
fi
l
r
o
s
ll
d
s
o

o

th
n
d
t
g
n
s
r
th
e
e
e
a
th
e

r

y
l
n
s

i
n
.
a

v

s.
xist
ce-
f

y
rd-
ge
so

ion
5].

ay
ing
are
go-
ing
d,
nd
l.
ng

are
e
-
n
er.
er-
ol-
g,
r-

or
ol-
las-
nt
the
of
d

as a
po-
tly
o

d,
ded
ing
e

Splatting Without The Blur

Klaus Mueller, Torsten Möller, and Roger Crawfis

Department of Computer and Information Science, The Ohio State University, Columbus, OH

To appear in the proceedings of theVisualization’99 conference
ABSTRACT

Splatting is a volume rendering algorithm that combines ef
cient volume projection with a sparse data representation: On
voxels that have values inside the iso-range need to be conside
and these voxels can be projected via efficient rasterizati
schemes. In splatting, each projected voxel is represented a
radially symmetric interpolation kernel, equivalent to a fuzzy ba
Projecting such a basis function leaves a fuzzy impression, calle
footprint or splat, on the screen. Splatting traditionally classifie
and shades the voxels prior to projection, and thus each voxel fo
print is weighted by the assigned voxel color and opacity. Projec
ing these fuzzy color balls provides a uniform screen image f
homogeneous object regions, but leads to a blurry appearance
object edges. The latter is clearly undesirable, especially when
view is zoomed on the object. In this work, we manipulate the re
dering pipeline of splatting by performing the classification an
shading process after the voxels have been projected onto
screen. In this way, volume contributions outside the iso-ran
never affect the image. Since shading requires gradients, we
only splat the density volume, using regular splats, but we al
project the gradient volume, using gradient splats. However, alte
native to gradient splats, we can also compute the gradients on
projection plane, using central differencing. This latter schem
cuts the number of footprint rasterization by a factor of four, sinc
only the voxel densities have to be projected. Our new method r
ders objects with crisp edges and well-preserved surface det
Added overhead is the calculation of the screen gradients and
per-pixel shading. Both of these operations, however, may be p
formed using fast techniques employing lookup tables.

1 INTRODUCTION
Volume visualization deals with the display of volumetric

data, represented as sample points on a regular or irregular 3D
ter. Volumetric data may be produced by medical scanners, such
MRI, CT, PET, or SPECT, by confocal or electron microscopy, b
numerical methods, such as scientific simulations and finite e
ment analysis, or by voxelization of analytic functions. In rece
years, many tools and techniques have been proposed to aid u
the visualization of volumetric datasets. On one side is the group
direct volume renderers, which seek to capture a visual impress
of the complete 3D dataset by accounting for the emission a
absorption effects of all data elements [7][13]-[15][30]-[32][34]
On the other side is the group of indirect volume renderers th
reduce the data into a set of isosurfaces [17], which are con
ox-
el is
on

f
cal
oth
d of
cay
. A
lts
the

Address: 2015 Neil Ave, 395 Dreese Lab, Columbus, OH 43210,
{mueller, moeller, crawfis}@cis.ohio-state.edu,
-
y
ed,
n
a

.
a

t-
t-
r
of
e
-

he
e
ot
o
-
e

n-
il.
e
r-

as-
as

e-
t

in
of
on
d

t
e-

niently rendered as polygonal meshes using z-buffer algorithm
The latter representation is appropriate when such isosurfaces e
in the data, but may be less effective when the volume is a spa
filling gas, such as in fluid-flow simulations, or is composed o
many micro-surfaces, such as tissue in a medical dataset.

A good argument for indirect volume renderers is that the
can take advantage of widely available sophisticated graphics ha
ware to quickly render the polygonal meshes. However, a lar
volumetric dataset may give rise to a huge number of polygons,
huge that it may overwhelm the graphics engine. This observat
recently motivated the parallel raycaster developed by Parker [2
Although it is true that the magnitude of the polygonal mesh m
be reduced to a more manageable size using the error-minimiz
methods proposed by Hoppe [10] and others, these methods
rather expensive, and therefore cannot be applied when the poly
nal mesh is not static. This is a scenario that occurs when view
time-varying data or when the isosurface is interactively varie
e.g., during data exploration, which requires the extraction (a
simplification) of a new polygonal mesh for each new iso-interva

Popular direct volume rendering algorithms are raycasti
[14][15], Shear-warp [13], splatting [30]-[32], cell-projection
methods [34], and approaches using 3D texture-mapping hardw
[4][28][29] or custom volume rendering boards [24]. All of thes
methods perform some sort of explicit or implicit volume interpo
lation at points along the viewing direction. The interpolatio
results are then composited in front-to-back or back-to-front ord
A distinction has to be made with respect to the nature of the int
polated value, and this distinction depends on the order of the v
ume rendering pipeline constituents: classification, shadin
interpolation, and compositing (see Fig. 1). Classification dete
mines the (fuzzy) object or material membership of a voxel
interpolated sample point and is usually given by a range of v
ume densities, specified in the transfer function. Based on this c
sification transfer function, the voxel or interpolated sample poi
is assigned a color and an opacity. The color is then scaled by
result of the shading operation, which determines the amount
light, coming from one or more lightsources, that is reflecte
towards the eye. If the volume voxels are classified and shaded
pre-processing step before the projection occurs, then the inter
lation operations yield colors and opacities, which can be direc
composited along the viewing direction (Fig. 1a). We will refer t
this mode of volume rendering aspre-shaded volume rendering.
On the other hand, when the raw density volume is interpolate
then each interpolated value must first be classified and sha
before it is composited (Fig. 1b). Since classification and shad
occurs after sample interpolation, we will call this type of volum
renderingpost-shaded volume rendering.

Splatting traditionally uses the pre-shaded scheme: The v
els are first classified and shaded, and then each shaded vox
projected to the screen as a fuzzy ball, i.e., the 3D interpolati
kernel. The 2D screen projection of such a kernel is called asplat
or footprint and can be performed very efficiently. The outcome o
this rendering procedure is an object projection that has that typi
pre-shaded volume rendering-look: blurred boundaries and smo
surfaces (see Fig. 1a where we have splatted a cube compose
83 voxels). These blurred boundaries are due to the smooth de
of the iso-voxels’ splatting kernels, located at the object edges
positive aspect of the blurring effect is that the rendering resu
with splatting are almost always smooth and alias-free, even in

ces
ides
ver,
s a
the

the
he
x-
for

ting
t the
3D

ve
not
ms
as
me
re-
y)
ws
re

e,

add
y
l
at
is
t-
d-

interpolate composite

advance
ray

sample
write

pixel

start
ray

for all rays:

classify shade

for all voxels:

density volume write image(a)

interpolate shadeclassify composite

advance
ray

sample
write

pixel
start
ray

for all rays:

density volume write image(b)

color volume
opacity volume

Fig. 1: Two standard volume rendering pipelines. (a) Pre-shaded volume rendering: The raw density volume is first classified and
shaded, and the volume renderer then interpolates the resulting color and opacity volumes and composites the sample values for image
generation. On the right: A cube (83 voxels) rendered with splatting from a pre-shaded color and opacity volume (a Gaussian filter of
radial extent 2.0 was used for interpolation). (b) Post-shaded volume rendering: The volume renderer interpolates the raw density
volume, and these sample values are then classified and shaded and composited for image generation. On the right: The cube of (a) is
rendered from the density volume with a raycaster and trilinear interpolation in post-shaded mode.
presence of poor gradients around the iso-surfaces. However, the
blurring becomes a great nuisance when rendering intricate and
detailed structures, such as nasal passageways [33] or colons [9] in
medical fly-throughs. The blurring (i.e., lowpassing) washes out
much of the crucial object detail, which greatly hampers the real-
ism and utility of the visualization. A direct volume rendering is,
however, preferable, should we desire to deform or manipulate the
object in a surgical simulation scenario.

Raycasting algorithms, on the other hand, come in both fla-
vors, i.e., pre-shaded [7][14][15][35] and post-shaded [1][8][24]
[27]. (Note that we, for the sake of our discussion, refer to the raw,
original grid values in a volume as densities.) See Fig. 1b, where
we show the cube of Fig. 1a, now rendered with post-shaded ray-
casting. We observe that the edges appear very crisp. Although it is
generally agreed upon in the literature [35] that the post-shaded
pipeline produces sharper edges than the pre-shaded pipeline, one
may argue, that even when raycasting is applied in conjunction
with pre-shading, one rarely notices blurring as pronounced as
with splatting. This can be explained by the fact that raycasting
most commonly uses trilinear interpolation filters, which cause less
blurring (but possibly more aliasing). Splatting, on the other hand,
usually employs relatively large, radially symmetric interpolation
kernels (such as a Gaussian of radial extent 2.0). These kernel are
chosen since they allow the same kernel footprint to be used for all
viewing directions and ensure good footprint overlap on the screen
[31]. Unfortunately, these larger interpolation kernels cause a
higher amount of blurring (but also reduce aliasing).

In previous work, Huang [11] has proposed edge splats, i.e.,
specialized kernels with rapid interpolation function decay, to be
used on object boundaries. These kernels, in essence, model the

look of an edge. Splatting with edge splats placed at iso-surfa
and regular splats used in homogeneous volume regions prov
the desired effect: crisp edges and smooth surfaces. It, howe
requires the detection of directional edges in volume space a
pre-processing step. The gradient at an iso-surface provides
edge direction, while the voxel-edge distance is estimated by
gradient magnitude/direction and the difference between t
voxel’s value and the iso-value. In the pre-processing step, all vo
els that are close to an iso-surface are augmented with values
edge direction, edge distance, and gradient-strength. The splat
process then uses these parameters at rendering time to selec
edge splat with the most appropriate edge decay, location, and
orientation for each voxel. Although the approach is very effecti
for the iso-surface edges, micro-edges within the iso-range are
handled easily. Other drawbacks are: (i) The method has proble
with discontinuities in the edge profile, e.g., sharp corners such
cube edges, where the direction of an edge is ambiguous in volu
space and its perception is view-dependent. (ii) It requires a p
processing step (which, however, may be performed on the fl
whenever the iso-range or transfer function is changed. This slo
interactive transfer function changes. (iii) The edge splats a
equivalent to applying a local high frequency filter to the volum
hence noise in the iso-contour range may be amplified.

The splatting approach presented in this paper does not
any artificial detail to the volume. Rather, it eliminates blurring b
applying the volume rendering pipeline of Fig. 1b to the origina
density data using the splatting paradigm. In this way, only th
part of a projected voxel footprint that falls within the iso-range
shaded and displayed, while the footprint portion with values ou
side the iso-range (or the interval volume) is culled from the sha

e

e
ng
ol-

te-
an
s
r-
pre-

-
e
ap
ere
e
x-
he
t
-
r-
n
er
ox-
me
t-

en-
ted
ple

ed

ed
n-
-
lat
la-
l to
t-
ec-

o-
ter-
on
r-

ple

n
by

ra-

h
me
ing process and never contributes to the final image. It is this latter
portion that is responsible for the blurring in the pipeline of
Fig. 1a.

The outline of the paper is as follows. First, in Section 2, we
describe splatting in general and then summarize a splatting
method that we have proposed recently and in which we will
embed our new splatting pipeline. Then, in Section 3, we provide
the underlying theory of the new enhancement. Section 4 presents
the new algorithm, and Section 5 presents visual and temporal
results. Finally, Section 6 provides some concluding remarks, and
Section 7 finishes with a list of research topics for the future.

2 PRELIMINARIES
The basic element in most volume rendering applications is

the volume rendering integral in its low-albedo form [3], as formu-
lated by Kajiya and Von Herzen [12] and also formally derived by
Max [19]. For each pixel ray, we computeIλ(x,r), the amount of
light of wavelengthλ coming from ray directionr that is received
at pointx on the image plane:

(1)

HereL is the length of rayr. We can think of the volume as
being composed of particles with certain densitiesµ (Max calls
them light extinction coefficients [19]). These particles receive
light from all surrounding light sources and reflect this light
towards the observer according to the specular and diffuse material
properties of the particles. Thus, in (1),Cλ is the light of wave-
lengthλ reflected at locations in the direction ofr. To account for
the higher reflectivity of particles with larger densities, we must
weight the reflected color by the particle density. The light scat-
tered at s is then attenuated by the densities of the particles
betweens and the eye according to the exponential attenuation
function.

The analytic volume rendering integral can, in most cases, not
be computed efficiently, if at all, and therefore a variety of approx-
imations are in use. An approximation of (1) can be obtained by
raycasting, using a discrete Riemann sum. Rays are cast into the
volume, and samples, spaced apart by a distance∆s, are interpo-
lated along the ray by means of a 3D interpolation kernelh. Equa-
tion (1) can be written as a Riemann sum equation as follows:

(2)

A few approximations make the computation of this equation
more efficient. First, the transparencyt(i∆s) is defined as

. Transparency assumes values in the
range [0.0, 1.0]. Then opacity . The expo-
nential term in (2) can be approximated by the first two terms of its
Taylor expansion: .
Then one can write: .

This transforms (2) into the familiar compositing equation:

(3)

This equation, popularized by Levoy [14], is valid if we inter-
polate a discrete, pre-classified and pre-shaded color and opacity
volume Cd(x,y,z) and αd(x,y,z), respectively, to getC(i∆s) and
α(i∆s) (pipeline of Fig. 1a). However, if we classify interpolated
samples obtained from the discrete raw density volumefd(x,y,z)
(pipeline of Fig. 1b), then (3) is more appropriately written as fol-
lows:

(4)

The function valuef(i∆s) and the gradient vectorg(i∆s) is
interpolated fromfd(x,y,z) using some 3D interpolation kernel, and
Cλ andα are now functions that translate the interpolated volum
function values into color and opacity.

The splatting algorithm [30]-[32] was proposed by Le
Westover to provide the level of efficiency that previous raycasti
approaches were lacking. It gains its speed by reordering the v
ume rendering integral so that each voxel’s contribution to the in
gral can be viewed isolated from the other voxels. In splatting,
interpolation kernelh is placed at each voxel location. This enable
one to view the volume as a field of overlapping interpolation ke
nels which, as an ensemble, make up the continuous object re
sentation. The contribution of a voxelj with value fj is then given
by , wheres follows the line of kernel integration in
the direction of the ray. If the interpolation kernel is radially sym
metric, we may pre-integrate into a lookup-table, i.e., th
kernel footprint, and use this table for all voxels. We can then m
the voxel footprints, scaled by the voxel values, to the screen wh
they accumulate into the projection image [31]. By mapping th
footprint (image) onto a polygon, we can employ standard 2D te
ture mapping hardware for the projection process [6]. However, t
footprint interpolation is also easily done in software with fas
DDA procedures [18][21]. Thus, splatting performs all interpola
tions in 2D (i.e., the footprint rasterizations), while raycasting pe
forms all interpolations more expensively in 3D (i.e., whe
interpolating a volume sample). In addition, as an object-ord
approach, splatting only needs to store and render the relevant v
els, which in many cases constitutes a mere 10-20% of the volu
voxels [34]. However, until recently, one of the downsides of spla
ting was that the pre-integrated kernels restricted the volume r
dering integral, since the 3D reconstruction kernel was composi
as a whole, and not piecewise, as part of an interpolated sam
along a viewing ray. This caused popping artifacts in animat
viewing.

The image-aligned splatting approach was recently propos
[23] to eliminate these restrictions. It unifies the qualitative adva
tages of raycasting with the efficiency of splatting. Unlike the tra
ditional splatting approach, image-aligned splatting does not sp
the interpolation kernels as a whole. Rather, it slices the interpo
tion kernels by a series of cutting planes that are aligned paralle
the image plane. The kernel sections that fall within a pair of cu
ting planes or thin slab are summed into a sheet-buffer, and cons
utive sheet-buffers are composited from back-to-front or front-t
back. Again, pre-integrated kernel sections are used for fast ras
ization. This approach gives rise to a volume integral calculati
that is similar to the one computed by raycasting in the color-inte
polation model. It mimics a set of simultaneous rays that re-sam
the volume into a set of parallel sheet images, spaced apart by∆s,
which are then composited in front-to-back order. The distinctio
is that the composited colors and opacities are now obtained
true function integration, and not by the Riemann square integ
tion rule. Equation (3) is then written as follows:

(5)

We will use the image-aligned splatting algorithm along wit
the early splat elimination scheme proposed in [22]. This sche

I λ x r,() Cλ s()µ s() µ t() td
0

s
∫–

 exp sd
0

L
∫=

I λ x r,() Cλ i∆s()µ i∆s()∆s µ j∆s()∆s–()exp

j 0=

i 1–

∏
i 0=

L ∆s⁄ 1–

∑=

µ i∆s()∆s–()exp t i∆s()=
α i∆s() 1 t i∆s()–()=

t i∆s() µ i∆s()∆s–()exp= 1 µ i∆s()∆s–≈
µ i∆s()∆s 1 t i∆s()–≈ α i∆s()=

I λ x r,() Cλ i∆s()α i∆s() 1 α j∆s()–()
j 0=

i 1–

∏⋅
i 0=

L ∆s⁄ 1–

∑=

I λ x r,() =

Cλ f i∆s() g i∆s(),()α f i∆s()() 1 α f j∆s()()–()
j 0=

i 1–

∏
i 0=

L ∆s⁄ 1–

∑

f j h s() sd∫⋅

h s() sd∫

I λ x r,() =

1
∆s
------ Cλ s() sd

i ∆s

i 1+()∆s

∫ α s() sd
i ∆s

i 1+()∆s

∫ 1 α s() sd
j ∆s

j 1+()Λs

∫–

j 0=

i 1–

∏
i 0=

L ∆s⁄ 1–

∑

t-
ap-
ted
es,

s:
-
ed.

n
ip-
he
red
the

di-
he

e
.,

e
ete

ch-

of

,
ew-
i-

r
re-
cy
in

-
cy
of

in
employs a progressively refined screen occlusion map to cull from
the splatting pipeline those voxels that have no effect on the final
image. The screen occlusion map is computed from the opacity
image layer, each time a sheet image has been composited with the
current image buffer. The volume is traversed in front-to-back
order. To determine occlusion, the center of a voxel (splat) is pro-
jected, and the splat is only rasterized if the occlusion map value at
the projected point is above a pre-set opacity threshold. The splat
culling can lead to tremendous savings, especially when the trans-
fer function specifies large opaque regions. In many cases, only
10% of the relevant voxels survive the visibility test. But our tests
also indicate that even semi-transparent volumes benefit consider-
ably. The scheme is similar to early ray termination acceleration
for raycasting, however, it does require the calculation of the occlu-
sion map for every sheet-buffer slice, and it also requires the pro-
jection of each voxel’s center.

3 THEORETICAL ASPECTS
In this section, we discuss the theoretical difference between

pre-shaded and post-shaded volume rendering, and we derive the
gradient filter necessary to implement the latter for splatting.

3.1 Pre-shaded vs. post-shaded volume rendering

We have seen in Fig. 1 that the volume rendering pipeline has
four components: classification, shading, interpolation, and com-
positing. We have also seen that two permutations of these pipeline
components exist, depending on if we interpolate colors and opaci-
ties or if we interpolate raw densities. Compositing comes last in
both permutations, so we will not concern ourselves with this com-
ponent for the matter of this discussion. Shading, on the other
hand, requires the estimation of a gradient, so we need to add this
operation to our pipeline. We can write the pipeline in a terse form
using four operators:T for classification with a transfer function,S
for shading,D for gradient (derivative) estimation, andH for inter-
polation [20]. Furthermore, we denote the discrete volume density
function given at the volume grid points asF. For the remainder of
this discussion we will useH andh interchangeably:H can both be
the interpolation operator and the interpolation filter. Likewise,D
can both be the derivative operator and the derivative filter. The
combination of operatorsF, D, and H constitutes a convolution
operation in the spatial domain, or alternatively, a multiplication in
the frequency domain.

Splatting presently uses the pipeline in Fig. 1a, which interpo-
lates a pre-classified and pre-shaded volume. Using the five opera-
tors from left to right, this pipeline can be written as
(read from left to right). In this equation, the density volume is first
classified using the iso-value transfer function, then the gradients
are computed at the grid points using e.g., a central difference fil-
ter, and finally the grid samples are shaded, using the gradients and
the material colors assigned in the classification step. This pipeline
allows fast processing for two reasons: (i) the gradients need only
to be computed once per viewing session as a pre-processing step
(unless we change the gradient transfer functions), and (ii) shading
occurs only as a pre-processing step once per viewpoint, and does
not have to be performed each time a voxel kernel is intersected by
a slab. The colors and opacities stored at the grid points are then
interpolated using the interpolation filterh.

The interpolation filter,h, usually deviates from the idealsinc
filter, and it will have a lowpassing effect when used to interpolate
the color and opacity volume. A filter kernel that is often used in
splatting is a radially symmetric Gaussian function of radial extent
2.0:

(6)

Here,r2 = x2 + y2 + z2, andb = 0.214 is a scaling factor that
normalizes the kernel. This kernel is pre-integrated into a 2D foo
print, which gives rise to another Gaussian. Fig. 2 shows what h
pens if this kernel is used to interpolate a step function, constitu
by an iso-edge (Fig. 2a). If the voxels store colors and opaciti
the edge will appear blurred, as is evident in Fig. 2b.

The post-shading pipeline of Fig. 1b can be written a
. Here, the grid voxel densities are first interpo

lated, and the interpolation result is then classified and shad
Fig. 2b illustrates thath will again have a lowpassing effect and
blur the interpolated volume. However, this time the classificatio
step is still ahead, and we can undo some of the blurring by cl
ping off the blurred image regions, using the iso-thresholds. T
surviving pixels are then shaded, and we observe that the rende
silhouette edge is considerably crisper and is located close to
true edge (Fig. 2c).

3.2 Gradient estimation

The remaining question is: How does one compute the gra
ents? The post-shading pipeline indicates that t
gradient is calculated by applying the two operatorsH andD to the
discrete volume function. It was shown by Möller [20] that th
operatorsF, D, andH are both associative and commutative, i.e
the sequences (FH)D, F(DH), and (FD)H are all equivalent. Thus,
we could first interpolateF and then compute the gradients (th
(FH)D scheme) or we could compute the gradients at the discr
grid locations and then interpolate the gradients (the (FD)H
scheme), or we could construct a filterHD and use it to interpolate
F (theF(DH) scheme). In [20] it was also shown that (FH)D is the
most efficient of the three, as long as we provide some sort of ca
ing of the interpolated valuesFH, to be utilized for the calculation
of gradients nearby. An alternative, but not equivalent, form
FHD is FH’, whereH’ is the derivative ofH (see Bentum [2] for
further details).

In splatting, we usually employ radially symmetric filters
such as Gaussians, such that we can use the footprints for all vi
ing directions. However, neither Möller nor Bentum consider rad
ally symmetric filters. Thus we find it worthwhile here to offe
some further investigations on this subject. Fig. 3a shows the f
quency spectrum of the Gaussian kernel of (6). The frequen
response of the central difference filter is also shown (derived
[2]). Since (FH)D is equivalent toF(DH), we can capture the effect
of DH on F by multiplying the frequency responses of the two fil
ters. The result is spectrum 2 in Fig. 3b. Notice that the frequen
response of the ideal gradient filter is given by a linear highpass
unit slope, that stops at a frequency ofπ, i.e., half the grid’s
Nyquist frequency (spectrum 1 in Fig. 3). Finally, spectrum 3
Fig. 3b is the frequency response ofH’, the derivative of the Gaus-
sian given in (6). The spatial filter function ofH’ is given by:

(7)

FT FD,()SH

h r() b 2
2 r

2⋅–⋅=

(a) original step function: the edge

(b) blurred edge, after convolving the

(c) crisp edge, after thresholding the

edge with Gaussian filterh

blurred edge with iso-value

Fig. 2: Origin of blurring, and its prevention.

FHT FHD,()S

FHT FHD,()S

h' r() b– ' r 2⋅ 2 r
2⋅–⋅=

-
ty.
sity
ing
ng
uare
er
ers

ual

-
di-

s.
ne
rs

nt
-

e
D
-

an
ith
eet-
ed
es
di-

m-
the
l
g
ing
ng

nt
his
nis
nt
te-
s of
al-
ce.

sian
where b’ = 0.855 is a normalization factor. Looking at the fre-
quency responses in Fig. 3b, we notice thatDH has a faster fall-off
in the stop band, but also attenuates frequencies in the upper pass-
band. On the other hand,H’ preserves the passband frequencies
better, but also passes more frequencies in the stopband. It is there-
fore more susceptible to noise. Clearly, a trade-off must be made. If
our dataset contains fine detail, like bone fractures in medical
images, then we would want a gradient filter with a high acuity in
the upper passband to ensure the proper accentuation of these
structures in the rendered image. However, if our dataset contains
much high-frequency noise, as is often the case in medical datasets
(especially in MRI), then we desire a gradient filter that is less sen-
sitive in these regions of the spectrum. Since a gradient filter is a
high-pass filter and emphasizes high frequencies, noise that usually
resides in these frequency bands can be greatly amplified by these
filters, generating undesirable high-frequency artifacts.

4 NEW BLUR-FREE SPLATTING
We have just established that in order to rid splatting from

much of the blurring, we need to formulate splatting as a post-
shading pipeline. We will now describe both conceptual and imple-
mentational issues.

4.1 Concepts

Recall Equation (4), which gives the compositing equation for
raycasting when the post-shading pipeline is used. Notice that the
density (and gradients) are assumed to be constant within the sam-
pling interval. Splatting, on the other hand, can provide the density
(and gradient)integral within the sheet-buffer slab, due to its pre-
integration scheme. Thus the compositing equation for splatting
using the post-shading pipeline can be written as follows:

(8)

where

(9)

Again, Cλ andα are now functions that translate the interpo
lated volume function and gradient values into color and opaci
Notice that splatting provides the average of the integrated den
and gradients within a volume slab. On the other hand, ray-trac
(as well as the Shear-warp and the 3D texture mappi
approaches) interpolates a random position and then uses a sq
rule for integration, as per equations (3) and (4). The latt
approach can lead to aliasing artifacts, thus many research
employ an expensive root-finding operation to determine the act
surface position [25].

4.2 Implementation issues

The operator (FH)D can be implemented by splatting the vol
ume densities into a sheet buffer, and computing the in-sheet gra
ents by convolution with two orthogonal central-difference filter
The third gradient vector is perpendicular to the sheet-buffer pla
and can be efficiently computed by caching the sheet-buffe
immediately following and preceding the current sheet-buffer.

H’ can be implemented by constructing three extra footpri
section arrays, one for , , and , respec
tively. The footprint integration is performed similar to that of th
regular density footprint. We just use a different underlying 3
kernel, i.e., the , , and kernel, respec
tively, and perform each integration alongz (assume that we
always look down thez-axis after the viewing transformation). In
(FH)D, the volume gradients are computed with respect to
orthogonal coordinate system in which two axes are aligned w
the sheet-buffer plane and the other is perpendicular to the sh
buffer plane. Thus the gradient coordinate system is always align
with the viewing coordinate system, and its orientation chang
with the view orientation. The gradient splats reconstruct the gra
ents along the same coordinate system: The and
splats compute the in-sheet gradients, and the splats co
pute the gradient perpendicular to the sheet-buffer. Rotating
gradient splats in this way yields correct results, since the kerneH
is radially symmetric and its gradients are identical for all viewin
directions. Hence, the gradient splats can be used for all view
directions. Due to the imperfect kernels, however, the resulti
gradient vector may be somewhat view-dependent.

Once the gradient vector componentsgx, gy, gz have been
obtained, we must normalize them by division with the gradie
vector magnitude before we can use them for shading. T
involves an expensive square root computation. Clyne and Den
[5] have proposed an efficient work-around: If only the gradie
direction is of interest, then we can perform a mapping from car
sian space to spherical space to get the latitude/longitude angle
the gradient vector. These can then be used to obtain the norm
ized gradient components by mapping back into cartesian spa
Briefly, the spherical mapping is computed by:

(10)

These angles are then mapped back into normalized carte
space:

(11)

All major function calculations can be efficiently performed

Fig. 3: (a) Frequency spectra of Gaussian (H) and central
difference filter (D). The optimal derivative filter is an ideal
highpass: a line of slope=1 in frequency space, that stops at
frequency=π. (b) Frequency spectra of theDH and theH’
derivative filter, respectively.

2: Gaussian (H)

3: central difference (D)

1: optimal derivative filter

2: central difference * Gaussian (DH)

3: derivative of Gaussian (H’)

1: optimal derivative filter

1

2 3

1

2 3

I λ x r,() =

Cλ q i∆s() g i∆s(),() α q i∆s()()∆s 1 α q i∆s()()∆s–()
j 0=

i 1–

∏⋅
i 0=

L ∆s⁄ 1–

∑

q i∆s() f s()
∆s

---------- sd

i∆s

i 1+()∆s

∫= g i∆s() g s()
∆s

---------- sd

i∆s

i 1+()∆s

∫=

∂H ∂x⁄ ∂H ∂y⁄ ∂H ∂z⁄

∂H ∂x⁄ ∂H ∂y⁄ ∂H ∂z⁄

∂H ∂x⁄ ∂H ∂y⁄
∂H ∂z⁄

λ
gy
gx
------atan= φ

gz

gx
2

gy
2

+

-----------------------atan=

gx
n λcos φcos⋅= gy

n λsin φcos⋅= gz
n φsin=

and
an
ject
d
the
ed
o-
set
he
lume

C
l
n

d
mn
ro-
ly
en
e-

ith

ell
nal
r a
-
ssi-
er
.
d

en
ats
of
at
ore
tive
ced

e
lat-
e,
plat-

ode
ell
on
ient
that
1,
-
ed
t

ted
the
to
n
ap-

ted
ap-

as
n a
using lookup tables, if we are willing to sacrifice some resolution,
say by converting gx, gy, gz into signed bytes. Furthermore, a vari-
ety of schemes exist to efficiently compute approximate gradient
magnitudes as well (see theGraphics Gemsseries, e.g., [26]).
Finally, the anglesλ and φ can also be used directly, to index a
lookup table that stores the result of the shading equation for a set
of normals uniformly distributed on a sphere [28].

We can limit the amount of computation in the shading proce-
dure by dividing the sheet-buffer into a set of tiles. Each tile is
associated with a counter that is initialized to zero for each new
sheet-buffer. This tile counter is incremented whenever a voxel
center projects into the tile. Then, once all voxels have been pro-
jected onto the sheet-buffer, we only need to perform gradient and
shading computations in those tiles that have been touched by a
footprint. To account for the entire footprint-tile coverage, we must
add a seam of half the footprint size to each tile (since only the
footprint centers were used to determine what tile was hit). We
have also experimented with bounding boxes that encompass the
rectangular sheet area that received footprint contributions in the
current sheet.

Finally, compositing the shaded sheet-buffers is performed as
usual, and the occlusion map acceleration can also be employed
unchanged.

4.3 Cost analysis

Although extra overhead is incurred by the need for gradient
estimation and shading on the image plane, post-shaded splatting
offers substantial savings in another step of the volume rendering
pipeline: the footprint rasterization step. These savings help bal-
ance the costs of the two methods. When a color image is gener-
ated in pre-shaded splatting, four footprints must be rasterized per
kernel section: red, green, blue, and alpha. On the other hand, if we
use theF(DH) scheme in post-shaded splatting, then we only have
to splat one footprint per voxel, i.e., the density footprint. Savings
ensue, since lookup-table assisted shading and gradient estimation
requires considerably fewer operations than the over 128 multipli-
cations and additions that are required to rasterize four footprints at
one-to-one viewing.

When we use theH’ gradient estimation mode, then we do not
save any splat rasterization operations. Just as in pre-shaded splat-
ting, we have to splat four footprints per voxel: the three gradients
and the density. So we do not anticipate any savings forH’. Rather,
we expect somewhat higher cost due to the extra work for gradient
estimation and shading on the image plane.

We should add that with the new algorithm, the number of
voxels to be splatted is generally larger than with pre-shaded splat-
ting. This is simply because in order to ensure proper gradients, we
also need to splat voxels with values that are slightly outside the
specified iso-ranges. Otherwise we would perform a reconstruction
of a binary object, which would lead to possibly large aliasing arti-
facts. Another consequence of not loading a seam of voxels below
the isovalue can be a shrinking of the object.

4.4 A hybrid method: the pre-shaded post-alpha splat-
ting pipeline

Pre-shaded splatting is potentially faster than post-shaded
splatting since it is likely that the number of visible voxels that
require pre-shading is less than the number of pixels that require
post-shading. Furthermore, the number of voxels to be projected in
pre-shaded splatting is lower than the number of voxels in post-
shaded splatting, because we need only project the voxels that are
classified within the iso-interval. Of course, we gain crisper images
in post-shaded splatting, due to the iso-contouring on the image
plane before shading, and we would like to maintain that advan-
tage. Thus the question is, can we use the pre-shaded approach that

saves us the extra voxel projections and the per-pixel shading,
still use iso-contouring on the sheet-buffer plane? In such
approach, we would pre-shade the voxels as usual, but then pro
this color volume along with the raw density volume. We woul
not pre-classify the alpha channel. Instead, we would classify
pixels on each sheet-buffer plane, similar to the post-shad
approach. All pixels that have a projected density within the is
interval are set to some alpha value, while all other pixels are re
to fully transparent. This hybrid approach seems to combine t
good aspects from both the pre-shaded and the post-shaded vo
rendering pipeline, and we call this approach thepre-shaded post-
alpha splatting pipeline, due to the delayed alpha classification.

5 RESULTS
We have applied the presented splatting pipelines to the UN

MRI dataset (256×256×145 voxels) and a ganglion nerve cel
dataset (512×512×76 voxels). Our rendering results are shown i
Fig. 6 (color plates), the images have 512×512 pixels. The differ-
ence in image quality is quite striking. Consider first the UNC hea
dataset. The new post-shaded splatting algorithm (Fig. 6, colu
2) produces images that look significantly sharper than those p
duced with the traditional algorithm (Fig. 6, column 1), especial
when the object is viewed under magnification. Flickering betwe
a pair of corresponding images has the feel of a visit at the optom
trist: the left image is seen with glasses off, the right is seen w
glasses on.

The new algorithm accentuates fine surface detail very w
and renders the object with a much sharper look than the traditio
splatter. In our experiments, we have set alpha to 1.0 wheneve
pixel was within the iso-interval. This provides for very crisp sur
faces. However, semi-transparent transfer functions are also po
ble. As a matter of fact, the algorithm works anytime a transf
function is available for post-shading, both for color and opacity

The images in the center column of Fig. 6 were produce
using central differencing for gradient estimation. We can ev
improve the image quality, to some extent, by using gradient spl
instead. For example, the zoomed brain view in the right column
row 4 in Fig. 6 was generated with gradient splats. We notice th
the detail is somewhat crisper and the specular highlights are m
pronounced. This was to be expected since the Gaussian deriva
splat preserves higher frequency better than the central differen
Gaussian, as was illustrated earlier.

Row 2 and 3 in column 3 of Fig. 6 show the ganglion nerv
cell rendered with pre-shaded splatting and with post-shaded sp
ting, respectively. We again notice a crisper, almost plastic-lik
appearance of the nerve cell when rendered with post-shaded s
ting.

For this paper, we have stressed qualitative issues over c
optimization. We have used occlusion and frustrum culling as w
as bounding boxes to limit the amount of shading calculations
the image plane. But we have neither implemented the fast grad
calculation schemes nor do we use the fast shading methods
were mentioned in Section 4.2. Our timings, given in Table
reflect this circumstance: Our traditional splatter is still signifi
cantly faster than the newly developed algorithm. This is expect
to remain true as far as theH’ gradient estimator is concerned, bu
we anticipate significant speedups for theF(DH) scheme when fast
lookup-table assisted shading is implemented. We have conduc
some preliminary experiments in this area, and we found that
time required for shading and gradient normalization amounts
about 75% of the value given in row 2, ‘shading’, of Table 1. O
the other hand, due to the circumstance that we use texture m
ping hardware to project the splats, we do not get the anticipa
savings in the footprint rasterization stage, since the texture m
ping hardware projects 4-channel RGBA splats at similar speeds
it does 1-channel Luminance splats. We expect the savings i

il is
cts
h

w-
ot
lor
ce
ired
ing
to
oth
he
ar
he
to

ro-
ro-
al
a
re-
in

tral
er
l
y-
l-

ugh
r, it
er-
fine

Table 1: Timings in secs obtained on a SGI Onyx using a R10000 194MHz CPU. The columns correspond to the images in Fig. 6. 2D
texture mapping hardware was employed to perform the footprint rasterization, and graphics hardware was utilized for sheet-buffer
compositing. However, we have recently also implemented a software splatter that runs at the same speed and better.

image
in Fig. 6

full head eye brain brain zoomed ganglion nerve
cell

splatting
method

 pre-
shade

post-
shade

 pre-
shade

post-
shade

 pre-
shade

post-
shade

 pre-
shade

post-shade pre-
shade

post-
shade

 footprint
rasterization

15.6 11.4 17.4 14.5 14.5 13.0 16.7 16.2 16.8 9.4 6.5

shading 1.8 14.0 0.7 17.1 1.8 13.6 0.3 17.8 17.0 3.5 15.6

compositing 3.5 3.5 2.4 2.7 3.9 4.3 1.4 1.4 1.4 2.7 3.0

total 21.0 29.9 20.5 35.2 20.3 31.7 18.5 36.2 36.0 15.7 25.6

centr. diff. grad. splat
pure software implementation to be significantly more pro-
nounced.

5.1 Results with pre-shaded post-alpha splatting

Column 3 in row 1 of Fig. 6 shows an image that was obtained
with the pre-shaded post-alpha splatting pipeline. We notice signif-
icant staircasing artifacts in this image. To explain this artifact,
consider a simple 2D example with two slices of three voxels each
(see Fig. 4). Here, the white voxels have a densityfd=0, the others
havefd=2·fiso, with fiso being the iso-value. Let us further assume
that we have a pre-shading function that sets the white voxels to
colorCd=0.0 and the black voxels toCd=1.0. Consider the interpo-
lated image pixel due to pixel ray 1. It passes halfway between the
rightmost two voxels of the first slice in Fig. 4. Using simple linear
interpolation, we would interpolateC=0.5 andf=fiso. Thus the iso-
contour traverses right between these two voxels and the assigned
pixel color would beC=0.5. When using the post-shaded pipeline
instead, we again getf=fiso, but now lighting is yet to be applied,
yielding C=1.0 (assuming an appropriate gradient and light source
position). We setα=1.0 in both cases, so no more color can be
composited at that pixel. Thus in the pre-shaded post-alpha image,
C=0.5 is the final color at that pixel, and this explains the dark
rings right at the boundary of the stairstep. Pixel ray 2 does not
receive any contribution from slice 1 (the interpolated voxels are
both below the iso-threshold), but in slice 2 both interpolated vox-
els havefd=2·fiso andCd=1.0. Thus the interpolated color between
them is 1.0. This explains the bright regions inside the dark rings.

We can avoid the slice effect, if, for example, we set the trans-
fer function α(f(s) to a smooth ramp. Then slice 2 would have a
chance to contribute to pixel 1. We have observed that this eases
the staircasing artifacts, but at the cost of an X-ray effect, since we
now make our object artificially transparent (see Fig. 5a). So we
again get a blurring, just this time we get it in thez-direction. For
the image in Fig. 6, we actually used a smooth ramp forα. Other-
wise, had we setα=1.0 for all f>fiso, the staircasing would have
been even more pronounced (see Fig. 5b).

6 CONCLUSIONS
Splatting has long been plagued by the blurry look of the ren-

dered objects. Sharp edges appear fuzzy and fine object deta
greatly diminished. The blurriness occurs since splatting proje
pre-shaded voxels with a relatively large splatting kernel, whic
leaves a fuzzy footprint on the screen. The overall effect is a lo
passing of the projected color and opacity volume, which cann
be easily reversed. A simple iso-contouring of each projected co
slice, via classification of a simultaneously projected density sli
(i.e. the pre-shaded post-alpha pipeline), does not yield the des
results. It is hence apparent that one cannot resolve the blurr
with pre-shaded volumes. Thus, our solution to this problem is
use a post-shaded pipeline for splatting instead, performing b
classification and shading operations after the projection of t
voxels that fall into a sheet-buffer slice. In this way, the non-line
iso-surfacing can be performed after the lowpassing effect of t
splatting interpolation kernel. The result is a much sharper look
the volume rendered object.

Since this new method must perform the shading on the p
jection plane, the estimation of gradients is required. We have p
posed two methods for gradient reconstruction: (i) Centr
differencing on the projection image, and (ii) the projection of
gradient volume using gradient splats. Here it turns out that the
grouping of the volume rendering pipeline is also advantageous
terms of efficiency. When the gradients are estimated via cen
differencing, then only one footprint rasterization is needed p
voxel, i.e., the rasterization of the density footprint. Traditiona
splatting requires four such rasterizations per voxel (two, if a gre
level image is rendered), which is also required if a gradient vo
ume is splatted to reconstruct the gradients on the screen. Altho
splatting the gradient volume preserves high frequencies bette
may also may cause aliasing for noisy volume data. Central diff
encing, on the other hand, may not preserve the gradients of

slice 1

slice 2

pixel rays

2 1 Fig. 4: Interpolating two
pixel rays traversing two
voxel slices of three voxels
each.

Fig. 5: Pre-shaded post-alpha splatting: (a) using a ramp
starting atα(fiso)=0.1, (b) setting allα(f)=1.0 forf>fiso.

(a) (b)

R.
d

e

,”

rp

g

n

r-

h

y
-

t

-
e

ve

of

l-

-

, Y.

r

d

object detail as well, but may tend to less aliasing.
The new method preserves the advantages of splatting: a

sparse volume representation where only the relevant voxels have
to be projected (now along with a layer of boundary voxels), and a
volume integration using segments of density integrals instead of
point samples. The new method also allows the use of the efficient
and qualitatively superior framework of image-aligned splatting, in
conjunction with screen occlusion maps for early culling of
occluded voxels.

7 FUTURE WORK
We would like to investigate better gradient kernels than the

Gaussian. However, we are limited by the fact that we have to use
radially symmetric kernels. Thus we cannot efficiently use the ker-
nels presented in [2] and [20], but work is underway to expand the
theory presented in [20] to rotationally symmetric kernels. Another
promising avenue of research in this respect are the Bessel-Kaiser
kernels derived by Lewitt [16]. These kernels have very desirable
frequency characteristics, and have been shown to yield interpola-
tion kernels superior to the Gaussian. We plan to investigate the
derivative of these kernels to improve the frequency characteristics
of our H’ kernel. Another kernel worthwhile investigating for gra-
dient estimation is the Crawfis-Max kernel [6], which has been
designed for optimal traditional splatting.

We are currently also investigating better ways to deal with
the staircasing artifacts in the pre-shaded post-alpha splatting pipe-
line. This pipeline may be well suited to remove blurring in pre-
segmented, tagged, and distance volumes, where no transfer func-
tion is available for post-shading.

Much work needs to be done on speeding up the gradient esti-
mation and shading stage. Implementing the fast schemes men-
tioned in Section 4.2 should make the new algorithm a lot more
competitive with the traditional one in terms of speed.

Unlike the hardware employed in the 3D texture mapping
approaches of [4][28][29], the 2D texture mapping hardware cur-
rently used by our algorithm is not confined to expensive graphics
workstations. Rather, it can be obtained for a few $100 in form of
plug-in graphics boards for use on PCs. But we are also presently
porting the footprint rasterization and compositing operations into
a pure software environment. Initial results indicate that, in many
cases, this software implementation is actually faster than the hard-
ware-assisted implementation.

We have only just begun to explore the power of our new
approach for the generation of higher quality images with splat-
ting. So far we have only rendered fully opaque objects, such as the
UNC head, but we have obtained initial results for semitransparent
datasets as well. In future work, we seek to develop transfer func-
tions that use the gradient and the gradient strength to enhance
apparent surfaces in the volumetric dataset. The works by Levoy
[14] and Drebin [7] shall be an initial starting point here.

References
[1] R. Avila, T. He, L. Hong, A. Kaufman, H. Pfister, C. Silva, L. Sobier-

ajski, and S. Wang., “VolVis: a diversified volume visualization sys-
tem,” Proc. Visualization’ 94, pp. 31-38, 1994.

[2] Bentum M.J., Lichtenbelt B.B.A., Malzbender T., “Frequency analy-
sis of gradient estimators in volume rendering”,IEEE Trans. on Visu-
alization and Computer Graphics, vol. 2, no. 3, pp. 242-254, 1996.

[3] J. F. Blinn, “Light reflection functions for simulation of clouds and
dusty surfaces,”Proc. SIGGRAPH ’82, pp. 21-29, 1982.

[4] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware,”1994
Symposium on Volume Visualization, pp. 91-98, 1994.

[5] J. Clyne, J.M. Dennis, “ Interactive direct volume rendering of time-
varying data,”VisSym’99, Vienna, Austria, May 1999.

[6] R. Crawfis and N. Max, “Texture splats for 3D scalar and vector field
visualization,”Visualization’93, pp. 261-266, 1993.

[7] R. Drebin, L. Carpenter, and P. Hanrahan, “Volume rendering,”Proc.
SIGGRAPH’88, pp. 65-74, 1988.

[8] K.H. Hoehne B. Pfiesser, A. Pommert, M. Riemer, T. Schiemann,
Schubert, U. Tiede., “A virtual body model for surgical education an
rehearsal,”IEEE Computer, vol. 29, no. 1, 1996.

[9] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He, “Virtual voy-
age: intercative navigation in the human colon,”Proc. SIG-
GRAPH’97, pp. 27-34, 1997.

[10] H. Hoppe, “Progressive Meshes,”Proc. SIGGRAPH’96, pp. 99-108,
1996.

[11] J. Huang, R. Crawfis, and D. Stredney, “Edge preservation in volum
rendering using splatting,”1998 Symp. Volume. Vis.,pp. 63-69, 1998.

[12] J. T. Kajiya and B.P. Von Herzen, “Ray tracing volume densities
Proc. SIGGRAPH ‘84, pp. 165-174, 1994.

[13] P. Lacroute and M. Levoy, “Fast volume rendering using a shear-wa
factorization of the viewing transformation,”Proc. SIGGRAPH ‘94,
pp. 451- 458, 1994.

[14] M. Levoy, “Display of surfaces from volume data,”IEEE Comp.
Graph. & Appl., vol. 8, no. 5, pp. 29-37, 1988.

[15] M. Levoy, “Efficient ray tracing of volume data,”ACM Trans. Comp.
Graph., vol. 9, no. 3, pp. 245-261, 1990.

[16] R.M. Lewitt, “Multi-dimensional digital image representations usin
generalized Kaiser-Bessel window functions,”J. Opt. Sec. Am. A,vol.
7, no.10, pp. 1834-1846, 1990.

[17] W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolutio
3D surface construction algorithm,”Proc. SIGGRAPH’87, pp. 163-
169, 1987.

[18] R. Machiraju and R. Yagel, “Efficient Feed-Forward Volume Rende
ing Techniques for Vector and Parallel Processors,”SUPERCOM-
PUTING’93, pp. 699-708, 1993.

[19] N. Max, “Optical models for direct volume rendering,”IEEE Trans.
Vis. and Comp. Graph., vol. 1, no. 2, pp. 99-108, 1995.

[20] T. Moeller, R. Machiraju, K. Mueller, and R. Yagel, “ A comparison
of normal estimation schemes,”Visualization’97, pp. 19-26, 1997.

[21] K. Mueller and R. Yagel, “Fast perspective volume rendering wit
splatting by using a ray-driven approach,”Proc. Visualization’96, pp.
65-72, 1996.

[22] K. Mueller, N. Shareef, J. Huang, and R. Crawfis, “High-qualit
splatting on rectilinear grids with efficient culling of occluded vox
els,” IEEE Trans. Vis. Comp. Graph., vol. 5, no. 2, pp. 116-134, 1999.

[23] K. Mueller and R. Crawfis, “Eliminating popping artifacts in shee
buffer-based splatting,” Proc. Visualization’98, pp. 239-245, 1998.

[24] R. Osborne, H. Pfister, H. Lauer, T. Ohkami, N. McKenzie, S. Gib
son, and W. Hiatt, “EM-Cube: an architecture for low-cost real-tim
volume rendering,”Proc. Eurographics Hardware Rendering Work-
shop, pp. 131-138, 1997.

[25] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan, “Interacti
ray tracing for isosurface rendering,”Proc. Vis‘98, pp. 233-238, 1998.

[26] J. Ritter, “A fast approximation to 3D euclidian distance,”Graphics
Gems, A. Glassner, editor, pg. 432-433, Academic Press, 1990.

[27] U. Tiede, T. Schiemann, and K.H. Hoehne, “High quality rendering
attributed volume data,”Proc. Visualization’98, pp. 255-262, 1998.

[28] A. Van Gelder and K. Kim, “Direct volume rendering via 3D texture
mapping hardware,”Proc. 1996 Vol. Rend. Symp.,pp. 23-30, 1996.

[29] R. Westermann, T. Ertl, “Efficiently using graphics hardware in vo
ume rendering applications,”Proc. SIGGRAPH’99, pp.169-177, 1999

[30] L. Westover, “Interactive volume rendering,”1989 Chapel Hill Vol-
ume Visualization Workshop, pp. 9-16, 1989.

[31] L. Westover, “Footprint evaluation for volume rendering,”SIG-
GRAPH’90, pp. 367-376, 1990.

[32] L. Westover, “SPLATTING: A parallel, feed-forward volume render
ing algorithm,”PhD Dissert., UNC-Chapel Hill, 1991.

[33] G.J. Wiet, R. Yagel, D. Stredney, P. Schmalbrock, D.J. Sessanna
Kurzion, L. Rosenberg, M. Levin, K. Martin, “A volumetric approach
to virtual simulation of functional endoscopic sinus surgery”,Medi-
cine Meets Virtual Reality 5, 1997.

[34] J. Wilhelms and A. Van Gelder, “A coherent projection approach fo
direct volume rendering,”Computer Graphics (SIGGRAPH ‘91 Pro-
ceedings),pp. 275-284, 1991.

[35] C. Wittenbrink, T. Malzbender, and M. Goss, “Opacity-weighte
color interpolation for volume sampling,”1998 Symposium on Vol-
ume Visualization, pp. 135-142, 1998.

rendered with pre-shaded
splatting

rendered with post-shaded splat-
ting, gradients estimated with
central differencing

(1) head, pre-shaded w/ post-alpha,α(fiso)=0.7
(2) ganglion nerve cell, pre-shaded
(3) ganglion nerve cell, post-shaded
(4) zoomed brain, post-shaded with gradients

estimated with gradient splats

(1)

(2)

(3)

(4)

Fig. 6: Colorplate

(1) full head, (2) eye, (3) brain, (4) brain zoomed

	Fig. 1: Two standard volume rendering pipelines. (a) Pre-shaded volume rendering: The raw density...
	image
	in Fig. 6
	full head
	eye
	brain
	brain zoomed
	ganglion nerve cell
	splatting method
	pre- shade
	post- shade
	pre- shade
	post- shade
	pre- shade
	post- shade
	pre- shade
	post-shade
	pre- shade
	post- shade
	footprint rasterization
	15.6
	11.4
	17.4
	14.5
	14.5
	13.0
	16.7
	16.2
	16.8
	9.4
	6.5
	shading
	1.8
	14.0
	0.7
	17.1
	1.8
	13.6
	0.3
	17.8
	17.0
	3.5
	15.6
	compositing
	3.5
	3.5
	2.4
	2.7
	3.9
	4.3
	1.4
	1.4
	1.4
	2.7
	3.0
	total
	21.0
	29.9
	20.5
	35.2
	20.3
	31.7
	18.5
	36.2
	36.0
	15.7
	25.6
	Fig. 6: Colorplate

	Splatting Without The Blur
	Klaus Mueller, Torsten Möller, and Roger Crawfis
	Department of Computer and Information Science, The Ohio State University, Columbus, OH
	1 INTRODUCTION
	2 PRELIMINARIES
	(1)
	(2)
	(3)
	(4)
	(5)

	3 THEORETICAL ASPECTS
	3.1 Pre-shaded vs. post-shaded volume rendering
	Fig. 2: Origin of blurring, and its prevention.
	(6)

	3.2 Gradient estimation
	(7)
	Fig. 3: (a) Frequency spectra of Gaussian (H) and central difference filter (D). The optimal deri...

	4 NEW BLUR-FREE SPLATTING
	4.1 Concepts
	(8)
	(9)

	4.2 Implementation issues
	(10)
	(11)

	4.3 Cost analysis
	4.4 A hybrid method: the pre-shaded post-alpha splatting pipeline

	5 RESULTS
	5.1 Results with pre-shaded post-alpha splatting
	Fig. 4: Interpolating two pixel rays traversing two voxel slices of three voxels each.
	Fig. 5: Pre-shaded post-alpha splatting: (a) using a ramp starting at a(fiso)=0.1, (b) setting al...

	6 CONCLUSIONS
	7 FUTURE WORK
	[1] R. Avila, T. He, L. Hong, A. Kaufman, H. Pfister, C. Silva, L. Sobierajski, and S. Wang., “Vo...
	[2] Bentum M.J., Lichtenbelt B.B.A., Malzbender T., “Frequency analysis of gradient estimators in...
	[3] J. F. Blinn, “Light reflection functions for simulation of clouds and dusty surfaces,” Proc. ...
	[4] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomographic reconstruction...
	[5] J. Clyne, J.M. Dennis, “ Interactive direct volume rendering of time- varying data,” VisSym’9...
	[6] R. Crawfis and N. Max, “Texture splats for 3D scalar and vector field visualization,” Visuali...
	[7] R. Drebin, L. Carpenter, and P. Hanrahan, “Volume rendering,” Proc. SIGGRAPH’88, pp. 65-74, 1...
	[8] K.H. Hoehne B. Pfiesser, A. Pommert, M. Riemer, T. Schiemann, R. Schubert, U. Tiede., “A virt...
	[9] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He, “Virtual voyage: intercative navigation ...
	[10] H. Hoppe, “Progressive Meshes,” Proc. SIGGRAPH’96, pp. 99-108, 1996.
	[11] J. Huang, R. Crawfis, and D. Stredney, “Edge preservation in volume rendering using splattin...
	[12] J. T. Kajiya and B.P. Von Herzen, “Ray tracing volume densities,” Proc. SIGGRAPH ‘84, pp. 16...
	[13] P. Lacroute and M. Levoy, “Fast volume rendering using a shear-warp factorization of the vie...
	[14] M. Levoy, “Display of surfaces from volume data,” IEEE Comp. Graph. & Appl., vol. 8, no. 5, ...
	[15] M. Levoy, “Efficient ray tracing of volume data,” ACM Trans. Comp. Graph., vol. 9, no. 3, pp...
	[16] R.M. Lewitt, “Multi-dimensional digital image representations using generalized Kaiser-Besse...
	[17] W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D surface construction a...
	[18] R. Machiraju and R. Yagel, “Efficient Feed-Forward Volume Rendering Techniques for Vector an...
	[19] N. Max, “Optical models for direct volume rendering,” IEEE Trans. Vis. and Comp. Graph., vol...
	[20] T. Moeller, R. Machiraju, K. Mueller, and R. Yagel, “ A comparison of normal estimation sche...
	[21] K. Mueller and R. Yagel, “Fast perspective volume rendering with splatting by using a ray-dr...
	[22] K. Mueller, N. Shareef, J. Huang, and R. Crawfis, “High-quality splatting on rectilinear gri...
	[23] K. Mueller and R. Crawfis, “Eliminating popping artifacts in sheet buffer-based splatting,” ...
	[24] R. Osborne, H. Pfister, H. Lauer, T. Ohkami, N. McKenzie, S. Gibson, and W. Hiatt, “EM-Cube:...
	[25] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan, “Interactive ray tracing for isos...
	[26] J. Ritter, “A fast approximation to 3D euclidian distance,” Graphics Gems, A. Glassner, edit...
	[27] U. Tiede, T. Schiemann, and K.H. Hoehne, “High quality rendering of attributed volume data,”...
	[28] A. Van Gelder and K. Kim, “Direct volume rendering via 3D texture mapping hardware,” Proc. 1...
	[29] R. Westermann, T. Ertl, “Efficiently using graphics hardware in volume rendering application...
	[30] L. Westover, “Interactive volume rendering,” 1989 Chapel Hill Volume Visualization Workshop,...
	[31] L. Westover, “Footprint evaluation for volume rendering,” SIGGRAPH’90, pp. 367-376, 1990.
	[32] L. Westover, “SPLATTING: A parallel, feed-forward volume rendering algorithm,” PhD Dissert.,...
	[33] G.J. Wiet, R. Yagel, D. Stredney, P. Schmalbrock, D.J. Sessanna, Y. Kurzion, L. Rosenberg, M...
	[34] J. Wilhelms and A. Van Gelder, “A coherent projection approach for direct volume rendering,”...
	[35] C. Wittenbrink, T. Malzbender, and M. Goss, “Opacity-weighted color interpolation for volume...

