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Abstract

‘We review several schemes for dividing cubical cells into sim-
plices (tetrahedra) in 3-D for interpolating from sampled
data to IR® or for computing isosurfaces by barycentric in-
terpolation. We present test data that reveal the geomet-
ric artifacts that these subdivision schemes generate, and
discuss how these artifacts relate to the filter kernels that
correspond to the subdivision schemes.

1 Introduction

In scientific applications, data is frequently generated or
sampled on a regular rectilinear grid in three dimensions.
The sampled data values are extended to the entire space
by some type of interpolation. The interpolated function is
then visualized, often with isosurfaces, the three-dimensional
analogue to contour lines on a topographic map. Isosurfaces
may be displayed directly [13], or constructed as a geometric
object for the purpose of segmentation [3]: the extraction of
significant boundaries - for example, the surface of a bone
in a medical data set.

Typically, isosurfaces are generated using a trilinear in-
terpolation function over each unit cube [8, 13], although
a tricubic interpolation function has been suggested [26].
However, correctly approximating even a trilinear interpo-
lation function is relatively complex and costly [8], so many
researchers have instead opted to work with tetrahedral ap-
proximations. To approximate the trilinear interpolation
function, each cubical cell is divided into 5, 6, or more tetra-
hedra. The function is then interpolated using barycentric
interpolation over each tetrahedron.

This approach has several advantages. Cubes may be
subdivided implicitly, and generated at run-time as needed,
or generated explicitly and stored. Each tetrahedron has
2 cases (after symmetries) for generating isosurfaces, com-
pared with 15 for Marching Cubes [13], or as many as 38
for the topologically correct version [8]. Some techniques
require tetrahedra [7, 14, 23, 22, 24] in order to function at
all. Finally, barycentric interpolation on tetrahedra is mono-
tonic. All critical points must be at vertices of the mesh: this
makes the task of locating critical points much simpler.

These advantages do not come without a price. The num-
ber of cells in the mesh increases by a factor of 5 or more,
and the number of polygons (usually triangles) generated
for a single isosurface typically increases by a factor of 2 or
more, compared with Marching Cubes [13]. Additionally,
the barycentric interpolation does not match the assumed
trilinear interpolation function, causing geometric artifacts
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in the surfaces constructed, some of which are distinctly vis-
ible when rendered.

In Sec. 2, we review the existing literature on simplicial
subdivisions of regular meshes in 3-D. In Sec. 3, we present a
set of desiderata to be considered when analysing any partic-
ular subdivision. Then, in Sec. 4, we apply these desiderata
to various 3-D subdivisions. In Sec. 5, we discuss the rela-
tionship between the artifacts seen, and the sampling rate
of the image being considered. Finally, we present our con-
clusions in Sec. 6.

2 Previous Work

Several authors have discussed the advantages of simplicial
subdivision of cubical cells [1, 4, 5, 20]: the analyses in
these papers have focussed on the number of triangles gen-
erated [20], whether the surface generated is topologically
consistent [1, 20], and whether the surface is topologically
correct [20].

The simplicial subdivision most often used is, understand-
ably, the 5-fold minimal subdivision (Sec. 4.2), in which
each cube is subdivided into 5 tetrahedra, and no additional
vertices are required [1, 4, 5, 14, 17, 19, 20, 22]. Also re-
ported [1, 2, 10, 12, 17, 20] is the Freudenthal subdivision
(Sec. 4.3), in which each cube is subdivided into 6 tetra-
hedra, arranged around a major diagonal of the cube. In
our own work [6, 7], we have experimented with the body-
centred cubic lattice (Sec. 4.4), which generates an average
of 12 congruent tetrahedra per cell. Bloomenthal [4] uses a
12-fold subdivision (Sec. 4.5), in which each cube is divided
into 12 tetrahedra, using the original cube vertices and the
centroid of the cell. Albertelli & Crawfis [1] extended this
subdivision to 14, 16, 18, 20, 22 & 24 tetrahedra, by adding
face centroids to the list of vertices. We reported a set of
abstract desiderata for simplicial subdivisions, and, based
on these desiderata, chose the 24-fold subdivision (Sec. 4.6),
also used in [1, 2, 11, 25]. A 48-fold subdivision (Sec. 4.7),
equivalent to a 6-fold subdivision on a finer grid is also re-
ported in [12, 27].

Instead of tetrahedral subdivisions, many researchers have
worked directly with the cubes. The principal such technique
is “Marching Cubes” [13], which, unfortunately, is topologi-
cally inconsistent. One solution [8, 18] is to add more cases,
based on the saddle points of the trilinear interpolation func-
tion, but this can lead to a large number of possible cases.

3 Desiderata For Simplicial Subdivision

In order to analyse subdivisions effectively, we must first
consider what goals we wish to achieve in subdividing cubi-
cal cells. As there are several potentially inconsistent goals,
it will be impossible to say that one subdivision is best un-
der all circumstances, so we simply state a set of desiderata
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for subdivision, based on our previous work [6, 7]. Each
desideratum will be assigned a name, for ease of reference.

We assume that the data has been sampled on a regular
grid in three dimensions. Although much of the analysis
below applies equally to curvilinear and irregular grids, we
have not considered these grids in detail to date.

We further assume that the original interpolation function
f(p) is trilinearly interpolated over the cube, unless stated
otherwise. For each subdivision, we replace the original mesh
with a tetrahedral mesh, and perform barycentric interpo-
lation over each tetrahedron. This implicitly substitutes a
new interpolated function F'(p) for the original f(p). This
definition means that F'(p) is a piecewise-linear interpolation
function.

i) Contained: the interpolated value F(p) at a given p
should not depend on any vertices that f(p) does not
depend on. For the trilinear interpolation function f,
this is equivalent to requiring that F'(p) depend only on
the vertices of the cube in which p is contained.

ii) Symmetric: the subdivision should be symmetric under
rotations and reflections of the cube.

iii) Parsimonious: the subdivision should not magnify the
dataset - i.e. no data points should be added.

iv) Minimal: the subdivision should use as few simplices
as possible.

v) Implicit: if possible, the subdivision should be implicit,
for processing efficiency. One of the principal advan-
tages of a regular mesh is that adjacency information
need not be stored explicitly: instead, vertex (x,y, 2)
is considered to be adjacent to (z + 1,y,2), and so
on. Where possible, it is advantageous to avoid explicit
storage of adjacency in the subdivided mesh.

vi) Continuous: F'(p) should be continuous between adja-
cent cells. This prevents cracks or holes forming dur-
ing isosurface generation. Fig. 3(d) illustrates cracks
formed from a discontinuous subdivision.

vii) Correct: the subdivision should minimize the difference
between F'(p) and f(p). In this paper, we consider the
topological differences in Sec. 4, the effects of the subdi-
visions on the filter kernel in Sec. 5, and some numerical
results in Sec. 4.8. We note however, that “correctness”
is intrinsically difficult to quantify.

4 3-D Subdivisions

In this section, we give a brief taxonomy of subdivisions, and
test each subdivision against the desiderata stated above.
The results are summarized in Fig. 1. We also illustrate the
visual artifacts for each subdivision in Fig. 3, using a small
synthetic dataset, which we discovered to be particularly ef-
fective for this purpose. The principal feature of this dataset
is a zigzag arrangement of peaks aligned with the sampling
grid. Nine Gaussian distributions were placed in a volume of
13x 13 x 13, with different scales, and summed. The formula
is provided in Fig. 2.

4.1 Taxonomy of Subdivisions

Tetrahedral subdivisions can be constructed either by re-
stricting the subdivision to the vertices already in the grid,
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Figure 2: The Test Dataset

or by adding additional vertices to the grid. Additional ver-
tices can be inserted along an edge of the cell, in a face of
the cell, or in the body of the cell. Although it is logically
possible to construct subdivisions with face (or edge) ver-
tices added, but the body vertex omitted, we are unaware
of any cases where this has been done. The reason for this
is probably that when a vertex is added to an edge or a
face, symmetry is lost unless similar vertices are added to
the other edges or faces. This results in many additional
simplices. In practice, additional vertices are added to the
body first, then to faces, then to edges.

This gives rise to the following taxonomy of subdivisions:
we list the principal subdivisions that have been suggested
to date:

1. Subdivisions with no additional vertices:

(a) Minimal (5-fold) - Sec. 4.2
(b) Freudenthal (6-fold) - Sec. 4.3

2. Subdivisions with body vertex added:

(a) Body Centered Cubic (BCC) - Sec. 4.4
(b) Face-Divided (12-fold) - Sec. 4.5

3. Subdivisions with body and face vertices added:

(a) Face-Centered (24-fold) - Sec. 4.6
(b) 14-, 16-, 18-, 20- and 22-fold: see Sec. 4.6

4. Subdivisions with body, face and edge vertices added:
(a) Edge-Divided (48-fold) - Sec. 4.7

4.2 The 5-fold Minimal Subdivision

The minimal possible subdivision (see Fig. 6(a)) is perhaps
the most popular simplicial subdivision of the cube [1, 4, 5,
14, 17, 19, 20, 22]. It is obtained by cutting off four vertices
of the same parity from the cube. Each of these vertices is
removed by cutting the cube along the plane defined by the
vertex’ neighbours in the cube. In this way, each cut reduces
the number of vertices remaining by 1. Four such cuts reduce
the remaining set to 4 vertices, which define a tetrahedron in
the center of the cube. This subdivision is minimal, because
any given tetrahedron must share at least one face with an-
other tetrahedron in the cube. This face must have three
vertices in common with the other tetrahedron, so we can
remove at most one vertex from the cube for each tetrahe-
dron cut from the cube. With 8 vertices, it takes at least 4
cuts to reduce the number of vertices to 4, so 5 tetrahedra
must be the minimal subdivision. Also note that, when a
vertex is removed, its neighbours each gain two edges and
lose one, becoming degree four. These vertices cannot then



Subdivision || Contained | Symmetric | Parsimonious | Minimal | Implicit | Continuous | Correct
Minimal (5) yes no yes yes possible possible no
Freudenthal (6) yes no yes almost yes possible no
BCC (12 average) no yes no no yes yes no
Face-Divided (12) yes no no no possible possible no
Face-Centered (24) yes yes no no yes yes no
Edge-Divided (48) yes yes no no yes yes no

Figure 1: Table of Subdivisions. “Possible” implies a desideratum that can be satisfied by a suitable choice of added vertices

or edges.

be “cut off” in a single tetrahedron, forcing us to remove
vertices by parity. As a result, there are only two ways of
reducing a cube to five tetrahedra.

Because the four vertices cut off are treated differently
from the four remaining, this subdivision is not symmet-
ric. Worse, the central tetrahedron is a different shape from
the other four. Finally, observe that opposite faces of the
cube are divided by diagonals in different directions. As
noted in [11, 17, 20, 22], the two possible 5-fold subdivisions
must alternate throughout the grid for F(p) to be continu-
ous. This is possible for regular grids, for which F(p) will
depend on the parity of the cell. For a curvilinear grid, it is
possible to have (for example) a torus composed of an odd
number of hexahedral cells, in which case the alternation is
not possible, and continuity cannot be guaranteed.

For Fig. 3(d), the same subdivision was used in every cell:
the discontinuity results in cracks in the isosurface. Fig. 3(e)
uses the first case for odd-parity cells, and the second case
for even-parity cells. Fig. 3(f) uses the first case for even-
parity, and the second case for odd-parity cells. These parity
rules lead to different results. The peaks in the zigzag are
connected for even parity, and disconnected for odd parity.
This is because the face diagonal is added between the peaks
in Fig. 3(e), connecting them. In Fig. 3(f), a face diagonal
between two low-valued vertices separates the peaks, discon-
necting them.

However, this subdivision is contained, parsimonious,
minimal, implicit, and continuous (when parity is used).

Finally, note that the small surfaces are blocky, and even
the larger surfaces are not smooth.

4.3 The Freudenthal (6-fold) Subdivision

This subdivision is actually older than the minimal subdi-
vision in popularity, having been introduced for simplicial
pivoting [10, 12, 2], and has been used extensively for ren-
dering [1, 17, 20]. It is obtained by picking a major diagonal
of the cell. The vertices on this diagonal are connected to all
the other vertices, either by existing edges of the cube, or by
diagonals across faces of the cube. This results in 6 tetrahe-
dra packed around the major diagonal (see Fig. 6(b)). Note
that, although the tetrahedra are all the same size and shape,
3 of them are mirror images of the others (i.e. the tetrahedra
are not isomorphic without reflection). Since there are four
major diagonals in the cell, there are four different Freuden-
thal subdivisions, each of which has a different directional
bias.

This subdivision is contained, minimal, implicit, and only
slightly less parsimonious than the minimal 5-fold subdivi-
sion. Note that the face diagonals that are added are the
projections of the major diagonal onto the faces of the cube.
Provided that these face diagonals are consistent between
adjacent cubes, this subdivision will be continuous: this is
achieved most simply by using the same diagonal in each

cube. However, it is possible to achieve this in other ways:
the 48-fold subdivision in Sec. 4.7 is a good example.

Due to the major diagonal, this subdivision is not sym-
metric. If we look at Fig. 3(g), we see a distinct axial bias
in the direction of the major diagonal. If we choose a dif-
ferent major diagonal, as in Fig. 3(h), we get a different
result. Also note the grooves visible on the silhouette of the
larger surfaces. Clearly, neither symmetry nor correctness is
satisfied.

It is possible to subdivide a cube into six tetrahedra in
other ways [1]. It is not possible to do so without intro-
ducing a major diagonal, in which case similar artifacts to
those in Figs. 3(g) and 3(h) are to be expected. In addition,
these subdivisions are less symmetric than the Freudenthal
subdivision, which at least has the advantage that all the
tetrahedra are isomorphic to each other by reflection or ro-
tation. Maintaining consistency between cells also becomes
dependent on tracking the parity of the cell. Since these
subdivisions fail more of the desiderata that the Freuden-
thal subdivision, we will not consider them further.

4.4 The Body Centered Cubic Subdivision

This subdivision,suggested to us by Herbert Edelsbrunner,
is based on a body-centered cubic lattice (BCC mesh). An
additional vertex is added to each cell. These additional
vertices are connected to the new vertices in all adjacent
cells, and to the vertices of the cell to which they belong,
generating 24 tetrahedra. Since each tetrahedron is shared
with an adjacent cell, an average of 12 tetrahedra per cell
are generated, at the cost of a single additional vertex per
cell. In Fig. 6(e), we illustrate this subdivision: unlike the
other subdivisions, it is not possible to show a single cube,
divided into tetrahedra. Instead we show all 24 tetrahedra
that intersect a given cube.

Although the BCC lattice is highly symmetrical, a dis-
tinctly nasty artifact appears: “girders” form between ad-
jacent peaks. To illustrate how this occurs, we have con-
structed a 2-D simplicial subdivision of a square cell that
we call the “pseudo-BCC” subdivision: see Fig. 4(b). This
subdivision is obtained by adding a vertex at the center of
each cell. The central vertex is then connected to all four
vertices of that square cell, and all 4 neighbouring central
vertices. The edges between vertices of each square cell are
suppressed. As with the 3-D BCC subdivision, girders form
when we use this subdivision to interpolate function values.

To show how the girders are formed, consider the zero-
valued vertices in the second and third rows of Fig. 4(a). In-
tuitively, we expect these vertices to be connected: that is,
we expect that no contour exists that separates them. The
bilinear interpolation function satisfies this intuitive expec-
tation: a sample contour at the isovalue 0.20 is shown.

For the pseudo-BCC subdivision, the contour at isovalue
0.20 is shown in Fig. 4(c). Note that the lower row of cell
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Figure 3: The Artifacts (at f = 0.12)
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Figure 4: Simplified “Girders” in 2-D

centers all have the value 0.25, so they separate the zeros
in the second and third rows of vertices: a sample contour
at 0.20 is again shown. This contour “encloses” the edge
between the cell centers. It is not difficult to see that the
two parallel girders shown in Fig. 3(j) are caused by the
contour enclosing the edge between cell centers in the same
way.

The girder effect occurs principally because the pseudo-
BCC subdivision is not contained: the interpolation func-
tion makes reference to values in adjacent cells. As a result,
neither the pseudo-BCC subdivision in 2-D nor the BCC
subdivision in 3-D is topologically correct. So, although the
BCC subdivision is strongly symmetric, implicit and contin-
uous, it is not parsimonious (it adds extra vertices), minimal,
contained, or correct.

4.5 Face-Divided 12-fold Subdivision

A 12-tetrahedra subdivision can also be constructed from
face-centered square pyramids [1, 4]. Each face of the cube
is joined to the center of the cube, resulting in 6 square
pyramids. Each of these is then divided into two tetrahedra
by adding an arbitrary diagonal across the face (see Figs.
6(c) and 6(d)). Note that these tetrahedra are asymmetrical:
not all vertices are treated equally. Since each face can be
divided in two ways, there are 64 possible configurations,
but if we wish to ensure continuity between cubes, we are
constrained in our choices.

In practice, it is simplest to use the same subdivision in
each cube, in which case opposing faces must have matching
diagonals, and only two unique cases remain: in the first
(Fig. 6(c)), a main diagonal is picked. As with the Freuden-
thal subdivision (Sec. 4.3), the vertices on this diagonal are
each connected to all other vertices of the cube. As a result,
this subdivision can be obtained by dividing each cell in the
Freudenthal subdivision into two new cells, and the visible
artifacts in Fig. 3(k) are similar to that case. Alternately,
two vertices at opposite ends of a diagonal are cut off by di-
viding the adjacent faces (see Fig. 6(d)): again, the artifacts
in Fig. 3(1) are similar to the Freudenthal subdivision.

Although contained, this subdivision is not symmetric,
parsimonious, minimal, or correct. As with the 5- and 6- fold
subdivisions, care is required to ensure that the subdivision
is implicit and continuous.

4.6 Face-Centered 24-fold Subdivision

The face-divided subdivision can be further divided by
adding vertices in the center of faces of the cube [1]. Adding
only some of the face-centers gives subdivisions with 14, 16,
18, 20, 22 tetrahedra, respectively. Adding all the face-
centers gives 24 tetrahedra per cube [1, 2, 6, 7, 11, 25, 27].
This subdivision (see Fig. 6(f)) can also be obtained by
taking each of the 24 simplices in the BCC subdivision
(Fig. 6(e)), and dividing it into two along the plane of the
cube’s face.

This subdivision is contained, symmetric, implicit, and
continuous. It is not parsimonious, because it requires an
average of 4 interpolated data points per voxel. Nor is it
minimal, because it has nearly five times as many simplices
as the minimal subdivision.

In practice, the principal visual artifact for this subdivi-
sion (see Fig. 3(m)), is that some spikiness is visible on finer
details.

4.7 48-fold Subdivision

The 24-fold subdivision can be further subdivided by adding
vertices on the cube’s edges to obtain a 48-fold subdivi-
sion [12, 27] (see Fig. 6(g)). Interestingly, this subdivision
can also be obtained by dividing the original cube into 8
sub-cubes, then applying the 6-fold subdivision to the sub-
cubes, choosing the main diagonals that coincide with the
main diagonals of the original cube.

This subdivision is contained, symmetric, implicit, and
continuous, but neither parsimonious nor minimal, as it re-
quires 8 times the original number of vertices, and nearly 10
times the minimal number of simplices. Again, in practice,
the visual artifacts are relatively minor.

4.8 Numerical Results

In order to compare the different subdivision schemes quan-
titatively, we performed several computational experiments
on the test function, defined in Fig. 2.

First, we took this data set in a 13 x 13 x 13 lattice, and
evaluated the maximum absolute error and maximum rel-
ative error within each lattice cube using MATLAB’s con-
strained minimization function fmincon. We did this for
each type of cubical subdivision, plus trilinear interpolation.
For the 5-fold and 6-fold, which are non-symmetric, we used
subdivisions at two orientations. For the 12-fold, BCC, and
24-fold, which need additional data points and are thus not
parsimonious, we tested subdivisions that interpolated this



new data from the lattice vertices, and those that obtained
the true data by function evaluation. We also tried various
sizes for the edges of the lattice cubes, using powers of 2
from 2' down to 27°. The sizes 1, 1/2, and 1/4 are the most
important.

After studying these results, we decided to focus on ab-
solute error, since cubes with large errors produce the most
noticeable artifacts. We therefore selected a number of cubes
with absolute errors greater than 102, and ran experiments
to compute maxima for different subdivisions and different
scales.

Finally, from these experiments, we chose 40 points that
had realized the maximum errors in their respective cubes.
We tracked these points using different subdivision schemes
and different lattice cube sizes. We plotted the absolute
error of the results on logarithmic scales, using logarithms
base 2.

‘We show some sample graphs in Fig. 7. In these there are
some common features:

1. A smaller lattice reduces the error roughly in propor-
tion to the length of the cube side. (Unfortunately, it
blows up the size proportionally to 1/side>.)

2. For test points near a maximum, we can observe a large
increase in accuracy with the first steps of refinement,
then a tapering off toward the end.

3. The maximum error for trilinear interpolation is similar
to the simpler, simplex-based interpolation schemes.

4. It was not uncommon for the asymmetric subdivisions
(5-fold, and 6-fold) to have both the best and the worst
erTors.

5. Using the real midpoints sampled from the function
generally reduces the error of the 12-fold, 24-fold, and
BCC subdivisions. The reduction is comparable to that
achieved by halving the cube size, when the midpoints
are interpolated.

5 Sampling Issues

Usually, no a priori information is available for the (contin-
uous) underlying function that is sampled. It is normally
assumed that the function is band-limited. Since the func-
tion is given on a regular rectangular grid, the aliased spectra
in the frequncy domain are replicated on a regular grid as
well. This means that the frequency support of the function
is the rectangular region [—7/T, 7/T%] X [—7 /Ty, w/Ty] %
[-7/T.,w/T.], where Ty, Ty, and T, are the sampling dis-
tance in , y, and z direction [9]. This frequency 7 /T is also
known as the Nyquist limit.

In order to reconstruct a continuous function from these
sampled values, we would have to multiply with a box func-
tion in the frequency domain. This is equivalent to convo-
lution with the Sinc function (sinc(x) = (sin7z)/7z)in the
spatial domain. Hence the 3D Sinc function, of which we
show the 2D equivalent in Fig. 5(a), is generally considered
to be the ideal reconstruction kernel. [21]

However, Sinc interpolation is expensive to compute, since
it is an IIR filter (infinite impulse response), and requires the
entire sampled dataset to be processed to compute a single
interpolated value. As a result, many approximations to the
Sinc interpolation have been suggested [15, 21].

In practice, the standard interpolation filter in volume
graphics is trilinear filtering. The cost to apply a m x m xm

filter at a single location is O(m®). For trilinear interpola-
tion, m = 2, and the cost is acceptable. For higher-order
(i.e. larger) filters, m increases, and the cost of computa-
tion rapidly becomes unacceptable. Trilinear filtering is also
attractive from a topological point of view. Not only does
it satisfy the intuitive expectation of connectedness that we
describe in Sec. 4.4, but all maxima and minima occur at
grid vertices, and a closed form exists for computing the
remaining saddle points [16].

We note that our test dataset consists of features that are
near the Nyquist sampling limit, so it is not surprising that
all of the simplicial subdivisions in Sec. 4 perform poorly.

Some sense of why this happens can be obtained by look-
ing at the Fourier transforms of the interpolation kernels cor-
responding to each of the subdivisions. However, since these
interpolation kernels are themselves three-dimensional, we
illustrate the problems by looking at two-dimensional ker-
nels instead.

In two dimensions, we can obtain a simplicial subdivi-
sion by cutting each square cell along both diagonals, as in
Fig. 5(e). Broadly speaking, this subdivision is akin to the
24-fold 3-D subdivision described in Sec. 4.6, since the cen-
ter of the cell is connected to all the vertices in a symmetric
fashion. In choosing this subdivision, we implicitly choose
the barycentric interpolation function over the simplices: the
corresponding interpolation filter is shown in Fig. 5(f). This
filter is a poor match for the ideal filter, but makes a reason-
able approximation of the bilinear filter. It does, however,
have more pronounced sidelobes than the bilinear filter, and,
in particular, diagonal sidelobes, as shown in Fig. 5(g). As
an indication of how closely this filter approximates the bi-
linear filter, we show the difference between the two filters
in Fig. 5(h): the maximum difference between the two is
approximately 0.11.

In comparison, we show the pseudo-BCC subdivision in
Fig. 5(i), which we last saw in Sec. 4.4. The corresponding
interpolation filter shown in Fig. 5(j), the Fourier transform
in Fig. 5(k), and the difference between this filter and the
bilinear filter in Fig. 5(1). Note the strong diagonal ridges
in the Fourier transform and the sidelobes in the cardinal
directions. In particular, the filter is non-zero at the center
of the aliased spectra along the major axes (at £4x). This
is an undesirable feature, which will cause strong aliasing
artifacts. Furthermore, the maximum difference from the
bilinear filter is 0.30.

We next consider the Freudenthal subdivision in
Fig. 5(m), which corresponds to the 3-DFreudenthal subdi-
vision described in Sec. 4.3. Both the filter in Fig. 5(n) and
the Fourier transform in Fig. 5(o) demonstrate the strong
axial bias of this filter, with multiple sidelobes extending
along the diagonal. This bias results in a maximum differ-
ence from the bilinear filter of 0.25.

Since these cases correspond roughly to the major subdivi-
sions we described in Sec. 4, similar sidelobes in 3-D Fourier
space can be expected, reinforcing the concerns raised about
these subdivision schemes.

Finally, for comparison, we show the nearest neighbour
filter in Fig. 5(q), and its Fourier transform in Fig. 5(r). We
show the difference between the nearest neighbour and bilin-
ear filters in Fig. 5(s). The maximum difference is relatively
large at 0.7, so it was necessary to reduce the vertical scale.

6 Conclusion

We have reviewed the various simplicial subdivisions pro-
posed for 3-D applications, and examined the geometric ar-



N
AN 0.2 AN
Vs )
05 X ///"“\\\
8K o /7/[”"““‘\
i
oleglZ 0055 X 0 DN
o0 Sy ) 4 4
s I 40 2
20 N2 20

(a) Ideal (Sinc) Filter (b) Fourier (Sinc) (c) Bilinear Filter

(d) Fourier (Bilinear)

0.5

y
y
iy
Ve
A

\ iy
SN o
0l S SN R Q N
0 L NS 4 A X
20 GRS, 0 2
00 4 4
(e) Fourfold Mesh

(f) Fourfold Filter (g) Fourier (Fourfold) (h) Difference (Fourfold)

1
2 0.2
77
7N
7T
ARSI , Bl
B WA TN
Koo N
AR 40 4
20 RS 20 0
00

(i) Pseudo-BCC Mesh

(k) Fourier (PBCC)

(1) Difference (PBCC)

1
\ A
" A °
O / \ N
/W ' ‘ \ Wit R
05 AN / (i POy I MR
(AR \ \ A\
A AN\ fl N
AN / il
A AN\ ,',"'“ f ‘\“‘ 0.2
g 9 A
40 NS 4 5 2O 40
L NSNS 40
20 ”/lll/',',’,’llé‘\:\‘“\‘:\\\\\“‘ 20

0o

40
(m) Freudenthal Mesh

(n) Freudenthal Filter (o) Fourier

(Freuden-
thal)

(p) Difference (Freuden-
thal)

(q) Nearest Neighbour

(r) Fourier (NN) (s) Difference(NN)
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tifacts that result from each (see Table 1). We have also
considered the sampling artifacts in the Fourier domain for
each of these subdivisions. None of the subdivisions is en-
tirely satisfactory: some care is called for when selecting one
for use. Unsurprisingly, there appears to be a trade-off be-
tween size (as measured by parsimony and minimality) and
accuracy (as measured by symmetry, consistence and cor-
rectness).

If there is good reason to assume that the sampling is
significantly better than the Nyquist limit, we expect that
these artifacts will be relatively minor: any of the subdivi-
sions may then be used, for example, the 5-fold or 6-fold
subdivisions.

If, however, the features of the dataset are unknown, or
if the sampling rate is barely sufficient, we suggest using
the 24-fold subdivision. This requires interpolation (or sam-
pling) of 4 additional vertices per cube, on average, increas-
ing the number of vertices to be processed by a factor of 5,
and the number of cells by a factor of 24 (although the cells
are simpler).

There appears to be no good reason to use a 48-fold sub-
division, except for hierarchical applications such as the one
in Zhou, Chen & Kaufman [27]. Instead of interpolating
additional vertices for this subdivision, additional samples
should be taken (which is, in effect, what Zhou, Chen &
Kaufman do). But this raises an interesting point: if we are
going to increase the input size by a factor of 5 or more, how
much do we gain from the simplicity of the tetrahedron’s in-
terpolation function?

We would argue that simplicial subdivisions should only
be used where they are necessary for the correct operation
of an algorithm, such as [7, 11, 14, 19, 22, 23]. In al-
most all other cases, the extended look-up table of Cignoni
et al.[8] will generate fewer triangles, and require fewer in-
terpolated points.

Our analysis of tetrahedral subdivisions took place in the
context of regularly sampled grids. Although most of the
analysis also applies to curvilinear grids, or irregular grids
using hexahedra, additional work is possible in these realms:
for example, although simpler, it would be useful to extend
the analysis to prisms in irregular grids. It might also be
profitable to construct a more rigorous taxonomy of all pos-
sible tetrahedral subdivisions, similar to that in [1].
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Figure 6: The Subdivisions
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Figure 7: Absolute numerical error plotted against cube size at selected points for various subdivisions





