
Fast Volume Rendering of Curvilinear Data Sets Using a
Splatting Approach

Torsten Möller1,2, Roger Crawfis1,2, Nelson Max3

1Department of Computer and Information Science
2The Advanced Computing Center for the Arts and Design

The Ohio State University
Columbus, Ohio

3Lawrence Livermore National Laboratories
Mail Stop L-639

7000 East Avenue
Livermore, CA 94550, USA

{crawfis, moeller}@cis.ohio-state.edu, max2@llnl.gov

Abstract
We develope a new algorithm, that visualizes curvilinear grids fast and accurately.
Our algorithm is based on the concept of splatting. In order to reconstruct the underly-
ing function we use a Gaussian reconstruction kernel. In computational domain the
sampling of the data field is regular and therefore we have spherical reconstruction
kernels. However, the mapping into physical space is non-linear and the spherical
reconstruction kernels from computational space are mapped to what we call “bean-
shapes”, which are usually not ellipsoids. We approximate these bean-shapes with
ellipsoids and project them to the screen. Our algorithm is similar to Mao’s splatting
algorithm, but is much more efficient and less computationally involved. It also more
faithfully represents the underlying data.

1. Introduction
Volume rendering displays a three dimensional sampled data cloud on a two dimensional computer
screen. The data cloud is sampled at points on an underlying data grid. There are two different types
of common data grids - structured and unstructured [8][11] (see Fig. 1). Structured data grids are
based on an integer lattice (i, j, k). All data samples are placed on this integer lattice. The actual loca-
tion of the sample points in 3D (or what we call physical space) is defined by a continuous mapping w
of the integer lattice to physical space, i.e. . According to the mapping we can
further distinguish between several types of structured grids. Curvilinear grids impose few con-
straints to this mapping (e.g. non overlapping). Furthermore, rectilinear grids are structured grids,
where the i, j, and k components each have only separate 1D mappings. Uniform grids are rectilinear

w i j k, ,() x y z¤ ¦
£ ¥ T

=

2

grids, where the mapping is linear. Lastly, regular grids are rectilinear grids, that are having the
same mapping for each of the i, j and k components. The most general type of grid is an unstruc-
tured or irregular grid. These are usually specified by a simple listing of the location of the sample
point and it’s value without any specified connectivity information between the sample points.
Developing Volume Rendering techniques to visualize these different data sets has been a chal-
lenge in recent years. Interactive rates are needed so as to give better visual clues for the three
dimensional appearance of objects. Some new algorithms achieve interactive rendering rates
[2][10] using fast rendering hardware [1]. Unfortunately, these algorithms only work on regular or
uniform data sets. The interactive volume rendering of curvilinear or unstructured data sets is
more problematic here to date.
We present a new algorithm, that visualizes three dimensional curvilinear grids fast using a splat-
ting technique for volume rendering. Section 2 of this paper summarizes recent work in the field.
In Section 3 we introduce our new algorithm. The speed of our algorithm and the quality of the
rendered images is assessed in Section 4. Finally in Section 5 we summarize our results and dis-
cuss possible extensions of our work.

2. Related Work
Garrity [4] uses an efficient ray tracing implementation to render unstructured data sets. He inter-
sects the ray with all the faces of the current cell. The next intersection closest to the entry point is
then the exit point of the cell. The exit point is also the entry point of the next (neighboring) cell.
In order to find the first entry point into the volume, he intersects the ray with all exterior faces.

regular uniform rectilinear

curvilinear unstructured
FIGURE 1. Different types of computational grids.(Taken from [10])

3

He computes the data values at the intersection points by linear interpolating between the data at
the vertices.
Shirley and Tuchman’s Projected Tetrahedra algorithm [7] exploits spatial cell coherency and
uses hardware acceleration. Their algorithm requires a tetrahedral decomposition of the underly-
ing data set. The basic idea is that a tetrahedra projects into at most four continuous triangular
regions onto the screen. The opacity and color can be computed for the vertices of these triangles.
Then the color and opacity are linearly interpolated across the triangles. All triangles produced
can be rendered very quickly using special graphics hardware.
Max et al. [6] present a similar algorithm for convex polyhedra or scattered data sets. Under cer-
tain simplifying assumptions, they also compute the exact volume integral along the ray analyti-
cally.
In the slicing algorithm by Yagel et al. [10] the underlying grid is cut into slices parallel to the
viewing direction. The slices consist of polygons, that again can be drawn quickly by special ren-
dering hardware. Although the slicing operation needs to be repeated for each new viewing direc-
tion, it provides a direct image quality - render time trade-off through the choice of the number of
slices.
Our algorithm is based on the splatting idea of Westover [9]. In most algorithms we reconstruct
the sampled data set in three-dimensional space first and then project it to the screen. In splatting
however, the contribution of a sample point (the splat) is projected to the screen and combined
with previous splats in screen space for the final image. Traditional splatting uses spiracle recon-
struction kernels. This is a sufficient reconstruction kernel for regular grids, but not for curvilinear
or irregular grids. Fig. 4 illustrates now that spherical reconstruction kernels perform poorly on a
curvilinear grid. Fig. 4 shows the blunt-fin data set. We can see, that the sampling is too sparse
and in some areas the sampling is too dense.
Mao’s et al. [5] solution is to redistribute many new points according to the curvature of the grid
and the size of the grid cells using a Poisson disk distribution. They interpolate the values of these
points from the eight neighboring grid points by trilinear interpolation. Then they approximate the
density distribution of these new points with ellipsoids according to the local curvature of the
grid, which is also interpolated from the curvature at the grid points. All ellipsoids are then splat-
ted to the screen to produce a volume rendered image. There are several problems with this
approach. First of all, they introduce many new points, resampling the mesh, increasing the com-
putation time. Furthermore finding an accurate interpolated value of a new point can be difficult
and expensive. Also, the practical computation of a Poisson sphere distribution is very time con-
suming.
Our algorithm, although similar to Mao’s is based on a model that reconstructs the underlying
function of the grid and then projects it to the screen. In order to reconstruct the underlying func-
tion we use a Gaussian reconstruction kernel. In computational domain the samples (grid points)
are equally spaced (regular sampling of the data field). Therefore, we have spherical reconstruc-
tion kernels in computational domain, but not in the physical domain. The mapping into physical
space is non-linear and therefore the spherical reconstruction kernels from computational space
are mapped to what we call “bean-shapes”. These are usually not ellipsoids and are therefore dif-
ficult to handle.
Our algorithm is similar to Mao’s, but it differs in two critical areas. First of all, we avoid the
costly Poisson disk distribution by calculating ellipsoidal footprints only at the grid data points.

4

This avoids the resampling of the data volume and ensures that all critical nodes contribute to the
final image. The resampling in Mao’s paper (as with all resampling) is subject to blurring and
aliasing. Unless the sampling rate is adequately high, important features can be missed. This is
true even if we guarantee at least one sample per computation cell, due to possible high gradients
across the zone. Avoiding the resampling ensures that we don’t miss important detail. Focusing
solely on the grid data points also allows us to calculate the Jacobian (local curvature) more accu-
rately and efficiently than Mao’s trilinear interpolation. This is readily apparent in our image qual-
ity. Finally, we use the textured splats [3] to render the ellipsoids efficiently with common
hardware. We show the necessary extensions needed for that algorithm to project the ellipsoids. In
particular, we show how this can be accomplished with a simple scaling transform and a rota-
tional transform.

3. Our Algorithm
We explained in Section 2 that the correct reconstruction kernels would be warped spheres or
what we call bean-shapes. The computation of these bean-shapes is quite complex. The calcula-
tion of the screen extent of these shapes is also very complex.
The basic idea of our algorithm is to approximate these bean-shapes with ellipsoids. We do this by
a linear approximation of the local shape of the mapping function from computational to physical
space. In the following we denote points in computational space by c and points in physical space
by p. Letting w denote the warping, we can thus write .

3.1 Preprocessing
In computational space all the sample data points use the same spherical reconstruction kernel.
Using a spherical, normalized Gaussian reconstruction kernel of ‘strength’ s around a data point
at c0, we can express it’s point distribution at a point c as:

. (1)

The term

describes a sphere, centered at c0 with radius s (s basically indicates how ‘big’ our radius of influ-
ence is). This description is based in computational space. As we mentioned before, if we map
this sphere to physical space, we will end up with a bean-shape distribution. Instead of
using the mapping w we only use a linear approximation of this mapping. Expressing the mapping
w in a Taylor series expansion, we find:

,

In other words, we can approximate w locally with a linear mapping around our point center c0
using the Jacobian of w at c0. If we assume, that the mapping is (locally) invertible, a safe
assumption for practical applications, we find (using, that):

.

w c() p=

o

oc0
c() 1

/ /s3----------------e
E c c0–()–

=

E c c0–() 1 s2
⁄ c c0–()

T c c0–()=

E c c0–()

p w c() w c0() Jw c0() c c0–() O c c0–()
2

¤ ¦
£ ¥+ += =

Jw
w c0() p0=

Jw
1– c0() p p0–() c c0–()5

5

From this we conclude that we can approximate the warped distribution function in Equation 1
by an ellipsoid in the following way:

,

where

.

The computation of this ellipsoidal extent needs to be done only once as a pre-process. Therefore
we deduce the following pre-processing step:

3.2 The rendering pipeline
Once the ellipsoidal kernels are computed, the rendering of the splats is similar to Mao’s algo-
rithm and rather straightforward (see Fig. 3). First we need to orient the ellipsoid in the viewing
coordinate system (Line 4 and 5). Then we compute its integral along the z direction. It turns out
that its integral can be approximated by a two dimensional ellipse (Line 6). Proper integration
also produces an adjustment of the opacity component (Line 7). Next we compute the orientation
and extent of the major axes of the 2D ellipse. Finally, we can scale a 2D (spherical) lookup table
in the major directions and then rotate it appropriately (Line 9 through 11). This idea is very use-
ful for our implementation using textured splats [3]. Here the lookup table is a 2D textured poly-
gon (quadrilateral). This quadrilateral is scaled in the x and the y direction, rotated and finally
projected onto the image plane.

4. Implementation and Results
As we have mentioned in Section 3.2 our implementation is based on textured splats as described
in [3]. Since a Gaussian kernel has infinite extend we used the approximation to the Gaussian as
proposed by Crawfis and Max [3].
We implemented this algorithm in OpenGL on an SGI Crimson RealityEngine with a 100 MHz
R4000 processor. We tested our algorithm on 3 different data sets. The bluntfin data set
(32x32x40) is displayed in Fig. 5 and we focus in on one section in Fig. 6. The delta wing data set

o

op0
p() 1

/ /s3----------------e
Ew p p0–()–

'5

Ew p p0–() E Jw
1– c0() p p0–()¤ ¦

£ ¥ E c c0–()5=

E p p0–()
1
s2---- Jw

1– c0() p p0–()¤ ¦
£ ¥ T

Jw
1– c0() p p0–()¤ ¦

£ ¥ p p0–()
T 1

s2---- Jw
1– c0()¤ ¦

£ ¥ T
Jw

1– c0()
¤ ¦
² ´
£ ¥

p p0–()= =

1. For each data point c0
2. Compute

3. Compute
4. Compute the quadratic form matrix

J0

J0
1–

Q 1
s2---- J0

1–
¤ ¦
£ ¥ T

J0
1–=

FIGURE 2. The preprocessing step.

6

(66x28x15) is shown in Fig. 7. Finally the jet engine data set (250x180x9) is displayed in Fig. 8.
For all data set we have chosen the overlap of the reconstruction kernels in computational space to
be 0.6 (i.e. s=1.6). This overlap has been found to be optimal by others [3].
The timings for these images are summarized in Table 1. (user time and wall clock time are not
synchronized, we are currently investigating this fact)

Note, that Mao’s timings were based on a R4400 machine running at 200MHz. Her image size is
300 by 300, while we are rendering 600 by 600 images. It is expected therefore that our perfor-
mance would be greatly improved on this class of machine. Our image quality also seems to be
much improved, but a direct comparison is difficult. Since Mao’s algorithm is a resampling, more
sample points could greatly improve their images, trading rendering time for image quality.

TABLE 1. Rendering times (in seconds)

Preprocessing actual rendering Mao
Bluntfin 1.73 2.9 13.9 - 18.4

Delta Wing 1.2 2.0 ?
Jet Engine 17.3 28.8 ?

1. For each view
2. Sort the points by distance from viewer at the origin.
3. For each point in back to front order:
4. Transform center to (x0, y0, z0) by viewing matrix.
5. Transform Q by rotation matrix R only:

6. Project ellipsoid to ellipse equation in image plane, then

7. Adopt the opacity

8. Find the extent (sx, sy) and the rotation angle e of the
major axis of the ellipse

9. scale the texture square by sx and sy
10. rotate about z axis by
11. translate to (x0, y0, z0)

Qv
Av Dv Ev
Dv Bv Fv
Ev Fv Cv

RQRT= =

p q
q r

p Av Ev2

I
-------–= r Bv Fv2

I
-------–= q Dv EvFv

I
-----------–=

_
1
Cv

----------_node=

e

FIGURE 3. The Rendering algorithm.

7

5. Conclusions and Future Goals
We have presented an algorithm for fast splatting of curvilinear grids. It is based on a linear local
approximation of the bean-shaped reconstruction kernels of the warped grid by ellipsoids. The
screen extent of these ellipsoids are 2D ellipses. We compute the extent and orientation of these
extents and scale and rotate a textured splat accordingly. This splat can then be rapidly drawn by
special graphics hardware. The image quality of the rendered images is comparable or superior to
other algorithms, with substantially faster rendering times.
Since perspective viewing gives a better insight into the third dimension of the data set, we are
working right now on a perspective implementation of our algorithm. We also wish to extend our
algorithm to unstructured grids. The difficulty here will be to accurately measure the local warp-
ing of the grid.

6. Acknowledgments
We thank the visualization group at the Lawrence Livermore National Laboratory and especially
Rebecca Springmeyer for their encouragement and support. We also thank Gary Kerbel of the
Lawrence Livermore National Laboratory for many stimulating discussions. We thank Dave Reed
for help with the data sets and useful programming hints. We also thank Wayne Carlson and the
Advanced Computing Center for the Arts and Design for the use of their computing facilities.
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Liv-
ermore National Laboratory under contract number W-7405-ENG-48, with specific support from
an internal LDRD grant.

7. References
[1] Akeley K., “RealityEngine Graphics”, Computer Graphics (SIGGRAPH ‘93 Proceedings),

pp. 109--116, August 1993.
[2] Cabral B., Cam N., Foran J., “Accelerated Volume Rendering and Tomographic

Reconstruction Using Texture Mapping Hardware”, Proceedings of the 1994 Symposium on
Volume Visualization, pp. 91-98, October 1996.

[3] Crawfis R., Max N., “Textured Splats for 3D Scalar and Vector Field Visualization”,
Proceedings of IEEE Conference on Visualization 1993, Edited by Nielson and Bergeron,
San Jose: IEEECS Press, pp. 261-266, October 1993.

[4] Garrity M.P., “Raytracing Irregular Volume Data”, Computer Graphics (San Diego
Workshop on Volume Visualization), vol. 24(5), pp. 35-41, November 1990.

[5] Mao X., Hong L., Kaufman A., “Splatting of curvilinear Grids”, Proceedings of IEEE
Conference on Visualization 1995, pp. 61-68, November 1995.

[6] Max N., Hanrahan P., Crawfis R., “Area and Volume Coherence for Efficient Visualization
of 3D Scalar Functions”, Computer Graphics (San Diego Workshop on Volume
Visualization), vol. 24(5), pp. 27-33, November 1990.

[7] Shirley P., Tuchman A., “A Polygonal Approximation to Direct Scalar Volume Rendering”,
Computer Graphics (San Diego Workshop on Volume Visualization), vol. 24(5), pp. 63-70,
November 1990.

[8] Speray D., Kennon S., “Volume Probes: Interactive Data Exploration on Arbitrary Grids”,
Computer Graphics (San Diego Workshop on Volume Visualization), vol. 24(5), pp. 5-12,
November 1990.

8

[9] Westover L., “Footprint Evaluation for Volume Rendering”, Computer Graphics
(SIGGRAPH ‘90 Proceedings), vol. 24, pp. 367--376, August 1990.

[10] Yagel R., Ebert D., Scott J., Kurzion Y., “Grouping Volume Renderers for Enhanced
Visualization in Computational Fliud Dynamics,” IEEE Transactions on Visualization and
Computer Graphics, ITVCG 1(2), July 1995.

[11] Yagel R., Reed D., Law A., Shih P., Shareef N., “Hardware Assisted Volume Rendering of
Unstructured Grids by Incremental Slicing”, IEEE 1996 Symposium on Volume
Visualization, pp. 55-62, October 1996.

[12] Zienkiewicz O.C., Taylor R.L., The finite Element Method, Fourth Ed., vol. 1, McGraw-Hill,
1989.

9

FIGURE 4. Bluntfin data set rendered using
spherical splats

FIGURE 5. The bluntfin data set FIGURE 6. Focus on the bluntfin data.

FIGURE 7. The delta wing data set FIGURE 8. The Jet engine data set.

