
Size Preserving Pattern Mapping

Yair Kurzion1, Torsten Möller1,2, Roni Yagel1

1Department Of Computer And Information Science
2The Advanced Computing Center For The Arts And Design

The Ohio State University, Columbus, Ohio

Abstract.

We introduce a new approach for mapping texture on volumetric
iso-surfaces and parametric surfaces. Our approach maps 2D
images on surfaces while maintaining continuity and preserving
the size of the mapped images on the models. Our approach is
fully automatic. It eliminates the need for manual mapping of
texture maps. We use the curvature of a surface at a point in order
to continuously vary the scale of the mapped image. This makes
our approach dependent only on local attributes of a point
(position, normal and its derivatives) and independent of the global
shape and topology of an object. Our method can map high
resolution images on low resolution volumes, hence enhancing the
visual appearance of rendered volume data. We describe a general
framework useful for all surface types that have a C1 continuous
normal. We demonstrate the new method for painting volume data
and for mapping cavities on volume data.

1 INTRODUCTION
Texture maps [7] are essential for enhancing the appearance of a
model. They increase the detail of rendered models without
increasing their geometric complexity. We often wish to paint a
model with some generic texture. For example, in medical models,
we wish to add generic skin texture to skin surfaces, and vein like
formations inside walls of body cavities. We call these generic
texturespatterns. We wish to make these patterns continuous
across the entire surface. We also wish to map patterns on a surface
at a constant density the way they appear in nature. Adding such
patterns to a model is traditionally a time consuming process. A
modeler has to specify the mapping of a 2D pattern on every area
of the surface, the smaller the area - the less size distortion. In this
paper we present a method for mapping patterns on volumetric iso-
surfaces and parametric surfaces with no user intervention. Our
method takes a pattern image and a desired density and paints a
model with the given pattern at the given density. We use the
surface curvature at a point in order to vary the density of a
projected pattern image. We use the mapped patterns to modify the
color of surface points, thus painting the surface. We also use these
mapped patterns to modify the intensity of volume sample points,
thus adding cavities to a volume. Our method provides a general
mapping scheme for all surfaces with a C1 continuous normal.

1.1 Background
Adding texture on surfaces without distortion received a lot of
attention in previous works. Previous methods fall into two
categories: Direct painting methods [1,8,10], where a user
manually paints the objects, and chart-based methods [2,11,16,17]
where a user sub-divides the surface into sub-patches,
parametrizes each sub-patch and then picks a mapping for each
sub-patch. In both categories, a user has to manually specify the
extent and contents of texture maps for each portion of the object.
The amount of work required depends on the complexity of the

model. Bier and Sloan [4] presented a two step method for
mapping texture over surfaces. They map the texture on a simple
surface first, and then project the texture from the simple surface
onto the target model. Their method enables decreasing the
amount of size distortion. However, it does not guarantee size
preservation, and it is useful only if the intermediate surface is
very simple.

Environment mapping [6] was introduced as a means for
generating a cheap ray-tracing effect. It uses the surface normal at
each point in order to lookup its color in a 2D texture map. For
each point, the environment mapping algorithm reflects the
viewing direction about the surface normal. It then intersects the
reflected viewing direction with a box bounding the scene. Each
face of the bounding box is painted by some texture map. The final
color is given by the texture map color at the point of intersection
between the reflected viewing vector and the box face.

Clearly, for smooth surfaces, environment mapping generates a
continuous mapping of the texture map onto the surface. However,
it is view dependent, and it does not preserve the density of the
texture map across the surface. The higher the curvature of the
surface, the higher the density of the texture image on the surface.

1.2 Our Method
One can easily eliminate the view dependency with a slight
modification of the environment mapping technique. Instead of
reflecting the viewing vector by the surface normal, we use the
surface normal itself to map points onto the bounding box. At each
point we intersect the surface normal with a bounding box, and use
the intersection point to map into the texture image. We now have
a very simple view independent scheme for continuous mapping of
images onto smooth surfaces. This scheme is identical to the two-
part mapping method [4] when picking a box as the intermediate
surface, and using the target surface normal for mapping texture.
Figure 1 shows two areas on a surface. The area marked A has zero
curvature and so we map a wall segment of size P0 on a segment
surface of equal size C0. The area marked B has high curvature,
therefore we map a wall segment of size P1 on a much smaller
surface segment size C1. If we paint the walls with a pattern of
constant density then the projection on area B will be a lot denser
than the projection on area A.

The idea behind our method is that instead of maintaining a
constant image on the bounding box, we continuously modify the
density of the image in order to match the surface curvature. If we
want to paint the surface with pattern densityD, we can express
Dwall, the density on the wall that would generate a densityD on
the surface (Ci, Pi for i=0,1 as in Figure 1), as:

(1)

Dwall can be any real number, so we have to develop a way to map
images at any density on a given wall. SinceDwall is not
necessarily an integer, the obvious mapping ofDwall instances side
by side along the wall doesn’t work - It generates discontinuities

Dwall D
Ci

Pi
-----=

on the edges and corners of the box. Our solution is to use the idea
of homotopy in order to generate a bounding box image with the
correct density. We vary the images on the bounding box in a
continuous manner, thus making the final mapping continuous and
size-preserving.

The next section introduces homotopy, and in particular, the two
homotopies we use. Section 3 describes the simple case: pattern
mapping on parametric surfaces, and Section 4 describes how to
apply pattern maps Volume data.

2 HOMOTOPY
We use homotopy [5] in order to generate a continuous range of
pattern images at any given pattern density. Apath is a function
from [0,1] to some spaceW. Two paths p0(s), p1(s) arehomotopic
if there exists a continuous function:

(2)

whereW is some space, and we have

(3)

In our discussion,W is one axis of the 2D pattern image, andx0,x1
∈{0,1} two endpoints ofW. Without loss of generality, we assume
that all our paths are along the X axis of a pattern image. A path is
a traversal of the X axis of the image for a constant Y value. We
map paths onto an axis of the bounding box wall. We express paths
in image space by describing their behavior along an axis, using
the parametrization [0,1]x[0,1] for the image. For example, the
path (0, 0.75, 0) travels from the left edge of the pattern image (0),
three quarters of the way to the right edge (0.75), and back to the
left edge (0), all for a constant Y value. Figure 2 shows three
examples of mapping paths on bounding box walls. The functionh
is a homotopy function. It produces a continuous transitions
between two paths.

In the rest of this paper we use two specific homotopies. Figure 3
shows these two homotopies. Parts (b) and (d) show the mapping
of the domain [0,1]x[0,1] (see Equation 2) into the X axis of a
pattern image. The top and bottom edges depict the two original
paths. The arrows represent full paths along the X axis. An arrow
pointing right is the path (0,1), and an arrow pointing left is the
path (1,0). The tip of the arrow is the right edge of the pattern
image and the back of the arrow is the left edge of the pattern
image.

P1

P0

Figure 1: Modified environment mapping: color each sur-
face point by the color where the normal hits the bounding
box. The arrows marked P0, P1 show how the density of the
mapping changes when the surface curvature does.

F = wall axis size
C1C0

B

A

h: 0 1[,] 0 1[,]× W→

h s 0,() p0 s(), h s 1,() p1 s() ,
h 1 t,()

=
x1, h 0 t,() x0 for all t.

=
= =

Part (a) and (b) show how to continuously deform the path (0,1,0)
into a stationary path at 0. We achieve this continuous transition by
gradually taking paths from 0 to some t and back to 0, for values of
t changing between 0 and 1. When t = 0, we are at the bottom of
the homotopy. When t = 1, we are at the top. Part (a) shows this
transition. Part (b) depicts the same homotopy on its domain
[0,1]x[0,1]. It shows a continuous transition between the paths on
the top and bottom of the [0,1]x[0,1] square. We call this
homotopy 0:2. Figure 2c shows a typical intermediate path (for t =
0.6) between (0,1,0) and (0).

Similarly, Figures 3c, 3d show a homotopy between the path (0,1)
and the path (0,1,0,1). We achieve this continuous transition by
taking paths from 0 to 1, then back to some s, and back to 1. For s=
1, we have the bottom portion of the homotopy. For s= 0, we have
its top. We call this homotopy 1:3. In order to use similar notation
for both cases, we use t = (1-s). Now in both cases t=0 represents
the bottom and t=1 the top. Figure 2d shows a mapping of a typical
intermediate path (for t = 0.6) between (0,1,0,1) and (0,1) on a
wall.

Since we map each path on a straight wall (Figure 2) we can count
the number of instances of a pattern image mapped on a wall for a
given t value. We preserve a constant mapping density across the
wall: For the 0:2 homotopy, at a given t we have 2t instances of the
full trip from left to right, at constant density. For the 1:3
homotopy we have liberty to choose the density of the transition of
s1 and s2 (Figure 3d). We pick them to be the same as the density
of s0. Therefore, for a given t, we have

(4)

instances.

We now explain how these two homotopies help us pick different
images for the walls of the environment mapping bounding box.
When evaluating the pattern mapping of each point, we first
compute the ratio between the size of a step on the surface to a
corresponding step on the bounding box wall (In Figure 1 this ratio
is P1/C1 or P0/C0). We calculate this ratio for the two major axes
of the wall independently. From this ratioR, and the desired
mapping densityD, we calculateDwall (Equation 1). Given the
size of the bounding box axisF (see Figure 1) we calculateS: how
many instances of the pattern we should fit onto the bounding box
wall axis in order to achieve the desired densityD on the surface:

(a) (b)

(c)

Figure 2: (a) A pattern image. (b) Mapping the path (0, 1, 0)
on a box wall. (c) Mapping the path (0, 0.6, 0) on a box
wall. (d) Mapping the path (0, 1, 0.6, 1) on a box wall.

(d)

3
3 2t–
-------------- S=

(5)

It is easy to match an integer number of instances of a pattern
image on the bounding box wall. We match 0, 2, 6, 18,..., 2 * 3n,...
instances directly. For non-integer S values, we use the
homotopies above in order to obtain a transition between two
neighboring integer values. We use the 0:2 homotopy for values
between 0 and 2, and the 1:3 homotopy for all other values. Figure
4a shows how we use the two homotopies for generating any
number of instances of a pattern image axis along a bounding box
wall. For example, matching 8.5 instances of the pattern map on a
bounding box wall X axis falls into the homotopy between 6 and
18 instances. In Figure 4a this falls in level 2 so we’ll be using a
1:3 homotopy. If the wall X axis spans from (-100) to 100, and our
normal hit the wall at 50, then we lookup the value in level 2, at
0.75 away from the left end. Level 2 contains six (1:3) homotopies.
Our point falls into the fifth one (0.75 * 6 = 4.5), atu = 0.5 on the
homotopy horizontal axis. We now convert the overall number of
instances 8.5 to the number of instances for this homotopy S = (8.5
/ 6) = 1.41. Each of the six homotopies in level 2 generates 1.41
instances; total = 8.5 instances. Using Equation 4 we gett = 0.44.
We pick the final index into the pattern image X axis to be the
value at (u, t) = (0.5, 0.44) in Figure 3d. We calculate the Y index
similarly and use the two indices to calculate the point color.

Figure 4b shows the behavior of this homotopy mapping in correct
scale. The vertical axis holds the overall number of instances
(range 0 to 18). The horizontal axis represents one axis of the
pattern image. We encode the final result of the homotopy by grey
levels. White represents 1 and black represents 0. We observe that
linearly modifying the value of t does not linearly modify the
resulting number of instances. From Equation 4 we get the non-

s2s1s0

s3

s0 s1

Figure 3: (a)(b) 0:2 Homotopy between the path (0,1,0), and
the stationary path at point 0. (c)(d) 1:3 Homotopy between
the path (0,1) to the path (0,1,0,1).

(a) (b)

t =

t

0 1 0

0 1Image Axis

t

0 1Image Axis

t

(c) (d)

0 1 0 1

All
Zero

0 (degenerate path)

[0,t] [t,0]

[1,s] [s,1][0,1]

(1-s)

S FDWall F
DCi

Pi
---------- F

D
R
----= = =

linearity and compute t as a function of S.

We observe the following points in Figure 4:
• When S=0 (at the bottom edge of the graph in Figure 4b), we

use only the zero point of the axis. This means that if a point
requires zero instances of the image along some axis, we will
use the pattern zero to paint this point.

• At the edges of the wall axis (the left and right edges of the
graph), we have a constant (zero) parameter value. This is
important for continuity between neighboring walls and cor-
ners of the bounding box. All normals hitting an edge con-
necting two bounding box walls always use zero for the axis
perpendicular to the edge.

• In the graph we use mirrored and un-mirrored instances of the
image interchangeably. We can see the changing when travel-
ing across the graph for a fixed S value. Starting from the left,
we begin with 0 (black), increase to 1 (white), and decrease
back to zero repeating a few times. On the X axis of the pat-
tern image, this sequence corresponds to scanning the image
from left to right and the back to the left many times.

What remains to show is how to compute the ratio R for each one
of the pattern image axes. We shall describe this computation for
Bézier patches, and for volume data.

Figure 4: (a) Illustrate the behavior of the two homotopies
on one axis of the pattern image. In Level 0, we use the
homotopy from Figure 3a, and in all other levels, we use the
homotopy from Figure 3c. Note that we only demonstrate
this behavior for S in [0,18]. The same behavior continues
for higher S values. (b) Show the non-linear mapping. The
horizontal axis is an axis of the bounding box wall. The ver-
tical axis varies the number of instances we fit on the
bounding box wall. The shades show the choice of pattern
map coordinates.

Level 0 (0:2)

Level 1 (1:3)

Level 2 (1:3)

Wall Axis

[0,18]

0 1

Instances

18 instances

6 instances

2 instances

0 instances

(a)

(b)

3 PATTERN MAPPING ON SURFACES
Bézier surfaces have a simple analytical expression for the surface
normal. We use them as an introduction to the volume case. Let
S(u,v) be a Bézier type surface defined by x = X(u, v), y = Y(u,v),
z= Z(u,v). The surface normal is given by

(6)

Without loss of generality, assume that this normal hits the top
wall of the bounding box and therefore we pick the surface point
color from the image on this wall. The computation for other walls
of the bounding box is similar. Assume this wall has plane
equation z = maxZ. We express the point where a normal hits this
plane as:

(7)

At each point(u0, v0) we now look for two directionsDx, Dy in the
(u,v) parameter space. For each direction we express

(8)

We pickDx andDy s.t. forDx, the derivative

(9)

and forDy, the derivative

(10)

We now compute the hit ratios along u and v as:

(11)

Rx andRy are the ratios we need for the homotopy calculations.
From Equation 5 we get the number of instances of the pattern
image on each one of the two wall axes (in this case X and Y).
Plugging these numbers into the homotopy map we get a final
parameters [x,y] in the range [0,1]x[0,1]. The final color of the
point comes from the pattern image at location [x,y].

Dx andDy are pre-images of (Hx, 0, 0) and (0,Hy, 0) under the
partial derivatives ofHit(u,v). We use a linear approximation to
calculate them. We start by calculatingHitu and Hitv, the
derivatives of the plane hit point along the major axes of the Bézier
surface. These generate two vectors in the planez=maxZ. We
express (1, 0, 0) and (0, 1, 0) as linear combinations of these
vectors, and use the resulting weights to calculate a scaled version
of Dx, Dy in the (u,v) parameter space. The scaling does not matter
because we only need the directions ofDx andDy.

Figure 7 shows examples of mapping patterns on a bicubic Bézier
patch. Note that since we use only a single image for all six walls
of the bounding box, we must make sure that the bottom and left
edges of the image can connect to each other and generate a
continuous mosaic. The homotopy will always map bounding box
edges to either the bottom or the left edges of the pattern image.

The only case where this process fails is when the derivative ofHit
is zero. In geometric terms this means that the radius curvature at
the given point is exactly the distance to the bounding box. We
pick a thresholdε > 0 and clamp the derivative ofHit to this ε
value. This means that we ignore very slight curvatures. We
consider all the surfaces withHit < ε to be completely planar. This
causes a very slight inaccuracy in the preservation of pattern sizes

N u v,() Su u v,() Sv u v,()× Nx Ny Nz, ,()= =

Hit u v,() S u v,()
maxZ Z u v,()–

Nz
------------------------------------ N u v,()⋅+=

ux

vx

 u0

v0

 tDx+= ,

uy

vy

 u0

v0

 sDy+=

Hit t ux vx,() Hx 0 0, ,()=

Hits uy vy,() 0 Hy 0, ,()=

Rx

Hx

St ux vx,()
--------------------------= Ry,

Hy

Ss uy vy,()
--------------------------=

across surfaces. The larger the bounding box, and the smallerε, the
more accurately we preserve pattern sizes.

4 PATTERN MAPPING ON VOLUMES
Our measure of the ratiosRx, Ry (Equation 11) depends on the
derivative ofHit, which depends on the normal of the surface. In
order to avoid discontinuities in our pattern mapping approach, we
need at least a C2 continuous surface, which leads to C1

continuous normals, and a C0 continuous ratio R.

4.1 A C2 Continuous Reconstruction Filter
Volume data sets, are only given as a discrete function. In order to
be able to query this function at an arbitrary point, we need to
reconstruct a continuous function from this discrete data set. This
can be achieved by computing a weighted sum of the sample
points. The accuracy and smoothness of the reconstructed
continuous function greatly depends on the filter weights, that we
use. Besides accuracy and smoothness, we desire efficient filters,
in order to keep the computational expense to a minimum. Once
we have reconstructed a continuous function from the sampled
data, we can find the analytical gradient by simply computing the
derivative of the filter weights and applying those new weights for
a new reconstruction process as suggested by Bentum et al. [3]
Hence, in order to guarantee C1 continuous normals, we require at
least a C2 continuous filter kernel.

The most obvious and most commonly used choices such as
nearest neighbor interpolation or linear interpolation constitute
only C0 continuity. Keys [9] suggested Cardinal splines for the
interpolation, which include filters of up to a 3EF accuracy, using
the notation suggested by Möller et al. [13]. Unfortunately we
found that these filters are not C2 continuous. Mitchell and
Netravali [12] introduced a larger group of cubic filters, also
known as the BC-splines. In order to find C2 continuous filters in
this group, we required the basis functions of their first and second
derivative to match at their endpoints accordingly. These
restrictions forced the parameters to be B=1 and C=0. Given four
samples S0, S1, S2 and S3, this resulted in the following C2

continuous filter: For a point between S1 and S2, τ away from S1,

(12)

The normal is given as the derivative of Equation 12 (gradient
vector), hence the normal is C1 continuous as required:

(13)

Utilizing the analysis given in [13] we have found the accuracy of
the reconstruction filter to beT2/6, whereT is the raster size of the
volume, which is a 2EF filter. The error of the derivative filter is

Intensityτ() S0
τ3

6
-----– τ2

2
----- τ

2
--- 1

6
---+–+

S1
τ3

2
----- τ2 2

3
---+–

S2
τ3

2
-----– τ2

2
----- τ

2
--- 1

6
---+ + +

S3

τ3

6

+

+ +

=

Deriv τ() S0
τ2

2
-----– τ 1

2
---–+

S1
3τ2

2
-------- 2τ–

S2
3τ2

2
--------– τ 1

2
---+ +

S3

τ2

2

+

+ +

=

alsoT2/6, again a 2EF filter. We found these error bounds sufficient
for our application. Möller et al [14] provide further discussion of
these filters.

Given a 4x4x4 subset of a volume, we evaluate the normals at a
point (u, v, w) anywhere in the center 2x2x2 grid as follows: We
first use theIntensity filter to reconstruct four values in each major
direction X, Y and Z. We then use theDeriv filter to calculate each
component of the normal out of its corresponding four
reconstructed values.

4.2 Using The C 1 Normal For Pattern Mapping
Now that we have a C1 continuous normalN(x, y, z), we can
construct the pattern maps: Given a 4x4x4 cube of intensity values,
we express the position inside the cube by

(14)

Where u, v, and w are in the unit interval. We use the normal from
sub-section 4.1:

(15)

Without loss of generality, we assume that this normal hits the top
wall of the bounding box and therefore we pick its color from the
image on this wall. Assume this wall has plane equation z = maxZ.
We express the point where a normal hits this plane as:

(16)

Similar to Equations 8-11 we calculate the ratios along the two
major axes of the wall. Since we have no parametrization of the
surface, we use two arbitrary directions in the normal plane in
order to calculate the directionsDx, Dy.

Figure 8 shows how mapping a high-resolution (32x32) pattern on
a low resolution (4x4x4) volume can enhance it’s visual
appearance. Figure 9 shows the application of pattern maps on
volume data. In order to eliminate volume noise we evaluate the
pattern mapping variables out of a blurred and shrunk down
version of the drawn volume.

4.3 Cavity Mapping
Pederson [15] presented a method for generating displacements
along flow fields. We observe that the gradient vector direction in a
volume is a flow field. Under the C1 continuous normal filter we
can use a 2D intensity image to generate a pattern of cavities in a
model. These cavities can only extend through the portion of the
volume where intensity varies from zero to one. We map a 2D
image as before using theHit derivative ratios. This time, we zero
out the contents of a voxel if the volume intensity at the sample
point is smaller than the pattern intensity. Intuitively, the pattern
map chops an interval [0,p] from the intensity gradient of a
volume. The valuep is set by the pattern map. Figure 5 illustrates
this process. Figure 10 shows examples of cavity mapping on
volume data. We map both colors and cavities on volume models.

5 RESULTS
We measure how many pattern calculations we can perform per
second. A pattern calculation includes calculating the normal, the
hit point derivatives, and the homotopy result. We perform all our
timing measurements on a 195MHz R10000 SGI Octane

P u v w, ,() Px Py Pz, ,()=

N u v w, ,() Nx Ny Nz, ,()=

Hit u v w, ,() P u v w, ,()

maxZ Pz–

Nz

N u v w, ,()⋅+

=

workstation. Table 1 shows a summary of our results. We picked a
representative of each one of the modalities: one image of a Bézier
patch, one of a painted volume and one of a volume with cavities.
Timing are for 256x256 images.

Rendering Bézier patches requires a single pattern map
computation for each pixel sub-sample. Painting volumes requires
a few pattern map computations per ray. We perform pattern
computations for non-zero samples, and use early ray termination
to minimize computations. The Bézier patch computation is
slightly simpler because it does not require reconstructing the
normal from sample points. Generating cavities in a volume
requires the largest number of pattern map evaluations per ray.
Since we change the contents of the volume, we also modify the
volume iso-surfaces. Therefore, we have to re-calculate the normal
and gradient at each sample point. We evaluate the cavity map for
a small neighborhood around each sample, and use the central
difference to calculate the normal and gradient values for shading
and compositing. We attribute the difference between the right-
most column of the two volume cases to cache coherency. In
cavity mapping, we have to compute pattern mapping for a small
neighborhood around a sample point. This neighborhood of
samples is likely to be in cache after calculating the pattern
mapping for the sample point itself.

Table 1: Timing Results

Figure
Pattern

Evals

Time
w/

Patterns

Time
w/o

Patterns

Pattern
Evals
per

Second

7 (left) 86181 32.8 sec 5.2 sec 3122.5

9 (right) 575158 635 sec 390 sec 2353.3

10 (right) 5964517 3249 sec 1045 sec 2706.5

Intensity = 1

Intensity = 0

Tr
an

si
tio

n
zo

ne

Intensity = 1

Intensity = 0

(a)

(b)
Figure 5: (a) A volume model with a thick transition zone
between intensity 0 and 1. (b) Mapping new intensities into
the transition area creates cavities in the model.

6 DISCUSSION
It is a common mistake to assume that varying the density of the
pattern image on the bounding box walls introduces new sampling
artifacts. We observe that we perform all our computations in
continuous domains. Only at the last stage of the computation do
we sample the pattern image and could introduce new aliasing
problems. However, since our method maps pattern images on a
surface preserving the size of patterns on the surface, we don’t
have areas with very dense mapping and we don’t introduce any
new aliasing problems.

6.1 Cons
• Our technique is only suitable for cases where uniform map-

ping of a pattern is called for. It does not consider special fea-
tures and does not match any specific geometry with specific
locations in the pattern map.

• Our technique is relatively expensive in CPU time. We calcu-
late the entire mapping for each visible point on the surface
every frame. When extracting surfaces from a volume (e.g.
Marching Cubes) we can generate a texture map for each
polygon using the homotopy calculations. Using these new
texture maps for rendering the polygons could speed up ren-
dering considerably.

• Our technique preserves the size of the pattern in two major
axes. It does not avoid a shear effect. When the pre-images of
the two perpendicular wall axes are not perpendicular, we
introduce a shear in the final mapping.

• Our technique generates mirrors of the pattern map in one or
two directions. These mirrors generate a C0 continuous image
when placed near the un-mirrored image. This means that if
(for example) the pattern contains writing, the written por-
tions will appear mirrored in some areas of the model.

6.2 Pros
• Our technique provides an automated tool for texturing

smooth surfaces of any topology. It does not require user
intervention at any level. For a user supplied density, our
method maps a given pattern on the entire model while pre-
serving the requested pattern density.

• Our algorithm doesn’t require any parametrization of the sur-
face. In fact, we don’t even have to specify the surface explic-
itly. It is enough that the surface exists implicitly (i.e. iso-
surfaces in volumes). Our method enables texturing of sur-
faces without ever extracting them. Since we only use local
attributes at any point, we don’t have to maintain any knowl-

Figure 6: Sample pattern maps used to generate the images
in this paper.

(b)

(c) (d) (e)

(a)

edge of the surface, its shape and topology.
• Our technique depends only on local information at each

point. We need not have any knowledge of the general shape
and form of the models. In a multiprocessing environment
this algorithm is therefore very naturally parallelizable.

• The resolution of the pattern image does not depend on the
resolution of the volume data. We can easily apply a high res-
olution pattern map on a low resolution volume. The final res-
olution of the pattern depends only on the resolution of the
pattern map image. Figure 8 shows an example of this quality

7 CONCLUSIONS
This paper presented a new method for adding patterns to iso-
surfaces in volumes and to parametric surfaces. Our method is
completely automatic and requires no user intervention. Our
method is useful for all surface types with a C1 continuous normal.
It maps 2D images continuously on objects while preserving the
size of mapped images on the object surface. In volumes, the final
resolution of the pattern on the volume does not depend on the
resolution of the volume. We can map very high resolution
patterns on relatively low resolution volumes. We demonstrated
our method for painting volume surfaces and for generating
cavities in volume models.

Acknowledgments
This work was partially supported by National Science Foundation
Grant CCR-9211288, and by the Advanced Research Projects
Agency Contract DABT63-C-0056.

References
[1] Agrawala, M., Beers, A.C., Levoy, M., “3d painting on

scanned surfaces”, Proceedings of 1995 Symposium on
Interactive 3D Graphics, pp. 145-150.

[2] Bennis, C., Vezien, J.M., Iglesias, G., Gagalowicz, A.,
“Piecewise Surface Flattening for non-distorted Texture
Mapping”, Proceedings of SIGGRAPH 91, pp. 237-246.

[3] Bentum, M.J., Malzbender, T., Lichtenbelt, B.B.,
“Frequency Analysis of Gradient Estimators in Volume
Rendering”, IEEE Transactions on Visualization and
Computer Graphics, T-VCG 2(3), pp. 242-254, September
1996.

[4] Bier E. A. and Sloan K. S., “Two-Part Texture Mapping”,
IEEE Computer Graphics and Applications, September
1986, pp. 40-53.

[5] Greenberg, M., J., Harper, J, R., “Algebraic Topology”,
Addison Wesley Publishing Company, 1981.

[6] Greene, N., “Environment Mapping and Other
Applications of World Projections”, IEEE Computer
Graphics and Applications, 6(11):21-29, November 1986.

[7] Foley, D.J., Van Dam, A., Feiner, K.S., Hughes, J.F.,
Phillips, R.L., “Introduction to Computer Graphics”,
Addison-Wesley Publishing Company, 1994.

[8] Hanrahan, P., Haeberli, P.E., “Direct WYSIWYG painting
and texturing of 3D shapes”, Proceedings of SIGGRAPH
90, pp. 215-223.

[9] Keys, R.G., “Cubic Convolution Interpolation for Digital
Image Processing”, IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-29(6), pp. 1153-
1160, December 1981.

[10] Litwinowicz, P., Miller, G., “Efficient Techniques for
Interactive Texture Placement”, Proceedings of
SIGGRAPH 94, pp. 119-122.

[11] Maillot, J., Yahia, H., Verroust, A., “Interactive Texture

Mapping”, Proceedings of SIGGRAPH 93, pp.27-34.
[12] Mitchell, D.P., Netravali, A.N., “Reconstruction Filters in

Computer Graphics”, Proceedings of SIGGRAPH 88,
Computer Graphics, 22(4), pp. 221-228.

[13] Möller T., Machiraju R.K., Mueller K., Yagel R.,
“Evaluation and Design of Filters Using a Taylor Series
Expansion”, IEEE Transactions on Visualization and
Computer Graphics, ITVCG 3(2): 184-199, June 1997.

[14] Möller T., Mueller K., Kurzion Y., Machiraju R., Yagel R.,
“Design of Accurate and Smooth Filters for Function and
Derivative Reconstruction”, Proceedings of the 1998
Symposium on Volume Visualization, October 1998. to
appear.

[15] Pederson, H.K., “Displacement Mapping Using Flow
Fields”, Proceedings of SIGGRAPH 94, pp. 279-286.

[16] Pederson, H.K., “Decorating Implicit Surfaces”,
Proceedings of SIGGRAPH 95, pp. 291-300

[17] Shirman, L., Kamen, Y., “Fast and Accurate Texture
Placement”, IEEE Computer Graphics and Applications,
17(1):60-66, January-February 1997

Figure 7: Mapping the patterns in Figure 6a and 6c onto a Bézier patch.
Figure 8: Mapping a high resolution
pattern on a low resolution volume.

Figure 9: (top left) Figure 6d mapped on a volumetric teapot. (bottom left) Figure 6b mapped on a volumetric dipole. (right) Figure
6a mapped on an MRI scan of a head.

Figure 10: Examples of cavity mapping on volume data. Mapping patterns from Figure 6.

