
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 2, APRIL-JUNE 1998 1

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 ������

Splatting Errors and Antialiasing
Klaus Mueller, Student Member, IEEE, Torsten Möller, Student Member, IEEE,

J. Edward Swan II, Member, IEEE, Roger Crawfis, Member, IEEE Computer Society,
Naeem Shareef, and Roni Yagel, Member, IEEE

Abstract—This paper describes three new results for volume rendering algorithms utilizing splatting. First, an antialiasing extension
to the basic splatting algorithm is introduced that mitigates the spatial aliasing for high-resolution volumes. Aliasing can be severe for
high-resolution volumes or volumes where a high depth of field leads to converging samples along the perspective axis. Next, an
analysis of the common approximation errors in the splatting process for perspective viewing is presented. In this context, we give
different implementations, distinguished by efficiency and accuracy, for adding the splat contributions to the image plane. We then
present new results in controlling the splatting errors and also show their behavior in the framework of our new antialiasing
technique. Finally, current work in progress on extensions to splatting for temporal antialiasing is demonstrated. Here, we present a
simple but highly effective scheme for adding motion blur to fast moving volumes.

Index Terms—Volume rendering, splatting, direct volume rendering, resampling, reconstruction, antialiasing, perspective projection,
motion blur.

——————————���F���——————————

1 INTRODUCTION

N the past several years, direct volume rendering has
emerged as an important technology in the fields of

computer graphics and scientific visualization. Splatting is
one of several popular direct volume rendering techniques.
Perspective projection introduces the problem of nonuni-
form sampling produced by diverging viewing rays which,
if not properly addressed, can result in potentially severe
aliasing artifacts. Although other volume rendering ap-
proaches have dealt with this problem (e.g., ray-casting [3],
[9] and shear-warp [4]), to date, this problem has not been
addressed in the context of splatting. In this paper, we pres-
ent an antialiasing modification to the splatting algorithm
which prevents the aliasing that arises from this non-
uniform resampling. The same type of resampling prob-
lems also occur with an orthographic projection if the vol-
ume resolution is higher than the image resolution (e.g., if
many voxels project into each pixel).

Our antialiasing technique was recently presented at the
Visualization ‘97 Conference [11]. The current paper is an
expanded version of this conference publication. In addi-
tion to a concise presentation of the antialiasing technique
itself, the current paper gives a much more detailed treat-
ment of the approximation errors for perspective viewing
which are common to our, as well as previous, splatting

implementations. It presents both ideal as well as practical
solutions to the approximation errors, and analyzes the
trade-offs between them in the context of our antialiasing
technique. In addition, the paper presents some promising
initial results in extending splatting to add motion blur to
fast moving volumes.

In the next section, we describe the splatting algorithm
and related previous work. In Section 3, we describe our
antialiasing technique and present some results. Then, in
Section 4, we analyze perspective splatting errors both in
the context of traditional splatting and our new antialiased
technique. Temporal antialiasing is briefly addressed in
Section 5.

2 PREVIOUS WORK

The splatting technique has been used to directly render
volumes of various grid structures [6], [13] and for both
scalar [5], [13], [14], [15] and vector fields [1]. The basic al-
gorithm, first described by Westover [13], projects each
voxel to the screen and composites it into an accumulating
image. It solves the hidden surface problem by using a
painter’s algorithm: It visits the voxels in either a back-to-
front or front-to-back order, with closer voxels overwriting
farther voxels.

As each voxel is projected onto the image plane, the
voxel’s energy is spread over the image raster using an im-
age kernel centered at the voxel’s projection point. This im-
age kernel, called a “splat” or “footprint” function, contains
the integration of a 3D reconstruction kernel along parallel
rays. For spherically symmetric 3D kernels, the direction of
the rays is immaterial, and the integration can be precom-
puted, storing the footprint function in a 2D lookup table.
This table is then centered at each voxel’s projection point
and resampled by the pixels which lie within its extent. As
Westover points out [13], [14], [15], for parallel projections
and regular voxel grids, the footprint table can be computed

1077-2626/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� K. Mueller is with the Department of Computer and Information Science,
The Ohio State University, 2015 Neil Ave., Columbus, OH 43210-1277.
E-mail: mueller@cis.ohio-state.edu.

•� T. Möller, R. Crawfis, N. Shareef, and R. Yagel are with the Department of
Computer and Information Science and the Advanced Computing Center
for the Arts and Design, The Ohio State University, 2015 Neil Ave., Co-
lumbus, OH 43210-1277.
E-mail: {moeller, crawfis, shareef, yagel}@cis.ohio-state.edu.

•� J.E. Swan II is with the Naval Research Laboratory, Code 5580, 4555
Overlook Ave. SW, Washington, DC 20375-5320.
�E-mail: swan@acm.org.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 106603.

I

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 2, APRIL-JUNE 1998

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 ������

once and used for all voxels. For radially symmetric recon-
struction kernels, this can also be done once for all views.
For perspective views, diverging rays from the eyepoint
should be used for the integration. This, then, requires a
different footprint function for different voxels. This can be
excessively expensive and, to date, the authors know of no
implementations that actually perform this.

To improve image quality, in later works, Westover [14],
[15] first accumulates splats onto several 2D sheets that are
aligned with the volume axis most parallel to the view plane
and then composites the sheets in depth order into the image
with a matting operation. Image quality is also affected by
the size, shape, and type of the reconstruction kernel used.
Mueller and Yagel [8] use an image-order splatting approach,
which improves accuracy when using a perspective projec-
tion. And while, to date, most splatting implementations
have used a Gaussian reconstruction kernel, other kernels
can generate higher-quality images. Crawfis and Max [1]
developed a cubic spline function, optimized for the smooth
reconstruction of a constant scalar field.

To improve rendering speed, Westover [14] maps view-
dependent footprints with a circular or elliptical shape to a
generic footprint table which only needs to be computed
once. Laur and Hanrahan [5] approximate splats with a tri-
angle mesh and use graphics hardware to quickly scan con-
vert the footprint. Crawfis and Max [1] and Yagel et al. [16]
both use texture mapping hardware to quickly render the
splats. In this technique, the footprint is texture mapped onto
polygons located at the voxel positions. Splatting can also be
accelerated by preprocessing the volume and culling voxels
which will not contribute to the final image. Laur and Han-
rahan [5] cull with an octree structure, and Yagel et al. [16]
extract and store only the most visually significant voxels.

This paper focuses on improved image quality for splat-
ting, while striving to maintain optimal performance.

3 AN ANTIALIASING TECHNIQUE FOR SPLATTING

In this section, we describe an antialiasing technique for splat-
ting. In Section 3.1, we discuss sources of aliasing and place
them in the context of volume rendering. In Section 3.2, we
develop an expression (2) which, if satisfied by a given vol-
ume-rendering algorithm, indicates that the algorithm will not
produce the sample-rate aliasing artifacts that arise from the
resampling phase of the rendering process. In Section 3.3, we
describe our antialiasing method, and, in Section 3.4, we show
that our method satisfies the equation developed in Sec-
tion 3.2, which argues for the correctness of the method.

3.1 Aliasing in the Volume Rendering Process
The process of volume rendering is based on the integration
(or composition), along an integration grid, of a density vol-
ume. This integration grid is composed of sight projectors (or
rays) which pass from the eye point, through the view plane,
into the volume. Before this integration can occur, the density
volume usually has to be reconstructed from a discrete voxel
grid, and then resampled into the integration grid. This is
illustrated in Fig. 1 for a perspective view of the volume,
where the volume raster is shown as a lattice of dots, and the
integration grid is shown as a series of rays, cast through

pixels, which traverse the volume raster. Fig. 1a shows the
scene in eye space, where the eye is located at point (0, 0, 0)
and is looking down the positive z-axis (denoted +z). For
perspective transformations, the integration grid diverges as
it traverses the volume. In Fig. 1b, the volume raster is dist-
orted according to the perspective transformation and the
integration grid lines are parallel.

The reconstruction of the volume density function and
its subsequent resampling by the integration grid is subject
to aliasing if the resampling is below the Nyquist limit of
the reconstructed volume density. If it is not possible to
sample above the volume’s Nyquist limit, then aliasing can
be reduced by low-pass filtering the volume. For an ortho-
graphic view, this low-pass filtering is applied uniformly to
the entire volume. For a perspective view, the amount of
low-pass filtering is dependent on location.

Due to the perspective distortion (Fig. 1b), the frequency
content of the density volume may increase (with respect to
the image plane) with increasing distance from the eye
point. This leads to a different frequency distribution
throughout the volume. If we consider a constant z-plane in
perspective space, we can determine a proper resampling
rate (above the Nyquist limit) for that plane. Furthermore,
note that, at the distance zk

p along the z-axis, the sampling
rate of the volume raster and the sampling rate of the inte-

(a)

(b)

Fig. 1. Resampling the volume raster onto the integration grid. (a) In
eye space. (b) In perspective space.

MUELLER ET AL.: SPLATTING ERRORS AND ANTIALIASING 3

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 ������

gration grid are the same. Distances closer to the eye point
project less than one voxel per pixel and, beyond this dis-
tance, there is more than one voxel per pixel. The latter case
can contain frequency information higher than the integra-
tion grid can represent and, so, aliasing is possible.

3.2 Avoiding Aliasing in Splatting
In this section, we give the conditions which are necessary
for the resampling process in eye space to avoid introducing
sample-rate aliasing artifacts into the integration grid sam-
ples. Let s be the volume raster grid spacing (Fig. 1a), and
ρ = 1/s be the volume raster sampling rate. We assume the
voxel grid we have been given has been properly filtered
and thus

ρ ≥ 2ωmax. (1)

where ωmax is the highest frequency of our given density
function. Our goal, then, is to avoid aliasing in the resam-
pling process of the integration grid.

Let φ represent the sampling frequency of the integration
grid. For an orthographic projection, we simply need to
ensure that φ ≥ ρ. If this is not the case, then a low-pass fil-
ter is necessary to lower the value of ρ. For perspective
projections, however, the integration grid diverges (Fig. 1a)
and φ is a function of the distance along the axis from the

eye point: φ = φ(z). As illustrated in Fig. 1, at a distance zk,
the sampling rates of the volume raster and the integration

grid are the same: ρ = φ(zk). This distance zk naturally di-

vides eye space (and, likewise, zk
p divides perspective

space) into the following two regions:

Region 1: z < zk. Here, φ(z) > ρ or φ(z) > 2ωmax and, hence,
there is no sample-rate aliasing.

Region 2: z ≥ zk. Here, φ(z) ≤ ρ or φ(z) < 2ωmax and the inte-
gration grid may contain a sample-rate aliased signal.

This argument shows that, beyond zk, it may be necessary
to low-pass filter the volume raster to avoid aliasing. The
amount of filtering required increases as a function of z.
This reduces the high frequencies in the volume raster from
ωmax to ~ ()maxω z yielding the critical condition

φ ωz z0 5 0 5≥ 2~
max (2)

for Region 2.

3.3 An Antialiasing Method for Splatting
The distance zk at which the volume raster sampling fre-
quency ρ and the integration grid sampling frequency φ(z)
are equal can be calculated from similar triangles (Fig. 1a):

z s
z

pk
img= , (3)

where p is the extent of a pixel, and zimg is the distance from
the eye point to the view plane.

Fig. 2 gives a side view of “standard” splatting, as well
as the new antialiasing method. In Fig. 2, the y-axis is
drawn vertically, the z-axis is drawn horizontally, the x-axis
comes out of and goes into the page, and diagrams are
shown in both eye space (x, y, z) and perspective space (xp,
yp, zp). The top row illustrates standard splatting. For sim-
plicity, let us assume for now that all splats are aligned par-
allel to the x-y plane (we will later see (in Section 4) that this
is not always the case). In Fig. 2a, a single row of splats

 (a) (b)

 (c) (d)

Fig. 2. A comparison of the standard splatting method ((a) and (b)) with our antialiased method ((c) and (d)). (a) The standard splatting method in
eye space. (b) The standard splatting method in perspective space. (c) The antialiased splatting method in eye space. (d) The antialiased splatting
method in perspective space.

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 2, APRIL-JUNE 1998

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 ������

equally spaced along the z-axis is shown. Each splat is con-
sidered to be a 2D “footprint” function of limited extent;
when seen from the side the splats appear as line segments.
Note that each splat is the same size in eye space. Fig. 2b
shows the same scene in perspective space. As expected,
because of the nonlinear perspective transformation, the
splat spacing is now nonuniform along the zp axis, and the
size of the splats decreases with increasing distance from
the eye.

The bottom row illustrates our antialiasing method. Previ-

ous to zk, we draw splats the same size in eye space (Fig. 2c).

Beginning at zk, we scale the splats so they become larger
with increasing distance from the view plane. This scaling
is proportional to the viewing frustum, and is given in (4)
below. Fig. 2d illustrates this in perspective space. Previous
to zk

p , we draw the splats with decreasing sizes according to

the perspective transformation. Beginning at zk
p , all the

splats are drawn with the same extent.
Fig. 3 gives the geometry for scaling splats drawn be-

yond zk. If a splat drawn at distance z = zk has the radius r1,
then the radius r2 of a splat drawn at distance zv > zk is the
projection of r1 along the viewing frustum. This is calcu-
lated by similar triangles:

r
z
z rv

k
2 1= . (4)

Scaling of the filter function h implies that its Fourier
spectrum H gets scaled and attenuated [10]:

h
z
z y

z
z H

z
z

k

v

v

k

v

k

�
��

�
�� ↔

�
��

�
��ω , (5)

where “↔” indicates a Fourier transform pair. Since we
want to scale the frequencies but preserve their amplitude,
we must attenuate the amplitude of the splats in world
space accordingly, i.e., by a factor of zk/zv. If we scale in
both the x and y directions, the total attenuation factor is
(zk/zv)

2. This preserves the frequency amplitude:

z
z h

z
z x

z
z y H

z
z u

z
z vk

v

k

v

k

v

v

k

v

k

�
��
�
��
�
��

�
�� ↔

�
��

�
��

2

, , . (6)

3.4 Correctness of the Method
We now demonstrate that (2) holds for our antialiasing
technique. We begin by deriving expressions for the two

functions in (2) —φ(zv) (the integration grid sampling fre-

quency at zv) and ~()w zv (the maximum volume raster fre-

quency at zv).
We derive the integration grid sampling frequency φ(zv)

with a similar-triangles argument in Fig. 4:

f rz
q z s

z
z

z
zv

v

k

v

k

v
2 7 2 7= = ¿ = ¿

1 1
, (7)

where q(zv) is the integration grid spacing at distance z = zv
from the eyepoint and 1/s = ρ.

The maximum volume raster frequency ~ ()maxω zv that the
scaled filer h will pass can be derived from the scaling prop-
erty of the Fourier transform [10]:

h
z
z y

z
z H

z
z

k

v

v

k

v

k

�
��

�
�� ↔

�
��

�
��ω . (8)

Therefore, we have

~
max maxω ωz

z
zv

k

v
2 7 = ⋅ . (9)

Starting with (1): ρ ≥ 2ωmax, it is now straightforward to
conclude [11] that

φ ωz zv v2 7 2 7≥ 2~
max . (10)

This derivation says that if the volume raster has sampled the
function above the Nyquist limit, our antialiasing technique
provides enough low-pass filtering so that sample-rate aliasing
is not introduced when the volume raster is resampled onto
the integration grid. Note that this derivation only deals with
the prealiasing that results from an inadequate sampling rate
— it does not address the aliasing or blurring effects which
result from using a nonideal reconstruction filter.

3.5 Results From Applying Our Antialiasing
Algorithm

In our implementation of this algorithm, we make use of
rendering hardware to quickly draw the splats, in a manner
similar to [1] and [16]. For each splat, we draw a polygon in
world space centered at the voxel position. Depending on
their z-coordinate, some polygons must be rotated so they
are perpendicular to the ray passing from the eye point
through the voxel position, while others can be left aligned
with the x-y plane (see Section 4.2). The splat kernel is pre-
computed and stored in a 256 × 256 table which is texture
mapped onto the polygon by the rendering hardware. We
use the optimal cubic spline splat kernel reported in [1]. We
attenuate the alpha channel of the polygon according to the
value of (zk/zv)

2 and, then, composite the semitransparent
splat polygon into the screen buffer.

Fig. 3. The geometry for scaling the splats that are drawn beyond zk.

Fig. 4. Calculating the integration grid sampling frequency.

MUELLER ET AL.: SPLATTING ERRORS AND ANTIALIASING 5

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 ������

Our renderer is a modified version of the “splat ren-
derer” reported in [16]. For a given volume, we extract and
store a subset of the voxels. For each voxel, we evaluate a
transfer function t = F(∇, ρ), where ∇ and ρ are the gradient
and density of the voxel, respectively; we include the voxel
in the subset if t exceeds a user-defined threshold. We store
this volume subset as a 2D array of splat rows, where each
row contains only the extracted voxels. Each row is imple-
mented as an array of voxels, but the voxels are not necessarily
contiguous, and, so, we must store each voxel’s location and
normal vector. In general, each row may contain a different
numbers of voxels. Despite not storing the empty voxels,
we can still traverse this data structure in either a back-to-
front or front-to-back order.

Fig. 5 shows a 160 × 160 × 300 volume consisting of a
hollow tube, where alternate squares are colored either red
or white to create a checkerboard effect. In Fig. 5a, a black
line is drawn at the distance zk; beyond this line, there is

more than one voxel per pixel. As expected, Fig. 5a shows
strong aliasing effects, but these are smoothed out in Fig.
5b. Fig. 6 shows a 512 × 512 × 103 volume containing a ter-
rain dataset acquired from a satellite photograph and a cor-
responding height field. Each column of splats is given the
color of the corresponding pixel from the satellite photograph.
Fig. 6a shows strong aliasing in the upper half of the image
(containing about 90 percent of the data), but, in Fig. 6b, these
regions have been smoothed out.

4 ANALYSIS OF PERSPECTIVE SPLATTING ERRORS

It is well known that the pre-integration of the 3D interpo-
lation kernel into a 2D footprint is what achieves the high-
efficiency gains of the splatting method. However, as is also
well known, this use of pre-integrated footprint tables sepa-
rates the reconstruction integration from the compositing
operation. The 3D reconstruction kernel is composited as a

(a) (b)

Fig. 5. Rendered image of a tunnel dataset with a checkerboard pattern. (a) Rendered with standard splatting; the black line is drawn at distance
zk. (b) Rendered with antialiased splatting.

(a) (b)

Fig. 6. Rendered image of a terrain dataset from satellite and mapping data. (a) Rendered with standard splatting. (b) Rendered with antialiased
splatting.

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 2, APRIL-JUNE 1998

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 ������

whole, and not piecewise as a part of an interpolated sam-
ple along a viewing ray. This may lead to the image. To
eliminate these errors, Westover [15] suggests the use of a
series of compositing sheets parallel to the image plane. In
each such sheet, the partial contributions of all intersecting
kernels are added, and the sheets are then composited back-
to-front. Similar to recent approaches that utilize 3D texture
mapping hardware [12] for volume rendering, this method
undoes many of the savings that result from the kernel’s
complete pre-integration. A compromise can be achieved by
adding the entire 2D footprint into sheet buffers aligned par-
allel to a volume face, which are subsequently composited in
back-to-front order [14]. It should be added that in the case of
summed X-ray rendering, compositing does not take place
and thus the accumulation of splats render a very accurate
image (given a well integrated footprint [8]).

In this section, we will not attempt to characterize the er-
rors that are due to the pre-integration problem just dis-
cussed. Rather, we shall investigate the errors that arise from
the use of pre-integrated footprints in the context of perspec-
tive rendering. As we know, in contrast to orthographic ren-
dering, in perspective rendering, the sight rays are no longer
parallel, but diverging. Since there is, at least so far, no
known efficient method that would allow the use of one ge-
neric footprint table for all different ray fan orientations that
may traverse a kernel, we must resort to a footprint table
whose ray integrals are due to integrations along a set of
parallel trajectories. This necessarily will lead to errors.

There also seem to exist some uncertainties in the litera-
ture on how to position the splat footprint in eye space. Let
us again think of the footprint as a polygon with the foot-
print function texture-mapped onto it, as was first imple-
mented by Crawfis and Max [1]. Then the question is: How
should this footprint polygon be positioned in eye space? In
the previous sections, we have always aligned the footprint
(splat) with the x-y plane. But, is this correct? It is unclear
from Westover’s description in [14] if he positioned all
footprints the same way, coplanar to the sheet buffer
planes, or if he individually aligned each voxel footprint
perpendicular to the ray eye – voxelCenter. The former obvi-
ously saves a good deal of computations, since we don’t
have to compute a separate rotation matrix for each voxel.1

1. We should mention in this context that the need to compute a rotation

Westover [14] describes his splatting technique within
the more general framework of volume grids with unequal
scaling in the three grid directions. In these noncubic grids,
ellipsoidal kernels and elliptical footprints are mapped to
the image plane instead of spherical kernels and circular
footprints in the cubic case. However, there exist view-
points for which the mapping of these elliptical kernels is
only approximate [15], a situation that is bound to be am-
plified when doing perspective mapping. We can avoid this
problem by realizing that noncubic grids do not have to be
rendered as such. As was mentioned by Mueller and Yagel
[8], we can warp any grid with nonuniform scaling into a
cubic one and, as long as the shading calculations are per-
formed in the original grid, we can use spherical kernels for
all grid projections. Hence, we will limit our discussion to
cubic volume grids only.

As discussed in earlier sections, antialiased splatting in
perspective is only possible by stretching the footprints by
some amount proportional to their distance from the
viewing plane. This leads to a distortion of the formerly
spherical kernels in world space, which brings with it a
whole new set of approximations necessary to maintain
good efficiency. Recall that the kernel stretching is only re-
quired for voxels positioned at z > zk.

In the following, we will discuss the errors and favorable
approximations that come with footprint alignment for both
volume regions, but first let us determine how the correct
stretching function is computed and approximated.

4.1 Errors in Approximating the Kernel Stretching
Function

We have shown earlier that, for voxels with z > zk, the
splatting kernel (or interpolation kernel, if we use raycast-
ing) must be stretched above its normal size. To be specific,
the stretching must occur according to the function z/zk.
This means that it is not correct just to stretch the 2D splat
obtained by pre-integrating the standard 3D kernel function.
Rather, we must perform the stretching along the full 3D
interpolation kernel function according to a ramp function of
slope 1/zk (see Fig. 7a). Then, after the stretching has been

matrix for each voxel only exists for the object-order splatting approaches.
The ray-driven splatting technique described by Mueller and Yagel [8], on
the other hand, does not have this requirement as it inherently orients the
footprint polygons perpendicular to the sight ray.

 (a) (b)

Fig. 7. (a) Stretching the splatting kernel according to the perspective stretching function z/zk, which has the form of a trapezoid. (b) Stretching the
kernel by the function zv/zk, which is a box.

MUELLER ET AL.: SPLATTING ERRORS AND ANTIALIASING 7

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 ������

performed, the kernel can be integrated into the footprint.
But, how is this done in practice? The relative kernel distor-

tion varies depending on the kernel’s z-coordinate. Simply
pre-integrating the distorted kernel for one kernel center loca-
tion z = z1 and then scaling this footprint for another kernel at z
= z2, z2 ≠ z1, based on the ratio z2/z1, does not yield the correct
footprint of a distorted kernel at that location. If we wanted to
use preintegrated footprints that bear the correct kernel dis-
tortion, we would have to use a different footprint for each
kernel center z-location. This is obviously impractical. How-
ever, we realize that in most cases, zk @ 2 ⋅ kernExt. For in-
stance, for a 2563 volume, a 2562 image, and a 30° cone angle,
the factor is never larger than 0.02 volume units. Thus, we may
stretch the kernels by a box instead of a trapezoid (see Fig. 7b)
without committing much of an error. This in turn enables us
to use the generic footprint polygons, scaled up in the y- (and
x-) direction depending on their location along z.

4.2 Errors in Orienting the Footprint in World Space
Fig. 8 shows different kernel orientations, ray traversals,
and stretching functions for the 2D case. Fig. 8a shows the
ideal situation: The splatting kernel is stretched along a
ramp function with slope 1/zk and the rays integrate the
kernel along divergent paths. The perspective transform
that takes this kernel h(y, z) located at (yv, zv) from world
space (y, z) into perspective space (yp, zp = z) is shown in
Table 1, row 1. We saw in the previous section that the
trapezoidal stretching function can be simplified with good
approximation by a box function. This is shown in Fig. 8b,
and the perspective transform for this kernel is listed in the
second row of Table 1. However, this configuration still re-

quires a new footprint preintegration for each kernel loca-
tion, even if the traversing rays were parallel. This is be-
cause the integrals of the rays traversing such a stretched
kernel are different for each (yv, zv) position, since the
stretched kernels are no longer rotationally symmetric. We
have two options that would enable us to use the same foot-
print (with different amounts of stretching) for all voxels:

1)�Align each stretched footprint polygon with the y-axis
of the grid (Fig. 8c and row 5 in Table 1), or

2)� rotate each stretched footprint polygon so it is per-
pendicular to the ray eye – (yv, zv) (Fig. 8d and row 3
and 4 in Table 1).

Fig. 8c shows the situation for the grid-aligned footprint.
We observe that the paths of the ray integrals retrieved
from the table are rather different from the paths of the rays
traversing the kernel. Thus, the indexed ray integrals will
be very different from the true ray integrals. This error is
largest for rays that maintain a large angle with the viewing
axis; however, it is relatively small for voxels that are trav-
ersed by rays that are nearly parallel to the viewing axis.
The latter is the case for voxels close to the viewing axis and
for voxels far away from the eyepoint. We can rectify the
problem illustrated in Fig. 8c by aligning the stretched
footprint polygons with the ray eye – (yv, zv), as is shown in
Fig. 8d. Now, the rays are traversing the kernel in roughly
the same direction at which they were integrated. However,
we are still left with the approximation that we cannot effi-
ciently store ray integrals that are due to the spatially variant
ray fan traversing the kernels. Instead, we have to store ray
integrals that traverse the kernel along parallel lines. (Com-

(a) (b)

(c) (d)

Fig. 8. Different stretchings of a rotationally symmetric kernel and possible placements of its footprint polygon in world space (2D case). (a) Trape-
zoidal kernel stretching. (b) Approximating the trapezoid of (a) with a box, the result is an elliptical kernel that is not rotationally symmetric. (c)
Aligning the footprint polygon (thick line) with the volume grid, the result is that the indexed ray integrals do not correspond to the true ray inte-
grals. (d) Aligning the footprint polygon orthogonally to the ray eye – (yv, zv), which rectifies the problem of (c) in good approximation, however,
also tilts the kernal stretching function.

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 2, APRIL-JUNE 1998

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 ������

pare also Table 1, row 3, which is the perspective transform
for the ray-perpendicular kernel with a correct diverging ray
traversal, which we will call the ideal ray-perpendicular ker-
nel, and Table 1, row 4, which is the perspective transform of
the ray-perpendicular kernel with the practical, parallel ray
traversal.) Note, however, that rotating the kernel also ro-
tates the stretching function away from its alignment with
the viewing axis, which is clearly undesirable. In this re-
spect, the alignment of Fig. 8c is a better one.

An interesting observation can be made when looking at
the equations in rows 1 and 5 in Table 1. It turns out that
aligning the footprint polygon with the y-axis is equivalent
to replacing z with zv in both denominators in the first form
of the equation for the correct kernel integration with the
trapezoidal stretching function. This turns this equation
into the description of a circle centered at (yv ⋅ zk/zv, zv).
Also notice that the equation of the perspective transform
for a voxel kernel located in front of the zk-plane is simply
given by removing the scaling factor zk/z or zk/zv in front of
the equation and in the y-dimension of h(y, z).

Fig. 9 shows a few perspective kernel transformations
for the correct case depicted in Fig. 8a and the approximate
cases of Figs. 8c and 8d. We used a Gaussian kernel with a
standard deviation of 1.38 and truncated at a radius of 2.0.
The volume was 5123 and the cone half-angle ϕc = 30°. The
top row of Fig. 9 shows the correctly distorted isocontour of
the Gaussian kernel in perspective space. The second and
third row depict the resulting perspective distortion of the
Gaussian kernel if the two approximate footprint alignment
methods are used. From the contour plots in row 2, we ob-
serve that the grid-aligned kernel function indeed maps to
a circle in perspective space.

Finally, the bottom row shows the errors of the line inte-
grals computed from the perspectively transformed kernel
functions. Here, we can see what impact the approximate
transformed kernel contours have on the accuracy of the

splatted footprint function. The ray integral errors have
been computed by subtracting at each footprint location the
approximate ray integral value from the correct ray integral
value and normalizing this value by the overall maximum
value of the correct ray integral function. Since hardware
assisted rendering requires the footprint function to be
stored in an 8- to 16-bit texture map, this normalization
helps us to get an idea about how many bits of error we
have to expect for each of the approximations.

The isocontours of the perspectively distorted kernels of
Fig. 9 suggest that, for voxels close to the zk-plane, the ray-
perpendicular footprint alignment is a good approximation
to the correct method. However, for voxels further away
from the zk plane, the y-axis aligned footprint traversal
seems to be the better choice. For voxels close to the main
viewing axis, both approximations seem to be adequate.
The computed normalized ray integral errors confirm this
observation. It is only for voxels both close to the zk-plane
and far from the main viewing axis that the error for the
grid-aligned footprint significantly exceeds the error for the
ray-perpendicular footprint. We also see that there is not
much difference between the ray integrals for the ideal ray-
perpendicular kernel and the practical one.

For an 8-bit texture map, the bit-error for voxels located
along the viewing axis is less than 1 bit for either kernel
orientation. Close to the zk-plane and far from the main
viewing axis, the bit-error for the ray-perpendicular kernel
is less than 2 bits, while the error for the grid-aligned kernel
is more than 25 bits. Finally, the bit-error for voxels far from
the zk-plane is less than 8 bits for either of the two kernel
orientations.

The plots in Fig. 10 give a road map of the errors for the
entire volume. In these plots, the zk-plane is located where
z = 0, which is about 1/5 into the volume. In Fig. 10a, we
show the maximum error (not normalized) of the ray integral
at each voxel position for the grid-aligned kernel. (Note that,

TABLE 1
EQUATIONS THAT TRANSFORM A KERNEL LOCATED AT (yz, zv) FROM WORLD SPACE (y, z)

INTO PERSPECTIVE SPACE (yp, zp = z)

integration, stretching
row footprint alignment perspective kernel transform equation

1 correct integration,
trapezoid stretch function

z

z
h

z

z

y z

z
y , z z

z

z
h y

y z

z
, z zk k p

k
v v

k
p

v k
v¿ ¿ - - = ¿ - -

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

2 correct integration,
box stretch function

z

z
h

z

z

y z

z
y , z z

z

z
h

y z

z

y z

z
, z zk k p

k
v v

k p

v

v k
v

v v v v
⋅ ⋅ − − = ⋅ −

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��−

3

ray-perpendicular kernel,
box stretch function,

diverging ray traversal
(ideal ray-perp. kernel)

z

z
h

z

z

z z x
y z

z
y y

x y
,

z z y
y z

z
y x

x y

k

v

k

v

v v
2 p

k
v v

2

v
2

v
2

v v
2 p

k
v v

2

v
2

v
2

¿ ¿
- - + -

+

- + -

+

�
��

�
��

�

�

����

�

�

����

�
��

�
��

�

�

����

�

�

����

1 6 1 6

4

ray-perpendicular kernel,
box stretch function,
parallel ray traversal

(practical ray-perp. kernel)

z

z
h

z

z

z y y z

z z y y
x y , z zk

v

k

v

v p v k

v k p v

v
2

v
2

v¿ ¿
-

-
+ -

�
��

�
��

3 8
3 8

5
grid-aligned kernel,
box stretch function,
parallel ray traversal

z

z
h

z

z

y z

z
y , z z

z

z
h y

y z

z
, z zk

v

k

v

p v

k
v v

k

v
p

v k

v
v¿ ¿ - - = ¿ - -

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

MUELLER ET AL.: SPLATTING ERRORS AND ANTIALIASING 9

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 ������

for this and all other plots, a similar error surface is obtained
for the cumulative integral error.) The isocontour lines on the
bottom plane of the plot indicate the projected trajectories of
equal error. We see that the maximum error for the grid-
aligned kernel decays quickly for z > zk, but is very large be-
fore that. Now, consider Fig. 10b, where we plot the maxi-
mum error for the ray-perpendicular kernel (the one that
stores parallel ray integrals). Here, we see that the error is
very small for z < zk, but immediately gets larger for z > zk at
the volume boundaries. Note, however, that these errors are
still less than 5 percent of those of the grid-aligned kernel.
The remaining error is due to the out-of-plane rotation of the
kernel stretching function. The error decays as we go further
back into the volume, since in these regions the kernel’s
stretching box is rotated less. On the other hand, the error for
the grid-aligned kernel decays for larger z since the travers-
ing rays become more parallel to each other and the ray
slopes become smaller.

Fig. 10c gives the difference of the maximum errors of
the two practical alignment methods, ray-perpendicular
and grid-aligned. The isocontour lines indicate what error
difference we accept if we switch from the computationally

more expensive ray-perpendicular kernel to the grid-
aligned kernel. The almost straight isocontour farthest back
indicates when the grid-aligned kernel footprint is actually
slightly better than the ray-perpendicular kernel footprint
(at least for the maximum integral error). The same isocon-
tour suggests that there is a zs > zk after which we can safely
switch to grid-aligned kernels, minimizing the committed
error. For a cone half-angle of 30° and a 5123 volume grid
with a 5122 image, we found this zs ≈ zk + 70.

Finally, Fig. 10d shows the maximum integral errors when
we approximate the trapezoidal stretching function with a
box, but still use the correct ray traversal of Fig. 8b. The er-
rors are very small everywhere, and the plot confirms our
earlier intuition that the box approximation is a good one.

5 A TEMPORAL ANTIALIASING TECHNIQUE FOR
SPLATTING

5.1 Motion-Blurred Splats
For dynamic scenes or fast interactive movements, severe
aliasing can again come into play due to improper sampling of
the time domain. Here again, we need to reduce the frequency

Fig. 9. The isocontours in the three top plots show the Gaussian kernel in perspective space. The bottom row shows how the errors of the ray
integrals obtained by the approximate footprint methods of Fig. 8b (row 2) and Fig. 8c (row 3) compare with the correct ray integral of Fig. 8a (row 1).
The absolute error is plotted, normalized by the maximum value of the ray integrals in the correct footprint. Column 1 is for voxels close to the eye
and close to the viewing axis, column 2 is for voxels close to the eye, but far from the viewing axis, and column 3 is for voxel both far from the eye
and far from the viewing axis.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 2, APRIL-JUNE 1998

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 �������

of the volume where this is a problem. This process is com-
monly called motion blur. It has been studied in the computer
graphics literature for animations, and can be considered as the
integration of the reflectance and visibility over the length of
time a virtual camera shutter remains open. The fundamental
problem that most techniques have difficulty solving is the
changing hidden surfaces and visibility. For volume rendering,
we also have this problem with semitransparent or opaque
compositing. However, for X-ray-like or emission volume mod-
els, Max [7] and Crawfis et al. [2] have shown that the compo-
siting order is immaterial. Here, we present some initial work on
extending splatting to handle motion blur. Our algorithm will
not address the visibility problem, but simply address the issue
of the integrated energy across the time domain. The issue of
motion blurring in volume rendering has not yet been ad-
dressed and presents a very fruitful area of future research.

Our algorithm approximates the motion of a volume de-
fined on a raster grid as a linear motion of the reconstruc-
tion basis functions at each voxel. Fig. 11 illustrates this
process and the resulting footprint silhouette. For each
voxel, we associate a linear motion vector. This vector is
transformed to eye space and a projected vector direction
and length is determined on the viewing plane. For a radi-

 (a) (b)

 (c) (d)

Fig. 10. Plots: (a) Maximum error for the grid-aligned kernel. (b) Maximum error for the practical ray-perpendicular kernel. (c) Difference of the
maximum errors of the two kernel alignments (the iso-contours on the bottom planes denote lines of equal error). (d) Maximum error for the ideal
kernel ray traversal when the trapezoidal stretching function is approximated by a box.

(a)

(b)

Fig. 11. The construction of a nonblurred and a motion-blurred splat. (a)
A nonblurred splat (splat 1). (b) A motion-blurred splat (splat 2).

MUELLER ET AL.: SPLATTING ERRORS AND ANTIALIASING 11

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 �������

ally symmetric footprint function, we further approximate
this process by smearing (or stretching) the footprint func-
tion in the direction of the projected velocity vector.

Fig. 11 shows how the motion blurred splats are drawn.
Fig. 11a shows a nonblurred splat (labeled splat 1), while
Fig. 11b shows a motion-blurred splat (labeled splat 2).

Splat 1 is drawn at position ti. The splat is radially symmet-
ric, so its footprint is a circle and radial profile s follows the
splat’s reconstruction kernel. Splat 2 is drawn between po-

sitions ti−1 and ti. The original circular footprint is cut in half

and stretched between ti−1 and ti. This results in the two
half-circles A and B, connected by the rectangle C with
width w and length l. A and B have the same radial profile s
as splat 1. C has the profile s along any line perpendicular
to the motion vector t ti i-1 .

For this process to work, we need the amount of energy
that a splat contributes to remain constant under high veloci-

ties. In other words, the integrated intensity of a motion-
blurred splat should be the same as the integrated energy of a
single stationary splat. For our current, rather simple, scheme,
we adjust the energy of the motion-blurred splat as a function
of the increased area the footprint’s extent will occupy. If the
area of our static footprint extent is A1, then the area of the
motion-blurred splat can be expressed as A2 = A1 + 2ls, where l
is the distance between ti−1 and ti and s is the radial splat ra-
dius. We choose to adjust the splat opacity for this process.
This easily translates into a scaling of the opacity as:

a a2
1

1
12= +

A
A ls . (11)

For arbitrary projected velocity vector directions, a similar
scheme to that of Crawfis and Max [1] is employed to rotate
the motion-blurred splat in the proper direction.

 (a) (b)

 (c) (d)

Fig. 12. Rendered image of a nerve dataset acquired from confocal microscopy. (a) Rendered with standard splatting. (b) Rendered with an-
tialiased splatting. (c) Rendered with motion-blurred splats. (d) Rendered with antialiased, motion-blurred splats.

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 2, APRIL-JUNE 1998

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 �������

5.2 Results From Applying Our Antialiasing and
Motion-Blur Techniques

Fig. 12 shows an example of both the antialiasing and mo-
tion-blur techniques applied to an animation of a nerve cell
spinning rapidly. This dataset is a 512 × 512 × 76 volume
acquired from confocal microscopy. In Fig. 12a, the nerve is
rendered with standard splatting—note the aliasing arti-
facts along the arms of the cell. Fig. 12b shows the same cell
rendered with antialiased splatting; the aliasing artifacts are
now smoothed out. Fig. 12c shows the cell rendered with
motion-blurred splats, while Fig. 12d shows the cell ren-

dered with both antialiased and motion-blurred splats. For
an object with this much movement, the motion blur domi-
nates, and there is not much of a visible difference between
Figs. 12c and 12d.

Fig. 13 shows frames from an animation of the same ter-
rain dataset as Fig. 6, spinning about its center, rendered with
standard splats, antialiased splats, motion-blurred splats, and
both antialiased and motion-blurred splats. When rendered
from this perspective, all of the voxels map to subpixel sizes.
Because the terrain image contains high spatial frequencies,
the animation of the spinning dataset shows considerable

(a) (b)

(c) (d)

Fig. 13. Rendered image of a terrain dataset from satellite and mapping data. (a) Rendered with standard splatting. (b) Rendered with antialiased
splatting. (c) Rendered with motion-blurred splats. (d) Rendered with antialiased and motion-blurred splats.

MUELLER ET AL.: SPLATTING ERRORS AND ANTIALIASING 13

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 �������

flickering and scintillation artifacts in Figs. 13a and 13c. In
addition, Figs. 13a and 13b are rendered with the equivalent
of a camera with an instantaneous shutter and, so, suffer
strobing artifacts. Both of these temporal artifacts are greatly
reduced in the animation of Fig. 13d.

Fig. 14 attempts to display these temporal properties in a
static image. It shows how a single column from the terrain
animation varies over time. To create Fig. 14, a rectangular
region one pixel wide extending from the center to the up-
per edge of each image was taken from successive frames of
the animation. These columns were abutted and, then, ex-
panded into 5 × 5 blocks to form Fig. 14. Thus, the rows of
Fig. 14 are a spatial representation of the temporal progres-
sion of the animation. Note the almost random pixel colors
that occur across the rows of Fig. 14a—these represent the
strong flickering and scintillation artifacts visible in this
animation. As expected, the same random pixel colors oc-
cur in Fig. 14c, but are less pronounced toward the top of
the column. This reflects the subjective appearance of the
animation from Fig. 13c, where the terrain color is relatively

static around the outer edges but suffers considerable flick-
ering and scintillation in the center. In comparison, the rows
of Figs. 14b and 14d show smooth variations of color, and
indicate the absence of these flickering and scintillation
artifacts. Figs. 14c and 14d show more blurring toward the
top of the column compared to Figs. 14a and 14b, which
indicate the faster motion of the outer edge relative to the
center. Subjectively, the strobing artifacts are greatly re-
duced in the animations from Figs. 13c and 13d.

6 FUTURE WORK

Currently, our implementations for this work focus on the
flexibility of splat orientation and placement. As such, our
implementations are far from optimal in their performance;
this is one of the main reasons for the lack of performance
statistics presented here. Future work is ongoing to find
efficient and optimal implementations of the splatting proc-
ess as a whole. The antialiased splats offer several possi-
bilities for very efficient implementations. With a fixed
screen extent, a very fast pixel bitblt operation may be pos-
sible. Of course, the splats are not necessarily centered at a
pixel, and we are conducting research to rectify these defi-
ciencies. Furthermore, we have determined the amount of
blurring for the antialiasing under the assumptions that an
ideal reconstruction function is used and the sampled data
exhibits frequencies near the maximum dictated by the vol-
ume grid. Future work will examine the amount of blurring
based on the reconstruction kernel chosen.

The new perspective error analysis has led us on a path
to determine regions where different splatting operations
and algorithms should be utilized to minimize the resulting
visual artifacts. While the perspectively correct integration
may be very complex, if the region where this is required is
small enough, then, perhaps, a precomputed table of per-
spective splats can be built, quantizing the necessary error.

There is a wealth of research potential in the motion-
blurred splats. We are currently examining the integration
of the motion-blurred splats in a more analytical manner. In
addition, it is well known that splatting suffers from visi-
bility problems which lead to a popping artifact as the
sorting of the voxels changes. Future research will examine
methods for efficiently handling these visibility problems,
both alone and in the context of motion blur.

ACKNOWLEDGMENTS

Special thanks go to Nelson Max for many helpful com-
ments and last-minute clarifications. We acknowledge
Daniel Cohen-Or for the terrain dataset and Noran Instru-
ments for the confocal dataset, The Ohio Visualization Lab
at The Ohio Supercomputer Center for computer access,
and David Bressan and Rob Rosenberg of the CCS Scientific
Visualization Lab at the Naval Research Laboratory for as-
sistance with preparing the images, the animations, and the
paper.

 (a) (b) (c) (d)

Fig. 14. Animated sequence of the terrain dataset in Fig. 13. (a) Se-
quence from aliased animation. (b) Sequence from antialiased anima-
tion. (c) Sequence from motion-blurred animation. (d) Sequence from
antialiased, motion-blurred animation.

14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 2, APRIL-JUNE 1998

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 �������

REFERENCES

[1]� R. Crawfis and N. Max, “Texture Splats for 3D Scalar and Vector
Field Visualization,” Proc. Visualization ’93, pp. 261-266, San Jose,
Calif., 25-29 Oct. 1993.

[2]� R. Crawfis, N. Max, and B. Becker, “Vector Field Visualization,”
IEEE Computer Graphics and Applications, vol. 14, no. 5, pp. 50-56,
Sept. 1994.

[3]� R.A. Drebin, L. Carpenter, and P. Hanrahan, “Volume Rendering,”
Computer Graphics (Proc. SIGGRAPH), vol. 22, no. 4, pp. 65-74,
Aug. 1988.

[4]� P. Lacroute and M. Levoy, “Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation,” Computer
Graphics (Proc. SIGGRAPH), pp. 451-458, July 1994.

[5]� D. Laur and P. Hanrahan, “Hierarchical Splatting: A Progressive
Refinement Algorithm for Volume Rendering,” Computer Graphics
(Proc. SIGGRAPH), vol. 25, no. 4, pp. 285-288, July 1991.

[6]� X. Mao, “Splatting of Non Rectilinear Volumes Through Stochas-
tic Resampling,” IEEE Trans. Visualization and Computer Graphics,
vol. 2, no. 2, pp. 156-170, June 1996.

[7]� N. Max, ”Optical Models for Direct Volume Rendering,” IEEE
Trans. Visualization and Computer Graphics, vol. 1, no. 2, pp. 99-108,
June 1995.

[8]� K. Mueller and R. Yagel, “Fast Perspective Volume Rendering
with Splatting by Utilizing a Ray-Driven Approach,” Proc. Visu-
alization ’96, pp. 65-72, San Francisco, 27 Oct.-1 Nov. 1 1996.

[9]� K.L. Novins, F.X. Sillion, and D.P. Greenberg, “An Efficient
Method for Volume Rendering Using Perspective Projection,”
Computer Graphics (Proc. San Diego Workshop Volume Visualization),
vol. 24, no. 5, pp. 95-102, Nov. 1990.

[10]� A.V. Oppenheim and R.W. Shafer, Digital Signal Processing.
Englewood cliffs, N.J.: Prentice Hall, 1975.

[11]� J.E. Swan II, K. Mueller, T. Möller, N. Shareef, R. Crawfis, and R.
Yagel, “An Antialiasing Technique for Splatting.” Proc. IEEE Visu-
alization ‘97, pp. 197-204, 1997.

[12]� A. Van Gelder and K. Kim, “Direct Volume Rendering with
Shading via 3D Textures,” Proc. 1996 Symp. Volume Visualization,
pp. 23-30, San Francisco, 27 Oct.-1 Nov. 1996.

[13]� L.A. Westover, “Interactive Volume Rendering,” Proc. Volume
Visualization Workshop, pp. 9-16, Dept. of Computer Science, Univ.
of North Carolina, Chapel Hill, 18-19 May, 1989.

[14]� L.A. Westover “Footprint Evaluation for Volume Rendering,”
Computer Graphics (Proc. SIGGRAPH ’90), vol. 24, no. 4, pp. 367-
376, Aug. 1990.

[15]� L.A. Westover, “SPLATTING: A Parallel, Feed-Forward Volume
Rendering Algorithm,” PhD dissertation, Dept. of Computer Sci-
ence, Univ. of North Carolina, Chapel Hill, 1991.

[16]� R. Yagel, D.S. Ebert, J. Scott, and Y. Kurzion, “Grouping Volume
Renderers for Enhanced Visualization in Computational Fluid
Dynamics,” IEEE Trans. Visualization and Computer Graphics, vol. 1,
no. 2, pp. 117-132, June 1995.

Klaus Mueller received a BS degree in electrical
engineering from the Polytechnic University of
Ulm, Germany, in 1987, and an MS degree in
biomedical engineering from The Ohio State
University in 1990. Previous employment in-
cludes an internship at Mercedes Benz, Ger-
many, and research and development engineer
positions at Medical Devices, Minneapolis, and
Bopp and Reuther, Mannheim, Germany. Mueller
is currently working on a PhD degree in com-
puter and information science at The Ohio State

University, where he also holds a graduate research appointment
funded by General Electric. His interests reside in the field of computer
graphics, in particular, volume graphics as applied to the visualization
of medical image data. His current focus is on the development of it-
erative algorithms for fast and accurate 3D and 4D reconstruction from
limited sets of 2D cone-beam projections. The design of an efficient and
effective PACS system is another area of his current academic activities.
For more information, see: http://chopin.bme.ohio-state.edu/~klaus.

Torsten Möller received a Vordiplom (BSc de-
gree) in mathematical computer science from the
Humboldt University in Berlin, Germany, in 1992,
and an MSc degree in computer and information
science from The Ohio State University in 1993.
Previous employment includes summer posi-
tions at Hewlett-Packard Research Labs and the
Lawrence Livermore National Laboratories in the
Scientific Visualization group and an internship
at mental images in Berlin, Germany. He is cur-
rently working on a PhD degree in computer and

information science at The Ohio State University, where he also holds
a graduate research appointment. His research interests reside in the
field of computer graphics, in particular in applying mathematical
methods and ideas from signal processing to evaluate the rendering
process. His current focus is on the development of algorithms for fast
and accurate rendering of unstructured three dimensional data sets.
For more information, see http://www.cgrg.ohio-state.edu/~tmoeller.

J. Edward Swan II received his BS degree in
computer science from Auburn University in 1989,
and his MS and PhD degrees in computer science
from The Ohio State University in 1992 and 1997,
respectively. He is a research scientist at the Naval
Research Laboratory in Washington, D.C. He is
currently conducting research in the area of bat-
tlefield visualization, where he is applying volume
graphics techniques to render large terrain data-
bases as well as studying usability issues of bat-
tlefield visualization systems. Previously, he was

employed as a graduate research and teaching assistant at The Ohio
State University, where he conducted research in computer graphics,
volume graphics, virtual reality, and human-computer interaction. For
more information see http://www.ait.nrl.navy.mil/people/swan/.

Roger Crawfis received his BS in computer
science and applied mathematics from Purdue
University in 1984, and his MS and PhD degrees
in computer science from the University of Cali-
fornia, Davis, in 1989 and 1995, respectively. He
is an assistant professor at The Ohio State Uni-
versity. His research interests include scientific
visualization, computer graphics, and volume
rendering. Prior to joining OSU, Dr. Crawfis was
the Graphics Technology Group Leader at the
Lawrence Livermore National Laboratory, where

he was in charge of coordinating several visualization projects for the
past 12 years. He has published many research papers on scientific
visualization and the volume rendering of scalar and vector fields.

Naeem Shareef is a graduate student pursuing
a PhD in computer and information science at
The Ohio State University. He received a BS in
applied mathematics and computer science from
Carnegie Mellon University in 1990, and his MS
in computer and information science from The
Ohio State University in 1992. His research in-
terests include volume graphics, scientific visu-
alization, image segmentation using neural net-
works, visualization of large datasets, medical
applications for volumes, and voxelization. He

has held a graduate research appointment at The Ohio Supercomputer
Center since 1993 and currently holds an appointment there funded by
Lockheed Martin. Previously, funding was provided by The Ohio State
University Cancer Hospital Research Institute. His publications include
work in voxelization using CSG, image and volume segmentation using
a neural network, and volume graphics in the medical image visualiza-
tion area. Currently, he is working on research in the area of visualiza-
tion of large volume datasets. For more information see:
http://www.cis.ohio-state.edu/~shareef.

MUELLER ET AL.: SPLATTING ERRORS AND ANTIALIASING 15

-�?352'8&7,21?79&*?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW .60 ��������� ��������������$0 �������

Roni Yagel received his PhD in 1991 from the
State University of New York at Stony Brook, where
he was also a researcher in the Department of
Anatomy and the Department of Physiology and
Biophysics. He received his BSc cum laude and
MSc cum laude from the Department of Mathe-
matics and Computer Science at Ben Gurion Uni-
versity of the Negev, Israel, in 1986 and 1987, re-
spectively. Dr. Yagel is an associate professor in the
Department of Computer and Information Science
and an adjunct assistant professor in the Advanced

Computing Center for the Arts and Design and the Biomedical Engineering
Center at The Ohio State University. He heads the Volume Graphics Re-
search Group, which pursues research in computer graphics, volume
graphics, scientific visualization, virtual reality, and image processing. His
research and technical publications deal with various topics in volume
graphics and visualization. His research interests also include algorithms
for graphics, imaging, and animation, error control in image generation, and
visualization tools for industrial and scientific applications. For more infor-
mation see: http://www.cis.ohio-state.edu/~yagel.

