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ABSTRACT

The correct choice of function and derivative reconstruction filters
is paramount to obtaining highly accurate renderings. Most filter
choices are limited to a set of commonly used functions, and the
visualization practitioner has so far no way to state his preferences
in a convenient fashion. Much work has been done towards the
design and specification of filters using frequency based methods.
However, for visualization algorithms it is more natural to specify
a filter in terms of the smoothness of the resulting reconstructed
function and the spatial reconstruction error. Hence, in this paper,
we present a methodology for designing filters based on spatial
smoothness and accuracy criteria. We first state our design crite-
ria and then provide an example of a filter design exercise. We also
use the filters so designed for volume rendering of sampled data
sets and a synthetic test function. We demonstrate that our results
compare favorably with existing methods.

Keywords: Interpolation (G.1.1)Approximation (G.1.2)Quadra-
ture and Numerical Differentiation(G.1.4)Picture/Image Genera-
tion (I.3.3)Reconstruction (I.4.5)

Other Keywords: Volume Rendering, Filter Design, interpola-
tion, derivatives

1. INTRODUCTION

The reconstruction of a function and its derivatives from a set of
given samples of that function is a fundamental operation in many
areas. Computer graphics, scientific visualization, and image pro-
cessing are just a few examples. In all these areas, a set of samples
of an unknown function is usually all we know of that function.
Hence, the reconstruction of the function between sample points is

rather arbitrary, and one cannot talk about anideal reconstruction
function. The notion ofideal reconstruction is based on the
assumption, that a given function is a member of a certain func-
tional space, e.g. theL2 space or the bandlimited function space.
This functional space (and therefore theideal reconstruction
method) is usually determined by the particular application. In
visualization, and in other fields, we assure that the given function
belongs to the space of smooth functionsCn, wheren is an integer.

A very important and often studied space in the class of all smooth
functional spaces, is the space of bandlimited functions (a subclass
of ). They are often studied in the frequency domain using a
signal processing approach. Although these methods are capable
of controllingglobal errors such as blurring and aliasing, nolocal
spatial assessment of their accuracy can be conducted directly. It
turns out that the ideal reconstruction filters for the space of band-
limited functions are impractical to use. Hence research in this area
has focused on finding efficient filters that approximate the ideal
filter [1][4][7][9][10][14][15].

Another body of work has concentrated on minimizing the local
spatial error for design and evaluation of filters [11][16][17][20].
The local error was measured and minimized using a Taylor series
expansion. Since visual perception, judged by ringing, aliasing and
blurring, was of concern, the frequency behavior of the resulting
filter was discussed. In addition, spatial design gives an easy con-
trol over the size of the filter, and hence on the efficiency of the
resulting filter, a property frequency-based methods do not have.
However, it was found that the sole concern for numerical accu-
racy can lead to discontinuous filters, which can produce visual
artifacts that are easily detected [17]. The goal of this paper is to
overcome this problem by introducing a smoothness requirement
into the filter design process.

All filter designs in the spatial domain have built filters according
to an accuracy criteria. In this paper we introduce, for the first
time, filter design criteria for interpolation and derivative filters
which yield functions with a minimal numerical error and still
maintain good spectral properties. The only assumption that we
require of the original function (represented by the given samples)
is that it is smooth and a member of the functional spaceCn. We
also show how our design criteria relate to criteria in frequency
domain.

Our filter design is not restricted to cubic polynomial basis func-
tions, but can generate filters of arbitrary smoothness and accu-
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racy. In this paper, we design optimized piecewise polynomial
interpolation filters according to a set of smoothness and accuracy
requirements. These filters are drawn from the set of all piecewise
polynomial filters, a more general class of filters than the popular
BC-splines. Since our methods also apply easily to any derivative
filter design, we find optimal piecewise polynomial gradient filters
as well. Our results, which go beyond the de-facto standard of the
popular cubic BC-splines introduced by Mitchell and Netravali
[16], are summarized in Table 1 and Table 2. These tables provide
a guide to which filters should be used in most applications. Fur-
thermore, we provide the practitioner with an easy and fast way to
design filters that are specific to their applications by determining
an application oriented set of smoothness and accuracy criteria.

The outline of this paper is as follows; Section 2 summarizes pre-
vious research in this field. In Section 3, we introduce the design
criteria that we use in Section 4 to design new filters. In Section 5
we present some experimental results and in Section 6 we suggest
steps for furthering this research. Finally, in Section 7, we summa-
rize our findings.

2. PREVIOUS RESEARCH

Two of the more important and well studied reconstruction algo-
rithms are interpolation and gradient estimation. In volume render-
ing, we must be able to interpolate the function at arbitrary
locations to obtain the volume densities needed for arbitrary view-
ing. The gradient (the first derivative of the function) is employed
in both volume classification and shading [6][13]. If the gradient
estimation is done incorrectly, shading and classification will yield
misleading colors and opacities.

Many researchers have shown that theSinc filter is an ideal inter-
polation filter for the space of bandlimited functions (a subclass of

). In this space theCosc filter, which is the analytic derivative
of theSinc filter, is an ideal derivative filter [1][7][19]. These fil-
ters completely cut off the frequencies above a certain Nyquist fre-
quency. Because of this discontinuity in the frequency domain,
those filters have infinite support in the spatial domain and there-
fore are impractical to use for digital signals. Windowing theSinc
filter was introduced in order to smoothly limit this filter spatially
[10][19]. Carlbom [4] computed an approximation to a modified
Sincfilter with a minimized Chebychev error. Goss [9] extended
the idea of windowing from interpolation filters to derivative fil-
ters. He used a Kaiser window to mitigate the adverse effects of
the truncated ideal derivative filter. Instead of trying to find a good
approximation to the ideal filter for all frequency ranges, Dutta
Roy and Kumar’s filter design [7] can be easily adapted to find
good approximations for select frequency ranges.

A comparative study by Marschner and Lobb [15] proposed the
use of different error metrics for various reconstruction artifacts of
interpolation filters. These error metrics operate in the frequency
domain and measure the smoothing, post-aliasing, and overshoot
attributes of an interpolation filter. This study showed that the win-
dowedSinc filter has the best behavior.

In the spatial domain, Keys [11] analyzed a certain class of cubic
splines, also calledcardinal splines, using a Taylor series expan-
sion. He showed that, within this class, the Catmull-Rom spline is
optimal in the sense that it interpolates the original function with
the smallest asymptotic spatial error. He also graphically compared
the Catmull-Rom spline with the ideal interpolation filter, noticing
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that it is suitable for practical applications in computer graphics.
Mitchell and Netravali [16] introduced a more general class of
cubic splines which we refer to asBC cubic splines or in short,
BC-splines. Cardinal cubic splines are a subclass of the BC-
splines. Mitchell and Netravali conducted a study involving more
than 500 sample images, classifying the parameter space into dif-
ferent regions of dominating reconstruction artifacts such as blur-
ring, ringing, and anisotropy. They found, by using a Taylor series
expansion, that filters for which  are the most numeri-
cally accurate within the class of BC-splines and have an error pro-
portional to the square of the sampling distance. They also found,
through their empirical studies, that these filters, although numeri-
cally superior, are not always visually superior.

Recently, we have shown [17] that the derivative approximation
has a larger impact on the quality of the volume rendered image
than the interpolation operation and therefore deserves a thorough
analysis. Unfortunately, not much work has been done in the spa-
tial design of derivative filters. Bentum et al. [1] use the Cardinal
cubic splines as a basis to constructing the derivative filter through
an analytic derivation of the interpolation filter. Although the
authors illustrate the effect of various parameters on these filters
via a number of frequency plots, they do not analytically compare
the different filters. We (in [17]) have developed tools for the spa-
tial analysis of both interpolation and derivative filters of arbitrary
order. We used a Taylor series of the convolution sum in order to
come up with four evaluation criteria. These criteria include
asymptotic, as well as absolute, local error effects of the filter on
the reconstructed function. We use these criteria in our current
paper as a way to control the numerical error of the filters that we
design. Using the methods developed in [17] we conducted a com-
parison of various derivative (normal vector) reconstruction meth-
ods and classified them into four reconstruction schemes [18].

Since we will employ the results of [17] throughout our paper, we
include a summery here:

2.1  Taylor Expansion of the Convolution Sum
To reconstruct a continuous functionf(t) or its derivative from
a set of sample pointsf[k], we convolvef[k] with a continuous fil-
ter kernelw. The filterw can be either an interpolation or a deriva-
tive filter. We denote the result of this operation by .
Formally, this can be written as:

, (1)

where T is the sampling distance. Now we can expand
 into a Taylor series ofN+1 terms aboutt. The

Taylor series expansion at that point would be:

where  is then-th derivative off and .

Substituting the Taylor series expansion into the convolution sum
of Equation 1, leads to an alternative representation for the recon-
structed value at a pointt:
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(2)

whereτ is chosen such that , with , andi is
an integer. It is noteworthy that the derived error coefficientsa
only depend on the offsetτ to the nearest sampling point, i.e., they
are periodic in the sampling distanceT. For further details, please
refer to [17].

The characterization of the filtering process in Equation 2 imposes
four different criteria for a good reconstruction scheme of thek-th
derivative. First of all, we require  to be zero for alln smaller
thank. Secondly we have to normalize by  in order to recon-
struct the actual derivative as opposed to some multiple of it. Fur-
ther by determining the largestN, such that  is zero, we can
determine the asymptotic error behavior of a filter for a decreasing
sampling distanceT. Finally, the remainder termr gives us an indi-
cation of the absolute error of that filter.

This expansion of the convolution sum assumes that at least the
first N derivatives of the functionf exist, whereN depends on our
error analysis. Hence, we assume that the underlying function is a
member of the class of smooth functionsCN. This condition is
generally met in practice [2][17][21].

3. DESIGN CRITERIA

Whenever we are trying to reconstruct a function from sample
points we are hoping that the reconstruction process performswell
and we don’t get manyartifacts. However our understanding of
such terms likegood reconstruction as well asartifacts during this
process is usually highly dependent on the specific application.
Most applications share an attempt to recover the original sampled
function as accurately as possible. In order to measure the accu-
racy of the process, one must have an idea about the type of origi-
nal function from which the samples were recovered. As we have
pointed out in Section 2.1, it is not restrictive to most applications
to assume that the original function is continuous to some degreen
and therefore belongs to the class of functionsCn. This is the only
assumption, that we require for our filter design.

In addition of hoping for an accurate function reconstruction,
almost all applications will require the reconstruction of a smooth
function. Since we assume a smooth original function, it is natural
to expect a smooth function as the result of the reconstruction pro-
cess. A smooth reconstruction will also guarantee the disappear-
ances of image artifacts in visualization and imaging applications.
Another application is CAD in which designers reconstruct sur-
faces from a set of sample points (knots) using basis functions that
are developed to yield surfaces ofC1, C2 or higher continuity. The
reason for smooth function reconstruction is that our visual system
is capable of detecting and enhancing even small discontinuities in
images. For example, in Fig. 2b and Fig. 4b (see color plates) we
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reconstructed a test function (introduced in [15]) and an MRI data
set with a filter that was designed solely by requiring high accu-
racy [17] and therefore yields very little absolute error. It, how-
ever, suffers from discontinuities, leading to a discontinuous
reconstructed function. Consequently, we would like to reconstruct
a function, that is a member of the continuous function spaceCn.

For practical applications, the efficiency of the reconstruction pro-
cess is of great importance as well. In volume rendering, the effi-
ciency of a reconstruction filter, which is employed routinely many
times [1], is a source of great concern. It is desirable to use as few
samples as possible in order to reconstruct the function at a new
location.

We conclude that for general filter design we have to answer three
questions:

• What derivative of the original function do we want to recon-
struct?

• What accuracy do we require from the reconstruction process?

• What spaceCn should the reconstructed function belong to?

Commonly there is also the question of how many filter weights
should the filter have. We have elegantly answered this question by
minimizing the number of weights and by designing the most effi-
cient filter fulfilling the constraints of the design.

The first two questions can easily be expressed using the frame-
work developed in [17]. Assuming that we want to reconstruct the
k-th derivative of the given digital signal f, we simply require that
all error coefficients  in Equation 2 be zero, wheren < k. Fur-
ther, we require that the coefficient of thekth derivative be one.
Formally, this can be expressed as:

Condition 1:  for all  and .

The major goal of the design in spatial domain is numerical accu-
racy. We gain numerical accuracy by requiring the error coeffi-
cients  beyondk to be zero. This leads to what we call N-EF
filters (that is, Error Function of theNth order) ([17]):

Condition 2:  for all .

It is no restriction to consider the filterw to be composed of ele-
mentswk, which are defined by

.

An example of this piecewise decomposition of the filterw is illus-
trated in Fig. 1. Now it is easy to see that the first two conditions
yield an equation system in the unknownswk. The solution of that
equation system will define a filterw, that fulfills Condition 1 and
2. Since this is a linear equation system, we can easily solve it
symbolically by Gaussian elimination, which yields a solution for
thewk. This concludes the first step of our function design, defin-
ing a class of filters, that guarantee an N-EF accurate reconstruc-
tion of thekth derivative of the original function.

As we have pointed out earlier, not every filter of this class yields a
continuous reconstructed function and therefore might lead to
undesirable artifacts. Hence, we desire the reconstructed function
to be part of a smooth function spaceCM. From Equation 1 it is
clear that we need to require our filterw to be in this class. In order
to be a member ofCM, a functionw and itsM derivatives must all
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be continuous everywhere, including every open interval
for every integerk, and also at all the integer pointsk themselves.
Since the equation system ofConditions 1 and2 yields a piecewise
filter kernel, we can mathematically express the smoothness crite-
ria as:

Condition 3:  and  for allk and

all , where  denotes them-th derivative of .

After solving the equation system ofConditions 1 and2 and deter-
mining the smoothness of the desired filter, we have a new set of
criteria for our filter that needs to be met. In order to design an
actual filter, we have to find a solution that fulfills all these condi-
tions. While it is not necessary to restrict oneself to piecewise
polynomial filters, we have done so here. The reason for this is that
they are easy to use and implement, and are therefore very popular.
Now Conditions 1, 2 and3 translate to a linear equation system in
the coefficients of piecewise polynomials. The solution of this
equation system yields a class of polynomials. These can be fur-
ther restricted by choosing efficient filters, i.e. with the least num-
ber of filter weights and small degrees of polynomials. This
concludes the filter design. Summarizing the filter design includes
the following steps:

Step 1: Solve a linear equation system created by Conditions 1 and
2 in the pieceswk of the filterw.

Step 2: Choose a set of basis functions for the representation of
wk.

Step 3: Solve for the coefficients of the basis functions, consider-
ing Condition 3 as well as the solution of Step 1.

Our design criteria also have validity in the frequency domain. It
can be shown that our accuracy criteria, defined by specifying the
error coefficients , translate to conditions on the frequency rep-
resentation of the filterw at the DC value.  represents the DC
value itself and  thek-th derivative of the frequency spectra at
that point. This is a very desirable condition and was suggested as
a filter design criteria by Dutta Roy et al. [7], for designing maxi-
mal linear filters. Since it is impractical to use an ideal reconstruc-
tion filter (in the  sense), their idea was to design filters that
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FIGURE 1. A piecewise polynomial interpolation filter using
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come very close to the ideal filter in parts of the frequency spectra
and includes some important frequencies. For general applications,
we would expect to have the most important frequencies around
the DC value.

Since the accuracy criteria only fixes the frequency domain at a
single point, it is not enough to guarantee well behaved filters. Our
smoothness criterion in Condition 3 constructs filtersw of the class
CM. That means they can be decomposed (using a Taylor series)
into a polynomial ofMth degree and a remainder term. Now, the
polynomial ofMth degree translates into a function defined as

 in frequency space [3]. This guarantees a quick decay
of our reconstruction filter. The higher the smoothness condition,
the quicker the decay. This ensures that aliasing effects of our
designed filter diminish with increasingM.

Having explained the general design process, we turn to demon-
strate it by ways of an example.

4. EXAMPLE

Let us assume we want to construct a derivative filter. We expect
this derivative filter to be somewhat reliable in terms of accuracy,
so we choose a 2EF filter. Further, we aim for aC1 continuous fil-
ter. That leads to three conditions to fulfill:

1. derivative filter:

(3)

2. numerical accuracy 2EF:

(4)

3. smoothness C1:

(5)

Here  are the error coefficients defined in Equation 2 with a
positive offsetτ, . The filter to be constructed isw.
Decomposing our filterw in pieceswk as mentioned in Section 3,
we can write the three conditions above in terms of the filter
weights . We will use the notationwk and
wk(τ) interchangeably. Using the definition of the error coefficients
in Equation 2 will simplify the conditions of Equation 3 through
Equation 5 to:

1. derivative filter:

(6)

2. numerical accuracy 2EF:

(7)

3. smoothness: (here  denotes the derivative of )
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(8)

The choice of the number of filter weights  (which is the same
as the number of piecewise, non-zero parts of the functionw) is
rather arbitrary. If we choose too many, the resulting filter becomes
inefficient. If we choose too few, the equation system might not
lead to a solution at all. Since we are trying to design cost-efficient
filters, we’d like to have as few as possible filter weights. Since, in
computer graphics, we are interested in anti-symmetric derivative
filters (symmetric interpolation filters) and the weightswk(τ) are
defined over integer intervals, we always need an even number of
weights (Fig. 1). Conditions 1 and 2 already impose three equa-
tions on the filter weights, thus we expect at least four weights to
be necessary for our resulting filter.

The equation system in Equation 6 and Equation 7 has three equa-
tions in the four unknownswk. Therefore it is under-determined
and leads to the following set of solutions (setting T to 1):

(9)

Any filter w whose filter weights fulfill Equation 9 is guaranteed to
be a 2EF first derivative filter. The actual filter can be constructed
using specific basis functions for thewk and insuring that our
smoothness condition (Equation 8) is fulfilled. An obvious choice
for theC1 continuous basis function would be polynomials, since
polynomials are a member of .  Using our notat ion

, we require:

,

where the coefficientsCk, Bk, Ak are unknown and remain to be
determined. Here again the choice of a second order polynomial is
rather arbitrary. If we choose too high of a degree, we get an ineffi-
cient, parameter depending solution. For too low of a polynomial
degree, we might not get a solution, since not all constraints on the
wk from Equation 9 andCondition 3 can be fulfilled. Substituting
this definition of the filter weights  into Equation 8 yields the
following condition on their coefficients:
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Substituting the polynomial definition of the filter weights  into
Equation 9 yields these conditions on their coefficients:

Further, requiring anti-symmetric filters, yields the following con-
ditions:

,

which translates to

in all positivek. This leads to an equation system in the coeffi-
cients, which solved and substituted into Equation 9, leads to the
following filter weights:

.

This concludes our filter design of aC1 2EF first derivative filter.

In the Appendix we list all the interpolation and first derivative fil-
ters that we constructed using different accuracy and smoothness
criteria. Because of space constraint we have only given the poly-
nomial coefficients in a matrixM. The filter weights are computed
by:

for a cubic filter with 6 weights. The size ofM is adapted by the
size of the filter and the degree of the polynomial. All filters are
laid out in a table where the rows represent the smoothness criteria
and the columns represent the accuracy criteria. We have looked at
1EF through 4EF filters andC0 throughC3 smoothness criteria.
We also included filters that were constructed without Condition 3
- smoothness. That simply leads to discontinuous filters. Those fil-
ters might be of interest for applications that care about accuracy
only, for example in cases where the resulting function is used for
measurement, rather than visual inspection. The advantage of
these filters is that they are sometimes faster while having only lit-
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tle (numerical) error. We have argued in [17] that these filters
might even lead to reasonable images under certain conditions and
therefore represent an efficient alternative that should not be dis-
carded.

The most general usable filters are probablyC0, C1 and 2EF, 3EF
filters. For the interpolation filters we find that the most efficient
C1-3EF filter is the well known Catmull-Rom spline, also found by
others to be the most accurate BC-spline. It is also noteworthy that
this filter is not the best filter in the class of cubic BC-splines in
terms of smoothness. We also found that the BC-filter for which
B=1 and C=0 is aC2-2EF filter. Therefore this filter might be pref-
erable over the Catmull-Rom spline for some applications. In order
to improve on the Catmull-Rom filter in terms of accuracy one
requires 6 filter weights. In order to improve smoothness of the
reconstructed function while maintaining the same accuracy, one
has to choose at least a fourth degree polynomial. The best filter
with just 2 filter weights would be either a 2EF or aC3 continuous
filter.

For derivative filters, the filterC1-2EF is probably a good first
derivative filter. It is one of the best possible that only requires 4
filter weights and is still only a quadratic filter. In order to improve
on it, we would either have to go to 6 filter weights or to a fourth
degree polynomial. It is also interesting to note, that this filter is
the analytic derivative of theC2-2EF interpolation filter, which
was a BC-spline with B=1 and C=0.

5. EXPERIMENTS

The images were rendered employing a simple ray-caster to find
the iso-surfaces. The volumes were sampled at an interval of 0.05
voxel lengths. At each sampling point, the ray-caster first applied
an interpolation kernel (we used the Catmull-Rom cubic spline) to
reconstruct the function at that point. If the reconstructed value
was above a pre-set iso-value, the derivative filter was used to
compute the 3D gradient. Shading was then performed using the
traditional Phong lighting model [8] with diffuse and specular
reflections. The obtained color and opacity were composited with
the previous ray values, and the ray was terminated after the opac-
ity reached a value close to 1.0. Since both the interpolation and
the derivative kernel were separable, for all our filters, the filtering
operations could be efficiently performed using a scheme similar
to the one given in [1] and [18].

For our experiments we used an analytic data set and an MRI data
set. The analytic data set is derived from the same function as the
one used by Marschner and Lobb [15]. Since, due to spatial con-
straints, it is not possible to include the entire set of images that
can be obtained using all given filters, summarized in Table 1 and
Table 2, we have chosen the discontinuous andC0 1EF filters as
well as the discontinuous andC0 3EF filters. Fig. 2 (Fig. 2,4,5 in
color plates) shows the synthetic data set. In order to better visual-
ize the influence of the filters we also computed the angular error
images. For each reconstructed normal we computed the actual
normal and recorded their angular difference. The grey value of
255 was displayed for an angular error of 15 degrees. The discon-
tinuous 1EF filter is simply the well known central difference filter,
and the discontinuous 3EF filter is the filter that we have found to
be a filter yielding better accuracy in our previous work [17]. Here
it is clearly visible, that filter design solely based on accuracy crite-
ria will not lead to acceptable images. Adding a simple smoothness

constraint, which is reflected in theC0 filters, results in very accu-
rate images that are free of visible artifacts. It also becomes very
clear, especially in the error images of Fig. 3, that the 3EF filter
will lead superior images in terms of numerical accuracy.

The same behavior as for the analytic data set can also be observed
for the MRI data set in Fig. 4. This data set is a close up view of an
MRI of a human brain. Here, we also fixed the interpolation filter
to the Catmull-Rom filter and varied the derivative filter in the
same way as we did for the Marschner Lobb images.

Another application requiring smooth reconstruction filters is the
size preserving pattern mapping of Kurzion et al. [12]. Here, the
problem is to continuously map a texture to a parametric surface or
implicit surface, including volumetric iso-surfaces, at a constant
density. In the past, only manual mappings were able to perform
this task, while this paper introduces an automatic method. The
authors use the curvature of a surface at a point in order to continu-
ously vary the scale of the mapped image. This curvature is
approximated using the derivative of the underlying function. A
C1 continuous filter is essential for the success of this method as it
ensures continuous mapping of texture on the surface. We used a
163 grid (a shrunken down version of the original 1283 head) for
calculating the curvature. This means that the head is composed of
rectangular patches on which the normal derivative is calculated
by the same 43 grid samples. Fig. 5a uses the central difference fil-
ter, which gives a very poor estimation of the curvature, hence the
mapping of the density varies sharply between patches. Fig. 5b
uses aC0-2EF filter that generates a very constant density across
the head, but shows discontinuities along the patch lines. The filter
we designed for this application is theC1 continuous 2EF deriva-
tive filter of Table 2. Fig. 5c shows an application of this filter and
we observe that all previous problems no longer exist.

(a) (b)

(c) (d)
FIGURE 3. Error images of the Marschner Lobb data set ren-

dered using the following derivative filter (a) discontinuous
1EF (b) discontinuous 3EF (c)C0-1EF (d)C0-3EF; darker
colors mean lesser error



6. FURTHER RESEARCH

Since, in this paper, we restricted ourselves to piecewise polyno-
mial filters, we would like to explore different basis functions.
Especially using trigonometric basis functions likesine andcosine,
we would like to explore possible similarities to windowedSinc
andCosc filters. We hope that this might improve the efficiency of
the filters, maintaining the same smoothness and accuracy while
using fewer filter weights.

Our accuracy criteria, as outlined here, have also been used to
specify and design filters in other domains, especially in wavelet-
based multiresolution analyses, by Daubechies and others [5]. We
hope to explore the effect of our smoothness criteria also for defin-
ing new basis functions in the wavelet domain and to study its
effects on the wavelet transform.

In applications of computer graphics, especially scientific visual-
ization, the final image is not just influenced by the interpolation
and derivative method, but sometimes also by a shading equation
and compositing operations. Therefore, it is necessary to analyze
the overall error expressed in theL2 error norm. We are working
on developing better tools to study this error. Once we are able to
characterize the complete rendering pipeline, we might be able to
adapt the reconstruction filters in a way to compensate for the
overall error and to produce better images.

7. CONCLUSIONS

In this work, we have introduced design criteria for the design of
optimal and smooth reconstruction filters. It was demonstrated,
contrary to previous beliefs, that it is not sufficient to base filter
designs just on accuracy criteria. Rather, our design criteria are not
only the accuracy of the reconstructed function, but also its charac-
terization as a function in the spaceCM of all M-times continuous
derivable functions. We further demonstrated, by ways of an
example, aC1 2EF filter, how such a filter can be constructed. We
then provided a table, listing all optimal interpolation and deriva-
tive filters that match smoothness and accuracy criteria of up toC3

continuous and 4EF, respectively. These tables may serve as a
guide on what filters should be used for a certain application. The
filters listed in these tables go much beyond the very popular class
of piecewise polynomial filters, described in the past by Mitchell
and Netravali’s BC-splines [16]. Furthermore, this paper gives the
practitioner an easy way to design specific filters to match their
specific application, by determining a very application oriented set
of criteria - smoothness and accuracy.
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10. APPENDIX

10.1  Interpolation filters

TABLE 1. the new actual filters for interpolation filters
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10.2  First Derivative filters
TABLE 2. the new actual derivative filters
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FIGURE 2. Marschner Lobb data set rendered using the following derivative filter (a)
discontinuous 1EF (b) discontinuous 3EF (c)C0-1EF (d)C0-3EF (e)C3-4EF

(a) (b)

(c) (d)

(a) (b)

(c) (d)

FIGURE 4. MRI data set rendered using the following derivative filter (a) discontin-
uous 1EF (b) discontinuous 3EF (c)C0-1EF (d)C0-3EF

(a)

(b)

(c)

FIGURE 5. Size preserving pattern mapping of
a texture on an MRI scan of a human head
using (a) a discontinuous 1EF derivative
filter (central differences) (b) aC0-2EF
derivative filter (c) aC1-2EF derivative fil-
ter in order to determine the pattern density.


