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ABSTRACT

Splatting is a volume rendering algorithm that combines effi-
cient volume projection with a sparse data representation: Only
voxels that have values inside the iso-range need to be considered
and these voxels can be projected via efficient rasterization

schemes. In splatting, each projected voxel is represented as a

radially symmetric interpolation kernel, equivalent to a fuzzy ball.
Projecting such a basis function leaves a fuzzy impression, called
footprint or splat, on the screen. Splatting traditionally classifies
and shades the voxels prior to projection, and thus each voxel foot-
print is weighted by the assigned voxel color and opacity. Project-

ing these fuzzy color balls provides a uniform screen image for

homogeneous object regions, but leads to a blurry appearance of
object edges. The latter is clearly undesirable, especially when the
view is zoomed on the object. In this work, we manipulate the ren-
dering pipeline of splatting by performing the classification and

shading process after the voxels have been projected onto th
screen. In this way, volume contributions outside the iso-range
never affect the image. Since shading requires gradients, we no
only splat the density volume, using regular splats, but we also
project the gradient volume, using gradient splats. However, alter-
native to gradient splats, we can also compute the gradients on the
projection plane, using central differencing. This latter scheme
cuts the number of footprint rasterization by a factor of four, since

only the voxel densities have to be projected. Our new method ren
ders objects with crisp edges and well-preserved surface detail.
Added overhead is the calculation of the screen gradients and the
per-pixel shading. Both of these operations, however, may be per-
formed using fast techniques employing lookup tables.

1 INTRODUCTION

Volume visualization deals with the display of volumetric
data, represented as sample points on a regular or irregular 3D ra
ter. Volumetric data may be produced by medical scanners, such a
MRI, CT, PET, or SPECT, by confocal or electron microscopy, by
numerical methods, such as scientific simulations and finite ele-
ment analysis, or by voxelization of analytic functions. In recent
years, many tools and techniques have been proposed to aid us i
the visualization of volumetric datasets. On one side is the group of
direct volume renderers, which seek to capture a visual impression
of the complete 3D dataset by accounting for the emission and
absorption effects of all data elements [7][13]-[15][30]-[32][34].
On the other side is the group of indirect volume renderers that
reduce the data into a set of isosurfaces [17], which are conve-
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niently rendered as polygonal meshes using z-buffer algorithms.
The latter representation is appropriate when such isosurfaces exist
in the data, but may be less effective when the volume is a space-
filling gas, such as in fluid-flow simulations, or is composed of
fany micro-surfaces, such as tissue in a medical dataset.

A good argument for indirect volume renderers is that they
can take advantage of widely available sophisticated graphics hard-
ware to quickly render the polygonal meshes. However, a large

& olumetric dataset may give rise to a huge number of polygons, so

huge that it may overwhelm the graphics engine. This observation
recently motivated the parallel raycaster developed by Parker [25].
Although it is true that the magnitude of the polygonal mesh may
be reduced to a more manageable size using the error-minimizing
methods proposed by Hoppe [10] and others, these methods are
rather expensive, and therefore cannot be applied when the polygo-
nal mesh is not static. This is a scenario that occurs when viewing
time-varying data or when the isosurface is interactively varied,
e.g., during data exploration, which requires the extraction (and

tsimplification) of a new polygonal mesh for each new iso-interval.

Popular direct volume rendering algorithms are raycasting
[14][15], Shear-warp [13], splatting [30]-[32], cell-projection
methods [34], and approaches using 3D texture-mapping hardware
[4][28][29] or custom volume rendering boards [24]. All of these
methods perform some sort of explicit or implicit volume interpo-
lation at points along the viewing direction. The interpolation

results are then composited in front-to-back or back-to-front order.
A distinction has to be made with respect to the nature of the inter-
polated value, and this distinction depends on the order of the vol-
ume rendering pipeline constituents: classification, shading,
interpolation, and compositing (see Fig. 1). Classification deter-
mines the (fuzzy) object or material membership of a voxel or
interpolated sample point and is usually given by a range of vol-
ume densities, specified in the transfer function. Based on this clas-
sification transfer function, the voxel or interpolated sample point
is assigned a color and an opacity. The color is then scaled by the
result of the shading operation, which determines the amount of
light, coming from one or more lightsources, that is reflected
owards the eye. If the volume voxels are classified and shaded as a
ére-processing step before the projection occurs, then the interpo-
|ation operations yield colors and opacities, which can be directly
composited along the viewing direction (Fig. 1a). We will refer to
this mode of volume rendering ase-shaded volume rendering
On the other hand, when the raw density volume is interpolated,
then each interpolated value must first be classified and shaded
before it is composited (Fig. 1b). Since classification and shading
occurs after sample interpolation, we will call this type of volume
renderingpost-shaded volume rendering

Splatting traditionally uses the pre-shaded scheme: The vox-
els are first classified and shaded, and then each shaded voxel is
projected to the screen as a fuzzy ball, i.e., the 3D interpolation
kernel. The 2D screen projection of such a kernel is callsglat
or footprintand can be performed very efficiently. The outcome of

this rendering procedure is an object projection that has that typical
pre-shaded volume rendering-look: blurred boundaries and smooth
surfaces (see Fig. 1a where we have splatted a cube composed of
82 voxels). These blurred boundaries are due to the smooth decay
of the iso-voxels’ splatting kernels, located at the object edges. A
positive aspect of the blurring effect is that the rendering results
with splatting are almost always smooth and alias-free, even in the
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Fig. 1: Two standard volume rendering pipelines. (a) Pre-shaded volume rendering: The raw density volume is first classified and
shaded, and the volume renderer then interpolates the resulting color and opacity volumes and composites the sample values for image
generation. On the right: A cubeY8oxels) rendered with splatting from a pre-shaded color and opacity volume (a Gaussian filter of
radial extent 2.0 was used for interpolation). (b) Post-shaded volume rendering: The volume renderer interpolates the raw density
volume, and these sample values are then classified and shaded and composited for image generation. On the right: The cube of (a) is
rendered from the density volume with a raycaster and trilinear interpolation in post-shaded mode.

presence of poor gradients around the iso-surfaces. However, théook of an edge. Splatting with edge splats placed at iso-surfaces
blurring becomes a great nuisance when rendering intricate andand regular splats used in homogeneous volume regions provides
detailed structures, such as nasal passageways [33] or colons [9] ithe desired effect: crisp edges and smooth surfaces. It, however,
medical fly-throughs. The blurring (i.e., lowpassing) washes out requires the detection of directional edges in volume space as a
much of the crucial object detail, which greatly hampers the real- pre-processing step. The gradient at an iso-surface provides the
ism and utility of the visualization. A direct volume rendering is, edge direction, while the voxel-edge distance is estimated by the
however, preferable, should we desire to deform or manipulate thegradient magnitude/direction and the difference between the
object in a surgical simulation scenario. voxel's value and the iso-value. In the pre-processing step, all vox-
Raycasting algorithms, on the other hand, come in both fla- els that are close to an iso-surface are augmented with values for
vors, i.e., pre-shaded [7][14][15][35] and post-shaded [1][8][24] edge direction, edge distance, and gradient-strength. The splatting
[27]. (Note that we, for the sake of our discussion, refer to the raw, process then uses these parameters at rendering time to select the
original grid values in a volume as densities.) See Fig. 1b, where edge splat with the most appropriate edge decay, location, and 3D
we show the cube of Fig. 1a, now rendered with post-shaded ray-orientation for each voxel. Although the approach is very effective
casting. We observe that the edges appear very crisp. Although it isfor the iso-surface edges, micro-edges within the iso-range are not
generally agreed upon in the literature [35] that the post-shadedhandled easily. Other drawbacks are: (i) The method has problems
pipeline produces sharper edges than the pre-shaded pipeline, oneith discontinuities in the edge profile, e.g., sharp corners such as
may argue, that even when raycasting is applied in conjunction cube edges, where the direction of an edge is ambiguous in volume
with pre-shading, one rarely notices blurring as pronounced asspace and its perception is view-dependent. (ii) It requires a pre-
with splatting. This can be explained by the fact that raycasting processing step (which, however, may be performed on the fly)
most commonly uses trilinear interpolation filters, which cause less whenever the iso-range or transfer function is changed. This slows
blurring (but possibly more aliasing). Splatting, on the other hand, interactive transfer function changes. (iii) The edge splats are
usually employs relatively large, radially symmetric interpolation equivalent to applying a local high frequency filter to the volume,
kernels (such as a Gaussian of radial extent 2.0). These kernel arbence noise in the iso-contour range may be amplified.
chosen since they allow the same kernel footprint to be used for all The splatting approach presented in this paper does not add
viewing directions and ensure good footprint overlap on the screenany artificial detail to the volume. Rather, it eliminates blurring by
[31]. Unfortunately, these larger interpolation kernels cause a applying the volume rendering pipeline of Fig. 1b to the original
higher amount of blurring (but also reduce aliasing). density data using the splatting paradigm. In this way, only that
In previous work, Huang [11] has proposed edge splats, i.e., part of a projected voxel footprint that falls within the iso-range is
specialized kernels with rapid interpolation function decay, to be shaded and displayed, while the footprint portion with values out-
used on object boundaries. These kernels, in essence, model thside the iso-range (or the interval volume) is culled from the shad-



ing process and never contributes to the final image. It is this latter I)\(x, r) =

portion that is responsible for the blurring in the pipeline of

Fig. 1a. L/As-1 i—1 4
The outline of the paper is as follows. First, in Section 2, we Z C)\(f(iAs)’ g(iAs))a(f(iAs)) |—| (1-a(f(jAs)))

describe splatting in general and then summarize a splatting . < 0 0

method that we have proposed recently and in which we will = 1=

embed our new splatting pipeline. Then, in Section 3, we provide The function valuef(iAs) and the gradient vectay(iAs) is

the underlying theory of the new enhancement. Section 4 presentsnterpolated fronfy(x,y,2 using some 3D interpolation kernel, and

the new algorithm, and Section 5 presents visual and temporalC, anda are now functions that translate the interpolated volume

results. Finally, Section 6 provides some concluding remarks, andfunction values into color and opacity.

Section 7 finishes with a list of research topics for the future. The splatting algorithm [30]-[32] was proposed by Lee
Westover to provide the level of efficiency that previous raycasting
2 PRELIMINARIES approaches were lacking. It gains its speed by reordering the vol-

The basic element in most volume rendering applications is ume rendering integral so that each voxel’s contribution to the inte-
the volume rendering integral in its low-albedo form [3], as formu- gral can be viewed isolated from the other voxels. In splatting, an
lated by Kajiya and Von Herzen [12] and also formally derived by interpolation kerneh is placed at each voxel location. This enables
Max [19]. For each pixel ray, we computg(x,r), the amount of one to view the volume as a field of overlapping interpolation ker-
light of wavelengthA coming from ray direction that is received nels which, as an ensemble, make up the continuous object repre-

at pointx on the image plane: sentation. The contribution of a voxgivith valuef; is then given
L by fdl h(s)ds, wheres follows the line of kernel integration in
s A ; . h ;
| - 0 the direction of the ray. If the interpolation kernel is radially sym-
)\(X’ N Io C)\(S)H(S) eXPg Iou(t)dt%is @) metric, we may pre-integratgh(s)ds into a lookup-table, i.e., the

) ) kernel footprint, and use this table for all voxels. We can then map
_ HereL is the length of ray. We can think of the volume as e voxel footprints, scaled by the voxel values, to the screen where
being composed of particles with certain densifiegMax calls hey accumulate into the projection image [31]. By mapping the
them light extinction coefficients [19]). These particles receive footprint (image) onto a polygon, we can employ standard 2D tex-
light from all surrounding I.|ght sources and refleqt this Ilght. ture mapping hardware for the projection process [6]. However, the
towards the observer according to the specular and diffuse materiatoqprint interpolation is also easily done in software with fast
properties of the particles. Thus, in (1 is the light of wave- DDA procedures [18][21]. Thus, splatting performs all interpola-
lengthA reflected at locatiosin the direction ofr. To account for igns in 2D (i.e., the footprint rasterizations), while raycasting per-
the higher reflectivity of particles with larger densities, we must ¢5ms g interpolations more expensively in 3D (i.e., when
weight the reflected color by the particle density. The light scat- interpolating a volume sample). In addition, as an object-order
tered ats is then attenuated by the densities of the particles 55h0ach, splatting only needs to store and render the relevant vox-
betweens and the eye according to the exponential attenuation g|s which in many cases constitutes a mere 10-20% of the volume
function. _ o _ voxels [34]. However, until recently, one of the downsides of splat-
The analytic volume rendering integral can, in most cases, not(ing was that the pre-integrated kernels restricted the volume ren-
be computed efficiently, if at all, and therefore a variety of approx- gering integral, since the 3D reconstruction kernel was composited
imations are in use. An approximation of (1) can be obtained by 45 5 whole, and not piecewise, as part of an interpolated sample

raycasting, using a discrete Riemann sum..Rays are cast into th%long a viewing ray. This caused popping artifacts in animated
volume, and samples, spaced apart by a dist&scere interpo- viewing.

lated along the ray by means of a 3D interpolation kemélqua- The image-aligned splatting approach was recently proposed
tion (1) can be written as a Riemann sum equation as follows: 23] g eliminate these restrictions. It unifies the qualitative advan-
L/As—1 i1 tages of raycasting with the efficiency of splatting. Unlike the tra-

_ . . . ditional splatting approach, image-aligned splatting does not splat

I)\(X’ r = z C)\('AS)“('AS)AS |_| exp(-u(jas)as) (2) the interpolation kernels as a whole. Rather, it slices the interpola-
i=0 j=0 tion kernels by a series of cutting planes that are aligned parallel to

the image plane. The kernel sections that fall within a pair of cut-
more efficient. First, the transparendyiAs) is defined as ting planes or thin slab are summed into a sheet-buffer, and consec-

exp(—1(iAs)As) = t(iAs). Transparency assumes values in the utive sheet-buffers are composited from back-to-front or front-to-
range [0.0, 1.0]. Then opacity(iAs) = (1—t(iAs)) . The expo- back. Again, pre-integrated kernel sections are used for fast raster-
nential term in (2) can be approximated by the first two terms of its Zation. This approach gives rise to a volume integral calculation
Taylor expansion: t(iAs) = exp(—p(iAs)AS) = 1— u(iAs)As . that is similar to the.on.e computed.by raycasting in the color-inter-
Then one can writa1(iAs)As= 1 —t(iAs) = a(iAs) polation model. It mimics a set of simultaneous rays that re-sample

This transforms (2) into the familiar compositing equation: 1€ volume into a set of parallel sheet images, spaced apdss by
) P geq which are then composited in front-to-back order. The distinction

A few approximations make the computation of this equation

L/As-1 i—1 is that the composited colors and opacities are now obtained b
t function int ti d not by the Ri i d
I, (X, 1) = C. (iAs)a(iAs) O 1—a(iAs rue function integration, and not by the Riemann square integra-
)\( ) : ZO 7\( Ja(ins) jljo( (i8s)) (3) tion rule. Equation (3) is then written as follows:
This equation, popularized by Levoy [14], is valid if we inter- 1) = 5)

polate a discrete, pre-classified and pre-shaded color and opacity ,as—1 i+ 1A (s 1A i1 (+ DA
volume C4(xy,2) and a4(x\y,2), respectively, to getC(iAs) and N il 1¢ Oq_ 7 H4as O
a(iAs) (pipeline of Fig. 1a). However, if we classify interpolated iZO As Ims A(S)ds IiAs G(S)dsjl:loﬂl IjAS a(s)ds O

samples obtained from the discrete raw density voldgiey,?
(pipeline of Fig. 1b), then (3) is more appropriately written as fol- We will use the image-aligned splatting algorithm along with
lows: the early splat elimination scheme proposed in [22]. This scheme



employs a progressively refined screen occlusion map to cull from o )

the splatting pipeline those voxels that have no effect on the final (a) original step function: the edge
image. The screen occlusion map is computed from the opacity

image layer, each time a sheet image has been composited with the
current image buffer. The volume is traversed in front-to-back (b) blurred edge, after convolving the
order. To determine occlusion, the center of a voxel (splat) is pro- edge with Gaussian filtér

jected, and the splat is only rasterized if the occlusion map value at x

the projected point is above a pre-set opacity threshold. The splat

culling can lead to tremendous savings, especially when the trans- . .

fer function specifies large opaque regions. In many cases, only (c) crisp edge, afte_r thresholdlng the
10% of the relevant voxels survive the visibility test. But our tests blurred edge with iso-value

also indicate that even semi-transparent volumes benefit consider-

ably. The scheme is similar to early ray termination acceleration
for raycasting, however, it does require the calculation of the occlu-

Fig. 2: Origin of blurring, and its prevention.

sion map for every sheet-buffer slice, and it also requires the pro- Here,r2 = x2 + y? + 2, andb = 0.214 is a scaling factor that

jection of each voxel's center. normalizes the kernel. This kernel is pre-integrated into a 2D foot-
print, which gives rise to another Gaussian. Fig. 2 shows what hap-

3 THEORETICAL ASPECTS pens if this kernel is used to interpolate a step function, constituted

In this section, we discuss the theoretical difference betweenby an iso-edge (Fig. 2a). If the voxels store colors and opacities,
pre-shaded and post-shaded volume rendering, and we derive théhe edge will appear blurred, as is evident in Fig. 2b.

gradient filter necessary to implement the latter for splatting. The post-shading pipeline of Fig. 1b can be written as:
' (FHT, FHD)S. Here, the grid voxel densities are first interpo-
3.1 Pre-shaded vs. post-shaded volume rendering lated, and the interpolation result is then classified and shaded.

We have seen in Fig. 1 that the volume rendering pipeline has F19: 2D illustrates thah will again have a lowpassing effect and
four components: classification, shading, interpolation, and com- blur the interpolated volume. However, this time the classification
positing. We have also seen that two permutations of these pipelineSteP iS still ahead, and we can undo some of the blurring by clip-

components exist, depending on if we interpolate colors and opaci-p'ng.o.ff thg blurred image regions, using the iso-thresholds. The
ties or if we interpolate raw densities. Compositing comes last in SUTViving pixels are then shaded, and we observe that the rendered

both permutations, so we will not concern ourselves with this com- Silnouette edge is considerably crisper and is located close to the
ponent for the matter of this discussion. Shading, on the other fue edge (Fig. 2c).
hand, requires the estimation of a gradient, so we need to add thi
operation to our pipeline. We can write the pipeline in a terse form
using four operatorst for classification with a transfer functios, The remaining question is: How does one compute the gradi-
for shadingD for gradient (derivative) estimation, ahtifor inter- ents? The post-shading pipelifEHT, FHD)S  indicates that the
polation [20]. Furthermore, we denote the discrete volume density gradient is calculated by applying the two operatdrandD to the
function given at the volume grid points BsFor the remainder of  discrete volume function. It was shown by Méller [20] that the
this discussion we will usel andh interchangeably can both be operatorsk, D, andH are both associative and commutative, i.e.,
the interpolation operator and the interpolation filter. LikewiSe,  the sequence$H)D, F(DH), and FD)H are all equivalent. Thus,
can both be the derivative operator and the derivative filter. The we could first interpolaté= and then compute the gradients (the
combination of operator§, D, andH constitutes a convolution  (FH)D scheme) or we could compute the gradients at the discrete
operation in the spatial domain, or alternatively, a multiplication in grid locations and then interpolate the gradients (tR®)H
the frequency domain. scheme), or we could construct a filtdD and use it to interpolate

Splatting presently uses the pipeline in Fig. 1a, which interpo- F (the F(DH) scheme). In [20] it was also shown th&H)D is the
lates a pre-classified and pre-shaded volume. Using the five operamost efficient of the three, as long as we provide some sort of cach-
tors from left to right, this pipeline can be written 88T, FD)SH ing of the interpolated valudsH, to be utilized for the calculation
(read from left to right). In this equation, the density volume is first of gradients nearby. An alternative, but not equivalent, form of
classified using the iso-value transfer function, then the gradientsFHD is FH’, whereH'’ is the derivative oH (see Bentum [2] for
are computed at the grid points using e.g., a central difference fil- further details).
ter, and finally the grid samples are shaded, using the gradients and  In splatting, we usually employ radially symmetric filters,
the material colors assigned in the classification step. This pipelinesuch as Gaussians, such that we can use the footprints for all view-
allows fast processing for two reasons: (i) the gradients need onlying directions. However, neither Méller nor Bentum consider radi-
to be computed once per viewing session as a pre-processing steplly symmetric filters. Thus we find it worthwhile here to offer
(unless we change the gradient transfer functions), and (ii) shadingsome further investigations on this subject. Fig. 3a shows the fre-
occurs only as a pre-processing step once per viewpoint, and doeguency spectrum of the Gaussian kernel of (6). The frequency
not have to be performed each time a voxel kernel is intersected byresponse of the central difference filter is also shown (derived in
a slab. The colors and opacities stored at the grid points are ther[2]). Since FH)D is equivalent td=(DH), we can capture the effect
interpolated using the interpolation filter of DH on F by multiplying the frequency responses of the two fil-

The interpolation filterh, usually deviates from the ideainc ters. The result is spectrum 2 in Fig. 3b. Notice that the frequency
filter, and it will have a lowpassing effect when used to interpolate response of the ideal gradient filter is given by a linear highpass of
the color and opacity volume. A filter kernel that is often used in unit slope, that stops at a frequency mf i.e., half the grid's
splatting is a radially symmetric Gaussian function of radial extent Nyquist frequency (spectrum 1 in Fig. 3). Finally, spectrum 3 in
2.0: Fig. 3b is the frequency responsettif the derivative of the Gaus-

5 sian given in (6). The spatial filter functiontéfis given by:

) = bz ©) h(r) = b2 (7)

%.2 Gradient estimation



) o where
1 1: optimal derivative filter

i (i+1)Asf( ) (i+1)As ©
| 2: Gaussian (H iAs) = s iAs) = )
| . (H) q(iAs) = .f Ao ds g(ihs) = .I Aods (9)
| 3: central difference (D) iAs iAs
' 2 3 Again, C, anda are now functions that translate the interpo-
I / lated volume function and gradient values into color and opacity.
o5l Notice that splatting provides the average of the integrated density
F 1| and gradients within a volume slab. On the other hand, ray-tracing
L S S ST N T - (as well as the Shear-warp and the 3D texture mapping
approaches) interpolates a random position and then uses a square
rule for integration, as per equations (3) and (4). The latter
1| 1: optimal derivative filter approach can lead to aliasing artifacts, thus many researchers
sl employ an expensive root-finding operation to determine the actual
- 1 2: central difference * Gaussian (DH) surface position [25].
3: derivative of Gaussian (H’) 4.2 Implementation issues
1} ¥ The operatorfH)D can be implemented by splatting the vol-
sl 5 { 13 ume densities into a sheet buffer, and computing the in-sheet gradi-
ents by convolution with two orthogonal central-difference filters.
¥ L & L A = The third gradient vector is perpendicular to the sheet-buffer plane
) ) and can be efficiently computed by caching the sheet-buffers
Fig. 3: (a) Frequency spectra of Gaussiat) @nd central immediately following and preceding the current sheet-buffer.
difference filter D). The optimal derivative filter is an ideal H' can be implemented by constructing three extra footprint
highpass: a line of slope=1 in frequency space, that stops at section arrays, one fodH/dx @H/dy , andH/dz , respec-
frequency=t. (b) Frequency spectra of tHeH and theH’ tively. The footprint integration is performed similar to that of the
derivative filter, respectively. regular density footprint. We just use a different underlying 3D

kernel, i.e., theoH/0x ,0H/dy , anddH/0z kernel, respec-
whereb’ = 0.855 is a normalization factor. Looking at the fre- tively, and perform each integration alormy(assume that we
quency responses in Fig. 3b, we notice thét has a faster fall-off  always look down the-axis after the viewing transformation). In
in the stop band, but also attenuates frequencies in the upper pasgFH)D, the volume gradients are computed with respect to an
band. On the other han#’ preserves the passband frequencies orthogonal coordinate system in which two axes are aligned with
better, but also passes more frequencies in the stopband. It is therethe sheet-buffer plane and the other is perpendicular to the sheet-
fore more susceptible to noise. Clearly, a trade-off must be made. Ifpyffer plane. Thus the gradient coordinate system is always aligned
our dataset contains fine detail, like bone fractures in medical with the viewing coordinate system, and its orientation changes
images, then we would want a gradient filter with a high acuity in wjith the view orientation. The gradient splats reconstruct the gradi-
the upper passband to ensure the proper accentuation of thesgnts along the same coordinate system: ¥k’ 9x ainddy
structures in the rendered image. However, if our dataset containssplats compute the in-sheet gradients, andaHe 9z splats com-
much high-frequency noise, as is often the case in medical datasetpute the gradient perpendicular to the sheet-buffer. Rotating the
(especially in MRI), then we desire a gradient filter that is less sen- gradient splats in this way yields correct results, since the kétnel
sitive in these regions of the spectrum. Since a gradient filter is ajs radially symmetric and its gradients are identical for all viewing
high-pass filter and emphasizes high frequencies, noise that usuallyjirections. Hence, the gradient splats can be used for all viewing
resides in these frequency bands can be greatly amplified by thesgjirections. Due to the imperfect kernels, however, the resulting

filters, generating undesirable high-frequency artifacts. gradient vector may be somewhat view-dependent.
Once the gradient vector componems g, g, have been
4 NEW BLUR-FREE SPLATTING obtained, we must normalize them by division with the gradient

We have just established that in order to rid splatting from vector magnitude before we can use them for shading. This
much of the blurring, we need to formulate splatting as a post- jnvolves an expensive square root computation. Clyne and Dennis
shading pipeline. We will now describe both conceptual and imple- [5] have proposed an efficient work-around: If only the gradient

mentational issues. direction is of interest, then we can perform a mapping from carte-
sian space to spherical space to get the latitude/longitude angles of
4.1 Concepts the gradient vector. These can then be used to obtain the normal-

Recall Equation (4), which gives the compositing equation for ized gradient components by mapping back into cartesian space.
raycasting when the post-shading pipeline is used. Notice that theBriefly, the spherical mapping is computed by:
density (and gradients) are assumed to be constant within the sam-
pling interval. Splatting, on the other hand, can provide the density
(and gradient)ntegral within the sheet-buffer slab, due to its pre- x 2 2
integration scheme. Thus the compositing equation for splatting A9t gy
using the post-shading pipeline can be written as follows:

A = atan-= ¢ = atan—— (20)

These angles are then mapped back into normalized cartesian
I)\(x, ry = space:

®)
L/As-1 i-1 n _ n_ . n_ _.
Y Ca(a(ias), g(ins)) Ca(q(ias))as [ (1-a(a(ias))As) gy = cosh [osp gy = sinA [Tosp g, = sing (11)
i=0 j

i=o0 All major function calculations can be efficiently performed



using lookup tables, if we are willing to sacrifice some resolution, saves us the extra voxel projections and the per-pixel shading, and
say by converting g gy, g into signed bytes. Furthermore, a vari-  still use iso-contouring on the sheet-buffer plane? In such an
ety of schemes exist to efficiently compute approximate gradient approach, we would pre-shade the voxels as usual, but then project
magnitudes as well (see theraphics Gemsseries, e.g., [26]). this color volume along with the raw density volume. We would
Finally, the angles\ and ¢ can also be used directly, to index a not pre-classify the alpha channel. Instead, we would classify the
lookup table that stores the result of the shading equation for a sefpixels on each sheet-buffer plane, similar to the post-shaded
of normals uniformly distributed on a sphere [28]. approach. All pixels that have a projected density within the iso-
We can limit the amount of computation in the shading proce- interval are set to some alpha value, while all other pixels are reset
dure by dividing the sheet-buffer into a set of tiles. Each tile is to fully transparent. This hybrid approach seems to combine the
associated with a counter that is initialized to zero for each new good aspects from both the pre-shaded and the post-shaded volume
sheet-buffer. This tile counter is incremented whenever a voxel rendering pipeline, and we call this approach pine-shaded post-
center projects into the tile. Then, once all voxels have been pro-alpha splatting pipelia, due to the delayed alpha classification.
jected onto the sheet-buffer, we only need to perform gradient and
shading computations in those tiles that have been touched by & RESULTS
footprint. To account for the entire footprint-tile coverage, we must We have applied the presented splatting pipelines to the UNC
add a seam of half the footprint size to each tile (since only the MRI dataset (258256x145 voxels) and a ganglion nerve cell
footprint centers were used to determine what tile was hit). We dataset (512512x76 voxels). Our rendering results are shown in
have also experimented with bounding boxes that encompass thd-ig. 6 (color plates), the images have 3522 pixels. The differ-
rectangular sheet area that received footprint contributions in theence in image quality is quite striking. Consider first the UNC head
current sheet. dataset. The new post-shaded splatting algorithm (Fig. 6, column
Finally, compositing the shaded sheet-buffers is performed as2) produces images that look significantly sharper than those pro-
usual, and the occlusion map acceleration can also be employedluced with the traditional algorithm (Fig. 6, column 1), especially

unchanged. when the object is viewed under magnification. Flickering between
_ a pair of corresponding images has the feel of a visit at the optome-
4.3 Cost analysis trist: the left image is seen with glasses off, the right is seen with

ses on.
The new algorithm accentuates fine surface detail very well
renders the object with a much sharper look than the traditional
splatter. In our experiments, we have set alpha to 1.0 whenever a
pixel was within the iso-interval. This provides for very crisp sur-
rIaces. However, semi-transparent transfer functions are also possi-
le. As a matter of fact, the algorithm works anytime a transfer
function is available for post-shading, both for color and opacity.
The images in the center column of Fig. 6 were produced

Although extra overhead is incurred by the need for gradient glas
estimation and shading on the image plane, post-shaded splattin%
offers substantial savings in another step of the volume rendering nd
pipeline: the footprint rasterization step. These savings help bal-
ance the costs of the two methods. When a color image is gener:
ated in pre-shaded splatting, four footprints must be rasterized pe
kernel section: red, green, blue, and alpha. On the other hand, if w
use theF(DH) scheme in post-shaded splatting, then we only have

to splat one footprint per voxel, i.e., the density footprint. Savings . ) - . it
P pnnt p o y P g Hsing central differencing for gradient estimation. We can even

ensue, since lookup-table assisted shading and gradient estimatio he i i b - i |
requires considerably fewer operations than the over 128 multipli- 'MProve the image quality, to some extent, by using gradient splats

cations and additions that are required to rasterize four footprints atnStead- For example, the zoomed brain view in the right column of
one-to-one viewing. row 4 in Fig. 6 was generated with gradient splats. We notice that

When we use thel’ gradient estimation mode, then we do not the detail is somewhat crisper and the specular highlights are more

save any splat rasterization operations. Just as in pre-shaded Sp|ap_ronounced. This was to be expected since the Gaussian derivative

ting, we have to splat four footprints per voxel: the three gradients SP'at Preserves higher frequency better than the central differenced
and the density. So we do not anticipate any savingkifoRather, Gaussian, as was illustrated earlier.

; ; Row 2 and 3 in column 3 of Fig. 6 show the ganglion nerve
\évseti(reri(gt?;rtl sa?]rgivkxllggitnggohnetrh%oisr;ggz g)lglgglextra work for gradlentceII rendered with pre-shaded splatting and with post-shaded splat-

We should add that with the new algorithm, the number of ting, respectively. We again notice a crisper, almost plastic-like,

voxels to be splatted is generally larger than with pre-shaded splat-2PPearance of the nerve cell when rendered with post-shaded splat-

ting. This is simply because in order to ensure proper gradients, we'"9-

also need to splat voxels with values that are slightly outside the timization. We h d lusi d frust I I
specified iso-ranges. Otherwise we would perform a reconstruction®Ptmization. Vve have used occiusion and frustrum cufiing as we
as bounding boxes to limit the amount of shading calculations on

of a binary object, which would lead to possibly large aliasing arti- X X ) .
facts. Angtheg consequence of not Ioa(?ing a syearr?of voxelsgbelowthe Image plane. Butwe have neither |mplemented_the fast gradient
the isovalue can be a shrinking of the object. calculatlon.schemes nor.do we use thg qut sha;ﬂng methods that
were mentioned in Section 4.2. Our timings, given in Table 1,
4.4 A hybrid method: the pre-shaded post-alpha splat- reflect this circumstance: Our traditional splatter is_ s_tiII signifi-
ting pipeline cantly fa}ster than the newly deve]oped qlgorlthm. This is expected
to remain true as far as th# gradient estimator is concerned, but
Pre-shaded splatting is potentially faster than post-shadedwe anticipate significant speedups for B@®H) scheme when fast
splatting since it is likely that the number of visible voxels that lookup-table assisted shading is implemented. We have conducted
require pre-shading is less than the number of pixels that requiresome preliminary experiments in this area, and we found that the
post-shading. Furthermore, the number of voxels to be projected intime required for shading and gradient normalization amounts to
pre-shaded splatting is lower than the number of voxels in post- about 75% of the value given in row 2, ‘shading’, of Table 1. On
shaded splatting, because we need only project the voxels that aréhe other hand, due to the circumstance that we use texture map-
classified within the iso-interval. Of course, we gain crisper images ping hardware to project the splats, we do not get the anticipated
in post-shaded splatting, due to the iso-contouring on the imagesavings in the footprint rasterization stage, since the texture map-
plane before shading, and we would like to maintain that advan- ping hardware projects 4-channel RGBA splats at similar speeds as
tage. Thus the question is, can we use the pre-shaded approach thiatdoes 1-channel Luminance splats. We expect the savings in a

For this paper, we have stressed qualitative issues over code



image full head eye brain brain zoomed ganglion nerve
in Fig. 6 cell
splatting pre- post- pre- post- pre- post- pre- post-shade pre-| post-
method shade | shade | shade | shade | shade | shade | shade | centr. diff. | grad. splat| shade | shade
footprint 15.6 11.4 17.4 14.5 14.5 13.0 16.7 16.2 16.8 9.4 6.5
rasterization
shading 1.8 14.0 0.7 17.1 1.8 13.4 0.3 17.8 17.0 35 15.6
compositing 35 3.5 2.4 2.7 3.9 4.3 1.4 1.4 1.4 2.7 3.p
total 21.0 29.9 20.5 35.2 20.3 31.7 18.4 36.2 36.0 157 25.6

Table 1: Timings in secs obtained on a SGI Onyx using a R10000 194MHz CPU. The columns correspond to the images in Fig. 6. 2D
texture mapping hardware was employed to perform the footprint rasterization, and graphics hardware was utilized for sheet-buffer
compositing. However, we have recently also implemented a software splatter that runs at the same speed and better.

pure software implementation to be significantly more pro- dered objects. Sharp edges appear fuzzy and fine object detail is

nounced. greatly diminished. The blurriness occurs since splatting projects
_ ) pre-shaded voxels with a relatively large splatting kernel, which
5.1 Results with pre-shaded post-alpha splatting leaves a fuzzy footprint on the screen. The overall effect is a low-

passing of the projected color and opacity volume, which cannot
be easily reversed. A simple iso-contouring of each projected color
slice, via classification of a simultaneously projected density slice
(i.e. the pre-shaded post-alpha pipeline), does not yield the desired
results. It is hence apparent that one cannot resolve the blurring
"o S ; e with pre-shaded volumes. Thus, our solution to this problem is to
havelg=2fiso With fiso being the iso-value. Let us further assume use a post-shaded pipeline for splatting instead, performing both

that we have a pre-shading function that sets the white voxels to - = . 8 e

color C4=0.0 and the black voxels 8,=1.0. Consider the interpo- classification and shading operations after the projection of the
lated image pixel due to pixel ray 1. It passes halfway between thevoxels that fall into a sheet-buffer slice. In this way, the non-linear
rightmost two voxels of the first slice in Fig. 4. Using simple linear 150-Surfacing can be performed after the lowpassing effect of the

interpolation, we would interpolat@=0.5 andf=f.,. Thus the iso- splatting interpolation kernel. The result is a much sharper look to
’ - ISO*

contour traverses right between these two voxels and the assigned™® vglume Lgndered obi]ec(;. . he shadi h
pixel color would beC=0.5. When using the post-shaded pipeline . SNce this new method must perform the shading on the pro-
instead, we again gétf.,, but now lighting is yet to be applied, jection plane, the estimation of gradients is required. We have pro-

yielding C=1.0 (assuming an appropriate gradient and light source PoSeéd two methods for gradient reconstruction: (i) Central
position). We se=1.0 in both cases, so no more color can be differencing on the projection image, and (ii) the projection of a

composited at that pixel. Thus in the pre-shaded post-alpha image,gradie_m volume using gradienF spla_ts. Hen_e it turns out that the re-
C=0.5 is the final color at that pixel, and this explains the dark 90UPing of the volume rendering pipeline is also advantageous in
rings right at the boundary of the stairstep. Pixel ray 2 does not {rms of efficiency. When the gradients are estimated via central
receive any contribution from slice 1 (the interpolated voxels are differencing, then only one footprint rasterization is needed per

both below the iso-threshold), but in slice 2 both interpolated vox- YOX€l. i-€., the rasterization of the density footprint. Traditional
els havef=2f, andC4=1.0. Thus the interpolated color between splatting requires four such rasterizations per voxel (two, if a grey-

them is 1.0. This explains the bright regions inside the dark rings. level _image is rendered), which is alsp required if a gradient vol-
We can avoid the slice effect, if, for example, we set the trans- ume is splatted to reconstruct the gradients on the screen. Although
fer functiona(f(s) to a smooth ra’mb. Then slice'2 would have a SPlatting the gradient volume preserves high frequencies better, it

chance to contribute to pixel 1. We have observed that this eases"dY also may cause aliasing for noisy volume data. Ce_ntral dn‘fgr-
the staircasing artifacts, but at the cost of an X-ray effect, since we N¢ing. on the other hand, may not preserve the gradients of fine
now make our object artificially transparent (see Fig. 5a). So we
again get a blurring, just this time we get it in thelirection. For

the image in Fig. 6, we actually used a smooth rampfoDther-
wise, had we sett=1.0 for all f>f;5,, the staircasing would have
been even more pronounced (see Fig. 5b).

Column 3iin row 1 of Fig. 6 shows an image that was obtained
with the pre-shaded post-alpha splatting pipeline. We notice signif-
icant staircasing artifacts in this image. To explain this artifact,
consider a simple 2D example with two slices of three voxels each
(see Fig. 4). Here, the white voxels have a denfgity), the others

6 CONCLUSIONS
Splatting has long been plagued by the blurry look of the ren-

pixel rays
2 1 Fig. 4: Interpolating two
pixel rays traversing two
® Y ® slice? voxel slices of three voxels (b)
each.
e} o) ® slicel Fig. 5: Pre-shaded post-alpha splatting: (a) using a ramp

starting aii(fig0)=0.1, (b) setting al(f)=1.0 forf>fg,



object detail as well, but may tend to less aliasing.
The new method preserves the advantages of splatting: a
sparse volume representation where only the relevant voxels haves]

to be projected (now along with a layer of boundary voxels), and a
volume integration using segments of density integrals instead of

[71

point samples. The new method also allows the use of the efficient(")
and qualitatively superior framework of image-aligned splatting, in
conjunction with screen occlusion maps for early culling of [10]
occluded voxels.

7 FUTURE WORK

We would like to investigate better gradient kernels than the

(11]

(12]

Gaussian. However, we are limited by the fact that we have to use
radially symmetric kernels. Thus we cannot efficiently use the ker- [13]

nels presented in [2] and [20], but work is underway to expand the

theory presented in [20] to rotationally symmetric kernels. Another
promising avenue of research in this respect are the Bessel-Kaise

kernels derived by Lewitt [16]. These kernels have very desirable
frequency characteristics, and have been shown to yield interpola-
tion kernels superior to the Gaussian. We plan to investigate the
derivative of these kernels to improve the frequency characteristics

of our H’ kernel. Another kernel worthwhile investigating for gra-
dient estimation is the Crawfis-Max kernel [6], which has been [17]
designed for optimal traditional splatting.

We are currently also investigating better ways to deal with

[15]

[16]

the staircasing artifacts in the pre-shaded post-alpha splatting pipe{18]
line. This pipeline may be well suited to remove blurring in pre-
segmented, tagged, and distance volumes, where no transfer fun
tion is available for post-shading.

o]
Much work needs to be done on speeding up the gradient esti-
mation and shading stage. Implementing the fast schemes men

[20]

tioned in Section 4.2 should make the new algorithm a lot more [21]
competitive with the traditional one in terms of speed.

Unlike the hardware employed in the 3D texture mapping

approaches of [4][28][29], the 2D texture mapping hardware cur- [22]

rently used by our algorithm is not confined to expensive graphics

workstations. Rather, it can be obtained for a few $100 in form of
plug-in graphics boards for use on PCs. But we are also presentiyl23]
porting the footprint rasterization and compositing operations into
a pure software environment. Initial results indicate that, in many (24]
cases, this software implementation is actually faster than the hard-
ware-assisted implementation.

We have only just begun to explore the power of our new

approach for the generation of higher quality images with splat-
ting. So far we have only rendered fully opaque objects, such as the26]

UNC head, but we have obtained initial results for semitransparent

(25]

datasets as well. In future work, we seek to develop transfer func-[27]
tions that use the gradient and the gradient strength to enhance

apparent surfaces in the volumetric dataset. The works by Levoy[28]
[14] and Drebin [7] shall be an initial starting point here.
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(1) full head, (2) eye, (3) brain, (4) brain zoomed (1) head, pre-shaded w/ post-alphéfs))=0.7

(2) ganglion nerve cell, pre-shaded

(3) ganglion nerve cell, post-shaded

(4) zoomed brain, post-shaded with gradients
estimated with gradient splats

rendered with pre-shaded rendered with post-shaded splat-
splatting ting, gradients estimated with

Fig. 6: Colorplate central differencing
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