in covering space as closely as possible.

Results in multi-dimensional signal processing show that a
Cartesian sampling structure is not the most efficient one [16].
Efficiency here is measured in terms of sampling points per unit
hyper-volume. Under the assumption that the sampled function is
isotropic and band-limited the resulting frequency support would
be a hyper-sphere. Hence the most efficient sampling scheme
would arrange the replicated (hyper-spherical) frequency response
as densely as possible in frequency domain.

The problem of how to place as many (hyper-)spheres as possi-
ble in a fixed (hyper-)volume is known as the sphere packing prob-
lem [14]. This has been studied by many mathematicians in up to
quite staggering dimensions (Conway and Sloane [3] give examples
of dimensions up to 1048584). The problem of packing spheres op-
timally was stated in 1900 by Hilbert as his now famous Problem
18 [6]. It is still not solved completely. However, several regular
grid structures are known which are optimal. Among these is the
body-centered cubic (bcc) grid, which turns out to be particularly
easy to use.

In the image processing community it is well known that sam-
pling an image on a Cartesian grid is not optimal. By using a hexag-
onal sampling scheme one can save 13.4% of the samples [12].
Research has been directed to adapt algorithms like straight line
generation [9], distance transformations [2], or oversampling [8] to
hexagonal grids. However, the Cartesian structure of display de-
vices limits the use of hexagonal grids for image processing so that
2D hexagonal grids are rarely used.

In volume visualization, or generally when dealing with 3D

1This is, of course, a serious oversimplification. However, for almost all
the elements the lowest energy state is crystalline [10].
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functions we are not bound to Cartesian grids. The representation
of the function we want to visualize can be chosen arbitrarily since
typically only two-dimensional projections of the data set are ex-
amined. Since a bcc grid can represent isotropic, band-limited data
as accurately as Cartesian grids using 29.3% fewer samples [4]2,
the advantages of using a bcc grid are significant.

In this paper we show how to take advantage of hexagonal sam-
pling in volume rendering. We outline and propose solutions for
the inherent issues of re-sampling of rectangular grids as well as
interpolation and gradient estimation.

The remainder of this paper is organized as follows. We summa-
rize the results of hexagonal sampling in 2D and derive an optimal
sampling scheme in 3D in Section 2. In Section 3 we show how the
splatting algorithm can be adopted for bcc grids, including storing
of the data and gradient estimation. In Section 4 we examine ac-
quisition techniques for data sampled on bcc grids. In Section 5 we
present the results of our experiments. Some ideas for future work
are presented in Section 6, and we derive conclusions of our studies
in Section 7.

2 Baseband Optimal Sampling

Usually, no a priori knowledge is available about the (continu-
ous) underlying functions we are sampling. Therefore, we assume
that these functions are isotropic, i.e., that they do not have a pre-
ferred direction. Another common assumption is that they are band-
limited. Both assumptions together result in the property that the
frequency responses of such functions are hyper-spheres (circles in
2D and spheres in 3D, respectively).

Sampling such spherically band-limited functions results in
replicating the primary spectrum in the frequency domain [15]. In
order to reconstruct the underlying continuous signal perfectly, we
need to ensure that the samples in spatial domain are close enough,
so that the aliased spectra in the frequency domain do not overlap.
Optimal sampling is achieved when the number of samples that ful-
fill this condition is minimal. In 1D this is also known as the Nyquist
sampling rate. In order to optimally sample in higher dimensions
(i.e., to use as few samples as possible), aliased spectra in the fre-
quency domain have to be packed as closely as possible. This prob-
lem is known as the sphere packing problem [14], which has been
extensively studied and solutions for regular packing structures in
2D and 3D exist.

As a motivation and for the sake of simplicity we will first de-
scribe our method to find an optimal sampling pattern in 2D before
we delve into the mysterious structure of 3D Euclidian space.

2.1 Optimal sampling density in 2D

We will describe sampling as a mapping from indices to actual sam-
ple positions [4]:
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Here the integers �� � are the indices of the sample and �� � is the
corresponding sampling position. The matrix � , which is called
sampling matrix, describes the mapping itself, e.g.,
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is the matrix for rectangular sampling which simplifies to the com-
monly used regular (Cartesian) sampling for �� � ��. Hexagonal

2In Table 1.1 on page 47 Dudgeon and Mersereau give a sampling den-
sity ratio of 0.705, i.e., 29.5% fewer samples. This is simply due to a round-
ing error, compare the results of Petersen and Middleton [16].

sampling is most conveniently described by the matrix
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which virtually just performs a shear of the rectangular samples
followed by a for-shortening. When � describes the sampling in
spatial domain, the matrix � , satisfying

�
�
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 (4)

with �� being the transpose of � and 
 being the identity matrix,
describes the positions of the replicas in frequency domain. � is
therefore called the periodicity matrix [4]. Applying Eq. 4 to Eq. 2
we obtain the periodicity matrix for rectangular sampling
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. The periodicity matrix for hexagonal
sampling is
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where again �� � ��
	�

. The 2D Fourier Transform � of a circularly
band-limited signal has the property
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where � is the maximum frequency in the data set. This baseband
can be inscribed, for example, in a square with length � � ��
(corresponding to rectangular sampling). In other words, �� and ��
in Eq. 5 have to be equal to �� . On the other hand, the baseband
can also be inscribed in a hexagon with side length � � ��

�
�

(corresponding to hexagonal sampling). This means that in Eq. 6
�� must be equal to �� (see Fig. 2). Calculating the sampling
matrices from these periodicity matrices, we end up with
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where
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where
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The sampling density is proportional to �

det � [4]. By taking the
ratio
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we see that hexagonal sampling requires 13.4% fewer samples than
rectangular sampling.
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Figure 2: 2D regular rectangular and hexagonal sampling in the spatial and frequency domains.

2.2 Optimal sampling density in 3D

Analogous to the 2D case, we can describe the mapping from in-
dices �� �� � to coordinates �� �� � for rectilinear grids using the fol-
lowing matrix:
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which is regular (rectangular) when �� � �� � ��.
As expected, regular rectangular sampling in 3D is (as in 2D)

not optimal. It is important to note that an optimal sphere packing
for arbitrary packing structures in 3D is not known. However, sev-
eral optimal packing structures, all with equal sampling density, are
known for the case of regular sampling, i.e., structures that can be
described by three base vectors. Fortunately, this is exactly what
we need, since we do not want to sacrifice the implicit indexing of
the grid points that makes regular grid representations so attractive.

Among the optimal regular packing structures are the hexago-
nal close packed (hcp) structure and the face centered cubic (fcc)
structure [3]. In order to achieve a close packing in the frequency
domain using an fcc lattice (the reason why not using an hcp lattice
is explained at the end of this section), we use the following matrix:
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An fcc lattice consists of simple cubic cells with additional sam-
pling points in the center of each cell face. One cell of an fcc lattice
is depicted in Fig. 3 with the base vectors from Eq. 14.

By plugging Eq. 14 in Eq. 4 we end up with a sampling matrix in
spatial domain which describes a body centered cubic (bcc) lattice:
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with � � ��
�

.
A bcc lattice also consists of a simple cubic cell but with only one

additional sampling point, which is right in the center of the cell.
Fig. 4 depicts one cell of a bcc lattice. Note, that the base vectors of
Fig. 4 do not correspond to Eq. 15, as these are rather unintuitive.
We chose another set of base vectors, which is more convenient for
our purpose of indexing the data points (see Section 3.1). They are
described by the sampling matrix
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It is easily verified that the sampling matrices in Eqs. 15 and 16
describe the same set of sample points.

To guarantee that the replicas in frequency domain do not over-
lap, � must be equal to �� for rectangular sampling. Since the
periodicity matrix is analogous to the 2D periodicity matrix we end
up with

�det �������� � 	�

� �
(17)

For the fcc lattice, � must be equal to
�
�� , which yields

�det �
��� � 	�
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Figure 3: One cell of an fcc lattice with base vectors ��. The black
dots mark additional sample points (in the center of the faces) as
compared to a simple cubic cell.

By again taking the ratio

�det ��������
�det �
��� � ����� (19)

we see that we need 29.3% fewer samples than with rectangular
sampling. This means that if we sample a function on a regular
rectangular grid with sampling distance �� , we can increase the
sampling distance �
 for a bcc grid to

�
��� .

In the above example we started with an fcc lattice in the fre-
quency domain which resulted in a bcc lattice in the spatial domain.
We could also choose an hcp lattice, since it has the same packing
density as an fcc lattice [3]. However, an hcp lattice in the fre-
quency domain is also an hcp lattice in the spatial domain and hcp
lattices are rather difficult to index [7]. Therefore, we prefer to use
a bcc grid.

3 Implementation Details

In order to use a bcc grid in practice we have to address some in-
herent implementation issues. First, we must think about how to
organize the grid in memory. We present a scheme which stores
the sampling points in a three-dimensional array. The addressing
scheme is of special importance, since we want to take advantage of
the implicit ordering in regular grid structures. Next we describe the
slight modifications necessary to use splatting on bcc grids. Here
we need to address issues of interpolation. In order to incorporate
shading in our rendering algorithm we describe two methods for
estimating gradients on grid points of a bcc lattice.

3.1 Storage scheme

For the sake of simplicity and clarity of figures, we first present our
storage scheme in 2D, then extend it to 3D.

In 2D the optimal sampling pattern is hexagonal sampling.
Hexagonal sampling as described by Eq. 3, results in rather awk-
ward indexing as we still want to sample a rectangular area. The
meaning of the matrix in Eq. 3 is to shift the ��� row by the amount
�

�
���. Since this holds for infinite long rows, the result would be the

same to shift the same row by �

�
������� � �
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������. Extending

b1
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Figure 4: One cell of a bcc structure with base vectors ��. The only
difference to a simple cubic cell is one additional sample point right
in the center of the cell, marked with a black dot.

this idea and since we actually like to describe a finite, rectangular
area, we shift only rows with odd index which is achieved by the
following matrix:
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The effect is illustrated in Fig. 5. On the left, the result of applying
Eq. 3 can be seen whereas the effect of applying Eq. 20 is depicted
on the right.

The same problem exists in 3D. However, the solution is as sim-
ple as in 2D. The following matrix
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shifts only planes with odd z-coordinates half a unit in x and y di-
rection. The result is that the slices with even z coordinates make
up a 3D Cartesian grid, the slices with odd z coordinates also make
up a 3D Cartesian grid which is shifted to the centers of the first
grid. Fig. 6 shows a bcc grid with the two inter-penetrating Carte-
sian grids marked differently. In practice we still store the data in a
3D array with an implicit shift of slices with odd z coordinates.

3.2 Splatting on bcc grids

Adapting Westover‘s splatting algorithm [19] to bcc grids is
straightforward. This algorithm gains its power by using spherical
reconstruction kernels. These kernels have a spherical extent in the
frequency domain. Hence these kernels preserve a spherical region
during the reconstruction process. Since the aliased spectra for the
hexagonal grid are redistributed so that they do not overlap with the
primary spectrum, we can use the existing spherical kernels without
any modifications.

Since the data is still organized in a 3D array, we traverse it in
a back to front manner. Care has to be taken when traversing in
z-direction as planes with odd and even z-coordinates have to be
separated. Before applying the transformation matrix we apply the
sampling matrix (Eq. 21) to shift the voxels to the correct position.
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Figure 5: Different indexing schemes. The image on the left corresponds to Eq. 3. The figure on the right corresponds to Eq. 20

Figure 6: A bcc grid interpreted as two inter-penetrating Cartesian
grids.

One more thing has to be changed in existing code: the computa-
tion of gradients for shading. For this purpose, we adapted central
differences to bcc grids.

3.3 Central Differences on bcc grids

Gradients are rather important in volume visualization. They are
most often used for classification and shading. Therefore, we need
to be able to compute gradients on bcc grids. The most commonly
used method to estimate gradients is the central differences method.
There are two ways to adapt this method to bcc grids.

The first idea exploits the fact that we have a Cartesian grid struc-
ture in all the slices that are parallel to a major axis direction. Hence
partial derivatives in each direction can be computed through stan-
dard central differences. However, using our indexing scheme we
have to adopt the following equation for computing the central dif-
ference in the z direction:

��
�� �� �� �
�

��
�� 
�� �� � � ��� � 
�� �� � � ��� (22)

This method requires exactly as many operations as central differ-
ences on Cartesian grids. The conceptual problem with this method
is that we do not use the actual closest points in order to estimate
the derivatives.

This can be rectified in our second method. For the second
method we follow the philosophy that the eight closest points

should have the main impact on the reconstructed value. Hence we
are computing the average of the central differences at each edge of
the cubic cell that the current point is located in (compare Fig. 4).
This corresponds to applying an analytic, spherically symmetric,
trilinear derivative filter at grid points, resulting in the following
formulas for the partial derivatives:
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The introduction of � and ���� are due to the properties of our
storage scheme.

This method requires 8 operations per partial derivative as op-
posed to one subtraction per partial derivative for Cartesian grids.
However, as we are calculating the gradients in a preprocessing
step, this has no major impact on the rendering performance.

4 Acquisition of Optimally Regular Sam-
pled Volume Data

After having settled technical details about using optimally sampled
regular volume data, we have to deal with the question where to get
data sets sampled on such bcc grids. There are several possibilities.

The first possibility is to sample artificial data sets, given as
3D analytic functions, like a sphere or the Marschner-Lobb func-
tion [11], on a bcc grid. Generally, data sets obtained via voxeliza-
tion [17] can straightforwardly be generated on a bcc grid. This is
especially useful for evaluating the applicability of bcc grids as the
frequency content of such data can directly be controlled.

Second, there is of course the possibility to resample data sets
on Cartesian grids to a bcc grid. Since this resampling step has
to be performed only once when generating the new data set, an
arbitrarily good reconstruction kernel (e.g., a rather wide windowed
sinc) can be used.



The third and most interesting possibility is to take raw data from
modalities like CT or MRI and directly generate bcc grid data sets
from them. Raw data from tomography data sets (CT, PET, SPECT)
is typically given by many 2D or 1D projections. Hence adapt-
ing the reconstruction algorithm for bcc grids has the potential of
speeding up these typically very costly operations by almost 30%.
Likewise image data acquired in the frequency domain (e.g. MRI)
could be (re)sampled onto an fcc grid. We could easily acquire the
samples in the frequency domain on a face centered cubic grid and
use a modified inverse FFT to generate a bcc grid data set. That
would allow either faster acquisition times or more accurate images
when samples are acquired on a bcc grid.

5 Results

We performed several tests to evaluate the applicability of bcc grids.
First, we compared our gradient reconstruction schemes to the com-
monly used central differences on Cartesian grids. Then, we modi-
fied an existing splatter to operate on bcc grids. Finally, as sampling
on bcc grids results in a compression of the data, we also compared
it to existing compression techniques for volumetric data.

5.1 Gradient estimation

In order to evaluate the quality of the gradient approximation we
used three different analytical functions for comparison purposes:

� spherical with linear falloff:
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� Sinc function:
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� simplified Marschner-Lobb:
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� � �

�� (27)

We computed the actual function values at the positions defined by
the bcc grid so that no errors were introduced during the sampling
process. We then applied our two gradient reconstruction schemes
and computed the difference of the normals with the analytically
computed normals at the sampling grid. We recorded two errors
– the error in the magnitude of the normal as well as the angular
error in the normal. We then looked at these errors in one slice at
a time. Since in our indexing scheme an xy-slice (z is constant) is
easy to extract we chose xy slices. Furthermore, we were interested
in how well these errors compare to errors introduced by central
differences and linear filtering on regular rectilinear grids. Hence
we computed the normals as if the original data set was given on a
rectangular grid using central differences and linear interpolation.

The results of our experiment can be seen in Fig 7 (a) – (c). The
first row shows the relative error in magnitude and the second row
shows the angular error. Column one depicts the error of our first
gradient reconstruction method (Eq. 22) that is based on central dif-
ferences at the grid point itself. Column 2 corresponds to method
two (Eq. 23), which is the average of all central differences at the of
the cube edges surrounding the sampling point. In the last column
we computed the linearly interpolated central differences, assuming
the data set was given on a regular grid with corresponding dimen-
sions.

Fig 7(a) shows the error images for function ��. In this image an
angular error of 15 degrees and an amplitude error of 30% corre-
sponds to white (255). Fig. 7(b) shows the error images for function

(a)

(b)

(c)

Figure 7: Difference images of analytically calculated gradients to
our gradient estimation schemes (see Sec. 3.3), first two columns,
and central differences with linear interpolation, third column, for
(a) sphere, (b) Sinc, and (c) simplified Marschner-Lobb function.
The top rows show the error in magnitude whereas the bottom rows
show the angular error.(a) error in magnitude by 30% and an an-
gular error of 15 degrees corresponds to white, (b) amplitude error
of 60% and an angular error of 30 degrees corresponds to white,
(c) amplitude error of 10% and an angular error of 5 degrees corre-
sponds to white.



Data set rectilinear bcc grid speedup
uncbrain 1.51 0.8 47%
hipip 0.103 0.059 43%
lobster 0.056 0.043 23%

Table 1: Timings for several different datasets are reported in sec-
onds per frame.

��. Here an angular error of 30 degrees and an amplitude error of
60% corresponds to white (255). Finally the results for function ��
are displayed in Fig. 7(c). Here 5 degrees for the angular error and
10% for the amplitude error correspond to white (255).

From these images we conclude that both our difference meth-
ods are quite comparable with central differencing and linear in-
terpolation on regular grids. Hence one need not to worry about
quality loss by using bcc grids for volume rendering applications.
Furthermore since there are no large differences between the two
introduced methods in Section 3.3, we don’t find the expensive op-
erations of method 2 justified.

5.2 Splatting

We rendered several different data sets using both a usual Cartesian
grid and a bcc grid. All images were generated using the same
transfer function and viewing parameters.

Fig. 8 shows images of the Marschner-Lobb data set sampled
on a �� � �� � �� Cartesian grid (as described by Marschner and
Lobb [11]) on the left respectively a �	 � �	 � �
 bcc grid on
the right. This data set is quite demanding for a straightforward
splatter and there are some visible differences in the results. The
image generated from the bcc grid is rather blurred whereas the
image from the Cartesian grid exhibits strong artifacts, especially
in diagonal directions. The same phenomenon, but less obvious,
can be observed in Fig. 1, which depicts images generated from CT
scans of a lobster and a tooth.

The data sets that we used for rendering the images in Color
Plate 1 were produced using a high-quality interpolation filter. We
used the ��-4EF filter as designed by Möller et al. [13]. In Color
Plate 1 we show results of rendering the “neghip” data set as well
as the High Potential Iron Protein data set by Louis Noodleman
and David Case, of Scripps Clinic, La Jolla, California, as well
as the fuel injection data set. Again, a regular Cartesian grid was
used on the left and a bcc grid on the right. There are some visible
differences in the images. Since we classify different values that
represent two different grid positions one cannot expect identical
pictures. Hence we see some differences resulting from the problem
of pre-classification [20].

We also did some timings which are reported in Table 1. It is
interesting to note that the speedup for some data sets were bigger
than expected. This could have been caused by the decreased mem-
ory caching necessary. For a very small data set (lobster) we saw
expected speedups near 30%.

5.3 Compression

Our results indicate that the resampled data have the potential to
lead to better compression. We were able to show that our compres-
sion ratios for practical data sets are better than what was achieved
using the gzip utility. Also, our overall compression ratios were
better then previously reported [5]. Table 2 shows compression ra-
tios of various volume data sets. Note that the last two columns
give percentages as compared to the original data size indicating
the overall compression ratio, which is what we are interested in.

However, the compression of synthetic data sets is a rather surpris-
ing result and needs to be further investigated.

6 Future Work

We would like to adopt other volume rendering algorithms to body
centered cubic grids and see how they perform. As the bcc grid ac-
tually consists of two Cartesian grids which are shifted with respect
to each other, it should be possible to design a shear-warp algorithm
for bcc grids. For the same reason it should be possible to accelerate
volume rendering by the use of graphics hardware.

It would also be necessary to come up with a ray-casting algo-
rithm. For this purpose it would be interesting to investigate the
effects of interpolating within bcc grids. Therefore, we would like
to adopt the filter analysis and design method of Möller et al. [13] to
bcc grids. Since each sampling point in a bcc grid has eight nearest
neighbors (as opposed to a Cartesian grid), spherically symmetric
filters deserve a more thorough investigation.

7 Conclusions

We have presented a sampling scheme for volume data which saves
29.3% samples as compared to Cartesian grids. We assume that the
functions we are dealing with are isotropic and band-limited, i.e.,
their frequency spectra are spheres. Therefore, a sampling pattern
can be used in a way such that the replicas in frequency domain
(introduced by the sampling process) are packed closely. There is
no unique sampling pattern which achieves this. However, a body
centered cubic grid results in a close packing in frequency domain
and is easy to use. With this sampling pattern we reduce data size
and improve rendering rates without loss of quality.

To demonstrate the applicability in volume rendering, we have
adopted the splatting algorithm to bcc grids. This requires just a
few changes of an existing code and is straightforward to imple-
ment. In order to perform classification and shading of the data we
developed two gradient reconstruction schemes. Empirical experi-
ments with analytical 3D functions show that these are comparable
with central differences commonly used on Cartesian grids. We be-
lieve that significant gains can be achieved by using bcc grids in
volume visualization and volume graphics in general.
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[13] T. Möller, K. Mueller, Y. Kurzion, R. Machiraju, and R. Yagel.
Design of accurate and smooth filters for function and deriva-
tive reconstruction. In 1998 Symposium on Volume Visualiza-
tion, pages 143–151. ACM SIGGRAPH, October 1998. ISBN
0-8186-9180-8. Held in Research Triangle Park, North Car-
olina.

[14] N.J.A.Sloane. The sphere packing problem. In ICM: Proceed-
ings of the International Congress of Mathematicians, 1998.

[15] A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal Pro-
cessing. Prentice Hall Inc., Englewood Cliffs, 2nd edition,
1989.

[16] D. P. Petersen and D. Middleton. Sampling and reconstruc-
tion of wave-number-limited functions in � -dimensional Eu-
clidean spaces. Information and Control, 5(4):279–323, De-
cember 1962.
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Color Plate 1: Images generated via splatting on a Cartesian grid on the left respectively a body-centered cubic grid on the right. The
body-centered cubic grids require approximately 30% less samples. Small differences are visible, that likely are caused by pre-classification.




