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Abstract
The task of reconstructing the derivative of a discrete function

is essential for its shading and rendering as well as being widely
used in image processing and analysis. We survey the possible
methods for normal estimation in volume rendering and divide
them into two classes based on the delivered numerical accuracy.
The three members of the first class determine the normal in two
steps by employing both interpolation and derivative filters.
Among these is a new method which has never been realized. The
members of the first class are all equally accurate. The second
class has only one member and employs a continuous derivative
filter obtained through the analytic derivation of an interpolation
filter. We use the new method to analytically compare the accuracy
of the first class with that of the second. As a result of our analysis
we show that even inexpensive schemes can in fact be more accu-
rate than high order methods. We describe the theoretical compu-
tational cost of applying the schemes in a volume rendering
application and provide guidelines for helping one choose a
scheme for estimating derivatives. In particular we find that the
new method can be very inexpensive and can compete with the nor-
mal estimations which pre-shade and pre-classify the volume [8].

Keywords: interpolation filters, derivative filters, filter design,
normal estimation, Taylor series expansion, efficient volume ren-
dering

1 INTRODUCTION
Reconstruction of a continuous function and its derivatives

from a set of samples is one of the fundamental operations in visu-
alization algorithms. In volume rendering, for instance, we must be
able to interpolate the function at arbitrary locations to obtain the
volume densities. The gradient (the first derivative of the function)
is employed in both volume classification and shading [3][8]. If the
gradient estimation is done carelessly, shading and classification
will yield wrong colors and opacities. Since the derivative of a
function indicates the velocity of change of the function values, the
presence of noise especially will lead to incorrect images [4].

There have been various studies and comparisons of accurate
interpolation filters, a summary of which is given in [10][12].
However, as is also shown in [12], the derivative approximation
has a larger impact on the quality of the image and therefore
deserves a thorough analysis, which is the goal of this paper.

The ideal derivative filter is the Cosc filter, which is the deriv-
ative of the ideal interpolation filter (Sinc) [1][4]. For a practical
use of the Sinc filter, windowing is suggested [7]. Goss [6] extends
the idea of windowing from interpolation filters to derivative fil-
ters. He uses a Kaiser window to mitigate the adverse effects of the
truncated ideal derivative filter. Bentum et al. [1] use the Cardinal

cubic splines to develop derivative filters. A good survey of exist-
ing digital derivative filters can be found in the paper by Dutta Roy
and Kumar [4].

While all of the previous work focuses on the design of deriv-
ative filters, no work is known to us, that tries to conduct a compar-
ative study of gradient filters. Especially, in the case of volume
rendering, most algorithms are driven by efficiency considerations
and may decompose the gradient estimation in one or two steps.
One step is typically the interpolation of the normals or of the data
values with a continuous interpolation filter. The other step is the
application of a digital derivative filter (e.g. central differences) in
order to compute the normal at the sampling location. However,
there have been schemes proposed, that estimate the normal at an
arbitrary point in the volume in one step [1]. The goal of this paper
is to enumerate and classify the different schemes of gradient esti-
mation and to analyze them in terms of accuracy and efficiency.

In this paper, we denote by f(t) a continuous function (the sig-
nal) which is sampled into the discrete function f[k] = f(kT), where
T is the sampling distance and k is an integer. In computer imaging,
f(t) is not available; we only have f[k]. We denote by h(t) the con-
tinuous function kernel used for interpolation and by d[k] the digi-
tal (i.e. only defined for integer arguments) derivative filter.

We employ a Taylor series expansion of the convolution sum
for our numerical analysis, as introduced in [12]. Our Taylor series
expansion provides both qualitative and quantitative means of ana-
lyzing filters. In Section 3, this analysis is expanded to the convo-
lution of two filters. The methods of [12] are briefly summarized.

1.1Taylor Expansion of the Convolution 
Sum
To reconstruct a continuous function f(t) or its derivative 

from a set of sample points f[k], we convolve f[k] with a filter ker-
nel, i.e. we compute a weighted average of these samples. By con-
volving the sampled signal f[k] with a continuous interpolation
filter h, we reconstruct an approximation of the original function
f(t). Similarly, if we convolve the samples with a continuous deriv-
ative filter d, we reconstruct an approximation of the derivative of
the original function. We denote the result of this operation by

, where w is the filter used. Formally, this can be written as:

(1)

Now we can expand  into a Taylor series about t.
The Taylor series expansion at that point would be:

where  is the n-th derivative of f and 

Substituting the Taylor series expansion into the convolution
sum of Equation 1, leads to an alternative representation for the
reconstructed value at a point t:
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(2)

where  is chosen such that , with , and i is
an integer. It is noteworthy that the derived Taylor coefficients a
and the remainder term r only depend on the offset to the nearest
sampling point, i.e., they are periodic in the sampling distance T.
For further details, please refer to [12].

The characterization of the filtering process in Equation 2
imposes 4 different criteria for a good normal estimation scheme.
First of all, we require  to be zero. Secondly we have to normal-
ize by  in order to reconstruct the actual derivative as opposed
to a multiple of it. Further by determining the largest N, such that

 is zero, we can determine the asymptotic error behavior of a
filter for a decreasing sampling distance T. Finally, the remainder
term r gives us an indication of the absolute error of that filter.

This expansion of the convolution sum assumes that at least
the first N derivatives of the function f exist, where N depends on
our error analysis. This condition is generally met in practice since
image and volume acquisition devices such as scanners and cam-
eras inherently perform a low-pass filtering operation that band-
limits the functions [2]. Numerical simulations of physical
phenomena, as performed in the field of computational fluid
dynamics, usually generate bandlimited images as well since typi-
cally robust numerical solutions can be obtained only if the algo-
rithm incorporates a smoothing step [15]. Finally, all rendering and
scan-conversion algorithms, in order to provide antialiased images,
usually also employ a filtering step that bandlimits the image.
Bandlimited functions do not contain frequencies higher then a
certain limiting frequency in their spectra. One can conclude, that
bandlimited functions are analytic functions and all N derivatives
exist.

The remainder of the paper is organized as follows. In
Section 2, we summarize the different schemes for normal estima-
tion. In Section 3, we modify the Taylor series expansion of the
convolution operation for the specific use of cascading two filters,
and compare the schemes of Section 2 numerically. In Section 4,
we examine possible implementations of the normal estimation
schemes and compare their efficiency. Experimental results are
also presented in Section 5. Finally, in Section 6, we summarize
the results of this paper and discuss some open questions.

2 GRADIENT RECONSTRUCTION FROM
THE VOLUME SAMPLES
We will use the symbol F to represent the discrete function

f[k]. Further, we let D and H denote the derivative and interpola-
tion operators, respectively. In the process of volume rendering
there are two additional operators applied to the data. The first is
the transfer function, which maps the raw data values into material
attributes such as color, opacity, and reflectivity. We denote this
operator, also called classification function, by C. The second oper-
ator applied to the data is shading, which illuminates the data. The
shading operator, which we denote by S, takes as input material
attributes, light attributes, and the surface normal, and produces a

displayable value (e.g., RGBα). 

Since S needs the output of C, shading will always be per-
formed after classification. Since S needs the function’s derivative,
it will always be after D. We now present four different ways of
computing the function derivatives. Except for the first approach,
(FD)H, in all others the operators CS will be performed after the
interpolated derivative has been computed.

2.1Method (FD)H - Derivative First
One way of computing the derivative at a point t of a discrete

function f[k] is to first compute the normal at the grid points kT and
then interpolate these normals, producing the derivative at the
desired location t. This is the method most commonly used in vol-
ume graphics [6][9]. The first step, the computation of the deriva-
tive at the grid points, can be expressed in the following
convolution:

Now the derivative at an arbitrary point can be interpolated as:

Square brackets are used to emphasize the discrete nature of the
operator. Since a convolution in spatial domain is the same as a
multiplication in frequency domain, we conclude the following fre-
quency characterization of the above operation:

(3)

Here DD(ω) denotes the Fourier transform of the discrete deriva-
tive filter and FD(ω) denotes the Fourier transform of the sampled
function f[k]. The Fourier transform of a discrete function contains
replicated frequency spectra at k2π (where k is an arbitrary inte-
ger). Therefore DD(ω) and FD(ω) are periodic functions with
period 2π. Following the Fourier transform in Equation 3, we will
refer to this method as (FD)H.

Unlike all other methods described in this paper, some algo-
rithms ([8][3][16]) perform interpolation after classification and
shading. Normal values are computed at the grid points and classi-
fication is also applied to the original data values. Then, these data
points are shaded. The final RGBα volume is then interpolated at
the appropriate sampling points. Using our notation, this method
can be summarized by (((FD)C)S)H. This is indeed an efficient
method, since CS does not have to be computed for every sample
point (which is the case for all other methods described in this
paper where interpolation is done before CS) but rather it is com-
puted only for the original data points. However, this method will
produce correct results only if both C and S are linear operators.
The result of employing a non-linear transfer function or illumina-
tion model may, for example, cause the appearance of errors or
pseudo-features that are non-existent in the original data. In the
case of S, one must therefore allow illumination models consisting
of only ambient lighting. In the case of C, the linearity restriction
may not be acceptable for many applications. For example, if we
want to find the opacity in-between two data values a and b (using
linear interpolation), we would find (C(a)+C(b))/2 by performing
classification first. However we would find C((a+b)/2) by per-
forming interpolation first. Obviously, if C is a non-linear operator,
the two results will be different. We therefore concentrate our anal-
ysis and discussion in the more general and accurate methods that
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perform CS only after gradient estimation and interpolation. 

2.2Method (FH)D - Interpolation First
In this approach, we first reconstruct the continuous function

f(t) from the sampled values fk and then apply the discrete deriva-
tive filter d [10][14]. Since the derivative filter is discrete, we only
need to evaluate the convolution sum of the interpolated function
at discrete points. The interpolated function  can be
expressed as a convolution of the samples fk using the interpolation
filter h:

The reconstructed derivative can be computed by:

Using similar arguments as above, we find the Fourier Transform
to be:

(4)

Using our previous notation scheme, we refer to this method as
method (FH)D.

2.3Method F(DH) - Continuous Derivative
Looking at all possible combinations of applying the interpo-

lation filter and the derivative filter to the discrete signal, we are
led to a theoretical result. Namely, that we can first convolve the
digital derivative filter with the continuous interpolation filter. The
result will be a new continuous derivative filter which we can
apply to the data samples, enabling us to reconstruct the derivative
at any arbitrary point t directly. This can be written as:

where the continuous derivative filter dh(t) is obtained as the con-
volution of the digital filter d[k] with the interpolation filter h:

We can show that the frequency representation of this process is:

(5)

therefore referring to this method as F(DH). The benefit of this
scheme is more conceptual at this moment. In Section 3 we show
how it can be used for a convenient analysis of the normal estima-
tion process. Further we will show in Section 4, that this method
can also be the most efficient to use for volume rendering algo-
rithms.

2.4Method  - Analytic Derivative
A fourth method to compute the gradient of a discrete func-

tion is to convolve the samples f[k] with the analytical derivative of
the interpolation filter h:

In this case,  represents a continuous derivative filter, allowing
us to reconstruct the continuous derivative  directly from the
samples f[k] in just one convolution. This is very similar to the pre-
vious method F(DH). It differs only in the way we construct the

derivative filter: In method F(DH) we compute a convolution sum
for the continuous derivative filter, while in this method we com-
pute the continuous derivative filter analytically. Bentum et al. [1]
apply this idea to cardinal splines, and Marschner and Lobb [11]
use this for the BC-splines. The Fourier transform of the derivative
of a function is simply the scaled Fourier transform of that function
multiplied by iω (i2 = -1)[2]. Therefore, we find that the Fourier
transform of  is:

and we refer to this method as .

3 NUMERICAL ACCURACY
Comparing Equations 3, 4, and 5 we easily find that these

three methods are numerically equivalent and thus produce the
exact same reconstructed derivative of f. Therefore, we will con-
centrate on comparing the methods (FD)H, (FH)D, F(DH) with the
method . In order to compare the numerical accuracy of the
methods, we use the tools developed in [12] and summarized in
Section 1.1.

For method , w in Equation 1 is simply the derivative of
the interpolation filter h. For other methods, we choose the deriva-
tive filter described in Section 2.3. To clarify the notation, we will
replace w by dh. To better compute the coefficients  of
Equation 2 for the derivative filter dh, we will substitute the convo-
lution sum of the derivative and interpolation filters into the
expression for  in Equation 2:

which simplifies to:

Substituting m for k+l in the inner sum, we get:

which resolves to 

This means that the error coefficient of a convolution filter is
simply the convolution of the error coefficients of both filters. In
Table 1, we have computed the coefficients for some commonly
used filter combinations. The first column shows the error coeffi-
cients for the probably most common used filter combination of
linear interpolation and central differences, abbreviated by DL.
Another common choice is the combination of a cubic interpola-
tion filter (we have chosen the class of cubic cardinal splines) with
central differences. We let DC denote this filter class. For the class
of analytic derivative filters we have chosen the derivative of the
cubic interpolation filter, as introduced in [1]. We use C to repre-
sent this filter class.
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In the case that α=-0.5,  is zero for all three methods and
we must compare . One can easily prove that this coefficient for
DL is always greater than T2/6 (the coefficient for DC), which in
turn is greater than the coefficient for C. This implies that, the
worst behavior is observed for DL, and C is more accurate than
DC. 

Therefore we conclude, that the optimal filter to use is C for
α = -0.5. However, one might be interested to use different α in
different situations. For instance Park and Schowengerdt [13] con-
clude from a frequency study of the cardinal cubic splines, that
some α (different than -0.5) might yield better images. They find
that α depends strongly on the underlying function to be recon-
structed. Therefore it is of interest to analyze the spatial error for
different α as well.

In the case that α ≠ -0.5, the coefficient for  is zero only for
the method DL. In order to compare the error coefficient among the
methods DC and C, we compare  for both filters. As we have
pointed out in [12], these coefficients need to be normalized. Fig. 1
shows a plot of  after its normalization. Note that T simply
scales both plots equally. Therefore, it can be set to one. In Fig. 1,
one can clearly see that the error coefficient for DC is smaller than
the error coefficient for C. Therefore, we conclude that DC is supe-
rior to C when α ≠ -0.5. This is a rather unexpected result, since
one would naturally expect the analytic derivative of a filter to be
more exact and therefore to perform better. As we have just seen,
this is not necessarily the case.

For the special cases that τ = 0 and τ = 0.5 (where )
we found by comparing , that C is more accurate than DC forœ
α ∈ [-3,-0.6]. Another value to consider is the second derivative of
the underlying function. When it goes to zero, we also have to use

the error coefficient  for an error comparison.

We are left to compare the error behavior of the most common
method DL with the other two methods. Again, for the special
cases, where the second coefficient or the second derivative of the
function go to zero, we must compare  in order to find the most
accurate filter. For the other cases however, we can follow the fol-
lowing analysis. If we have influence on the original sampling dis-
tance T for our applications, we can always find a T, such that the
combination of central difference and linear interpolation is supe-
rior to the other two methods. In other words, DL is asymptotically
better than DC and C. However in most practical applications we
are given a data set with fixed sampling distance T. In these cases
we need to weight the actual error of the filters and conclude from
this comparison which filter is more accurate. If we are comparing
DL and DC, we want to find out for which α DC performs better
than DL. Mathematically:

Using the second error approximation of Equation 2, we find the
following criteria:

We can conclude that the choice of α very much depends on
the resampling offset τ and the actual data. After some algebraic
manipulations, we can conclude:

(6)

For α in this range the method DC is more accurate than DL. As
expected, the choice of the most accurate filter strongly depends on
the underlying data.
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Table 1.Coefficients for some commonly used filter combinations
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For a similar comparison of the methods DL and C we find:

(7)

An important observation that we draw from Equation 6 and
Equation 7 is the dependency of the comparative accuracy on the
sampling distance. The higher the sampling rate the smaller the
range in which C or DC performs better than DL. This means that
for densely sampled data sets a combination of linear interpolation
and central difference is not only efficient, but also recovers the
derivative accurately. That can also be explained in the frequency
domain. The higher the sampling rate, the further apart the fre-
quency spectra are placed. In other words, the signal’s aliases are
more separated. Thus, the deficiencies of the central difference
operator at higher frequencies do not impose a problem since no
signal aliases exist in this frequency range. This is an important
and new result, since it tells us, that for some data sets DL is just as
accurate, as the other two (more expensive) methods DC and C.

4 EFFICIENCY CONSIDERATIONS
In this section, we compare the four methods (FH)D, (FD)H,

F(HD), and  from an efficiency perspective. While the first
three methods are equivalent from an accuracy standpoint, they are
not so from an efficiency point of view. This section also contrasts
the overall computational effort of these four shading-deferring
methods with the demands of the popular, but less accurate, pre-
shading scheme [8]. We denote this approach as ((FD)CS)H, where
C and S stand for classification and shading that occur after gradi-
ent computation but before color interpolation. Our comparisons
will be valid for the 3D case only (a typical application will be vol-
ume rendering algorithms). If we compare normal estimation
schemes in other dimensions, our analysis will be similar.

In the following discussion, we distinguish between imple-
mentations that compute all results on-the-fly, and implementa-
tions that utilize some form of caching to reuse previously
computed results. The latter approaches obviously requires an
extra amount of memory and cache management overhead. We
now introduce some terminology: 

Eλ: The computational effort to apply the operator λ where λ can
be H, D, DH, , or CS.

:Number of filter weights used for applying the operator λ.

n: Number of data elements (voxels).

m: Number of samples.

For digital filters  is obviously the length of the filter, but
for continuous filters (e.g. cardinal splines)  is usually the filter
support, i.e. the number of sample values, that are influenced by
the filter. Since the filter operation is the weighted sum of  ele-
ments, we usually have  for a straight forward
implementation of  multiplications and  additions.
However, for some special filters, there will be a more efficient
implementation. For instance, the central difference filter (in one
dimension), can be implemented in 2 operations (one subtraction
and one division by 2) as opposed to 3 operations (two multiplica-
tions by 0.5 and one subtraction). Therefore, we find it important to
separate between  and .

In the following discussion we will discuss the cost of recon-
structing the function and its derivative at all the sample points. We
will also comment on the cost of applying the classification and
shading operators.

4.1 (FD)H - Derivative First
In this method, we first compute the gradient at all grid voxels

within the extent of the interpolation filter h, and then interpolate
these gradients using H. An on-the-fly approach would have to
compute  gradients for a total cost of , followed by
three interpolations to compute the three gradient components and
one interpolation to compute the data value itself. The total cost is
thus:

By storing computed gradients in a gradient volume, one could
reduce the cost to:

The process of classification and shading will require additional
m⋅ECS cost and the total cost will then be:

However, in the ((FD)CS)H method, classification and shading are
applied to the data values, and the interpolation filter is applied to
the resulting RGBα values. Therefore, the total cost for this
method, assuming caching, is: 

Since in most cases, to assure proper sampling, , the
computational advantage of this method is clear. Moreover, when
classification and illumination does not change for multiple render-
ing, the cost of the first component in the last two equations is
amortized and can therefore be ignored. If we ignore the shading
component then the cost of reconstructing the function and its
derivative assuming caching is given by:

4.2 (FH)D - Interpolation First
The (FH)D method computes the derivative at a ray sample

location from a set of additionally interpolated samples in the
neighborhood of the sample location. In parallel (orthographic)
rendering of volumes the data is resampled into a new grid. If this
grid is cached somewhere, one can perform the derivative calcula-
tions using the data values at that grid.

Without caching, in order to compute the derivative at a sam-
ple location, (FH)D interpolates  additional samples, each at a
cost of EH, and uses them to obtain three axis derivatives at the
cost ED. Another interpolation at the sample location, each at a cost
of EH, yields the function value. The total cost for reconstructing
the function and its derivative is:

Later, these samples are classified and shaded, with an additional
cost (for the whole volume) of . However, if caching is
employed, only one interpolation is needed per sample, and the D
operator uses only existing samples. Therefore the total cost for
reconstructing the function and its derivative:

4.3F(DH) - Continuous Derivative
Here the derivative filter is pre-convolved with the interpola-

tion filter which increases its size. The gradients are then computed
by convolving the volume by this combined DH-filter. The total
cost for computing the function and its derivative is then given by:

This is the most direct method of the three methods presented so
far and there is no caching mechanism available to gain some
speedup.

4.4Method  - Analytic Derivative
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This method is not equivalent to the previous three in terms of
accuracy, as other sections of this paper demonstrate.  uses a
special gradient filter derived from the interpolation filter to esti-
mate the gradients. Since this derivative filter has the same size as
H the corresponding cost for computing the function and its deriva-
tive is:

.

4.5Summary and Numerical Examples
We are now ready to compare the theoretical cost functions

presented in the previous subsections and provide some numerical
examples to highlight the differences. Table 2 lists all costs derived
above and gives two numerical examples: In case 1, H and  are
cubic filters ( ), D is a central difference filter
( ), and in case 2, H is a trilinear filter ( ) and D
is again the central difference filter. For the following discussion
we count the number of floating point operations associated with
each operator, but we do not distinguish between additions, multi-
plications or divisions. In this case, the cost of EH for H being
cubic is , of EH for H being trilinear is

, of ED for D being central difference the cost is 6.
Since the derivative filters are directional filters, and EDH denotes
the cost of computing all three derivative components, we find that
EDH is three times the cost of one derivative component operation.
In order to find the directional derivative, we convolve the interpo-
lation filter of size  with a 1D derivative filter of
length k (in our case - central differences - k = 2). That results in a
filter of size . Therefore we find the cost of EDH
for H being cubic is 477 and for H being trilinear is 69.

As expected the analytical derivative method ( ) is the
most efficient one. However, as we showed in Section 3, it is not
necessarily the most accurate. Among the other three schemes
(which are numerically identical), we find our new method
(F(DH)) most efficient if there is no caching. However, if caching
is available, (FH)D is certainly the most efficient way to compute
the normal and the data value at this point. Therefore, we conclude
that in terms of efficiency and in terms of accuracy, there is no
need for the most commonly used method (FD)H (in the case of
deferred shading). As was pointed out already in Section 4.1, if we
do shading at the grid locations, we might find a more efficient
algorithm, yet trading speed for accuracy.

5 EXPERIMENTS
The images were rendered employing a simple raycaster to

find isosurfaces.The volumes were resampled at an interval of 0.05
voxel lengths. At each sampling point, the raycaster first applied
the interpolation kernel to reconstruct the function at that point. If
the reconstructed value was above a pre-set isovalue, the derivative
filter was used to compute the 3D gradient. Shading was then per-
formed using the traditional Phong lighting model [5] with diffuse
and specular reflections. The obtained color and opacity were com-
posited with the previous ray values, and the ray was terminated
after the opacity reached a value close to one. Since for all our fil-
ters both the interpolation and the derivative kernel were separable,
the filter operations could be efficiently performed using a scheme
similar to the one given by Bentum et al [1].

For our experiments we used an analytic data set, derived
from the same function as the one used by Marschner and Lobb
[11]. Specifically, we used:

Since we study different derivative filters, we have fixed the

interpolation filter to be the Catmull-Rom interpolation filter - a
cubic filter with small error as was also shown in [12]. From Equa-
tions 6 and 7 we learn that the range of α where C and/or DC per-
forms better than DL is dependent on the data set. To address this
issue, we have computed the ratio  analytically
for the data points for the three axis directions x, y, and z, where we
reconstruct and collected them in a histogram, plotted in Fig. 2. In
order to guarantee that all data points are reconstructed more accu-
rately using DC (or C) than DL, we would have to choose the min-
imal ratio. This ratio is zero and therefore we can conclude that
only for α = -0.5 we can guarantee, that the derivative reconstruc-
tion at any single point will be better for the methods DC and C as
opposed to DL. In order to get practical results, we could choose a
higher ratio of , giving up on the accuracy assur-
ance for some reconstructed values. If we for instance choose the
ratio 7, we still guarantee all z directional derivatives to be esti-
mated more accurately. Approximatly 8% of the directional deriva-
tives in y will be more accurate by DL, and only 3.8% of the
directional derivatives in x will be better by DL.

When we plug in the ratio of 7 into Equations 6 and 7, we find
the theoretical result that for α ∈ [-0.78,-0.22], DC performs better
than DL and for α ∈ [-0.65,-0.34], C performs better than DL.
These theoretical ranges have steered our experiments and in Fig. 3
(see color plates) we have rendered the Marschner-Lobb data set
for several different α. For a better (analytical) understanding of
these rendered images, we have also drawn the angular error
images in Fig. 4. For each reconstructed normal we computed the
actual normal and recorded their angular difference. The grey
value of 255 was displayed for an angular error of 5 degrees.

For the first row of images we have used α = -0.5. Following
our analysis in Section 3, we expect that ε(C) < ε(DC) < ε(DL),
where ε(A) denotes the error measure of image A. The first row of
Fig. 3 shows the different images for α = -0.5. Although the differ-
ences are small, one can find DC to be better, than DL. Although
the image for DC is overall smoother, it’s error image in Fig. 4
reveals a much higher error than for C.

The images for α = -1.0 show the opposite behavior. From our
analysis we deduce the following error behavior:
ε(DL) < ε(DC) < ε(C). From Fig. 3 we conclude, that C clearly is
the worst image. Also a visual comparison of DC and DL leads to
the conclusion, that DL is better than DC. The error images in
Fig. 4 support this analysis.

The rows for α = -0.6 and α = -0.7 show rather a transitional
phase. Since the change of the filter weights happens continuously,
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we cannot necessarily expect a sudden sharp change in the image
quality. The differences in the image quality can be better studied
using the error images in Fig. 4. We can conclude, that for α = -0.6
our results follow our theoretical analysis: ε(DC) < ε(C) < ε(DL).
However, for α = -0.7 it is debatable, which method is preferable
in terms of image quality. Analytically we show
ε(DC) < ε(DL) < ε(C). It is clear, that the image for C is the least
appealing to the viewer.

6 CONCLUSIONS AND FUTURE GOALS
We have classified the different techniques of normal estima-

tion into four groups, and we have developed a new scheme
F(DH). We showed that the schemes (FD)H, (FH)D and F(DH) are
numerically equivalent, and then extended the idea of classifying
filters using Taylor series expansion to the convolution of two fil-
ters. We found that computing the analytic derivative of a filter
kernel (method ) is not always more accurate than using a
combination of that filter with the central difference kernel (any of
the methods FDH). Therefore, a careful analysis of existing filters
and filter combinations is suggested.

The new scheme F(DH) opens up new ways to design contin-
uous derivative filters. Furthermore, this method of normal estima-
tion is also the second most cost-efficient one, if no caching is
performed (with  being the most cost effective one). However,
if caching is enabled, then the method (FH)D is clearly preferable
over any other method in terms of efficiency. In fact, what is
believed as one of the most commonly used methods, (FD)H, is
one of the slowest normal estimation method. The only advantage
one could gain is the pre-calculation of the shading operation at the
grid voxels, as Levoy [8] has proposed it. However, as was pointed
out in Section 2, this method is certainly not preferable if accu-
rately rendered images are required.

One of our immediate goals is to compare various combina-
tions of known derivative and interpolation filters in order to find
new derivative filters. We also would like to extend the error analy-
sis to frequency space so that we can examine any aliasing and
smoothing errors. Finally, it would contribute to the accuracy of
our analysis to include a noise model. We also believe that it is
very important to further investigate the shading and classification
steps in terms of numerical accuracy.
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Theoretical Cost
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and Central Diff.
Trilinear Interp. and 

Central Diff.

No Caching Caching No Cache Cache No Cache Cache

(FD)H 1084m 9n+508m 132m 9n+60m

((FD)CS)H --- --- 9n+508m --- 9n+60m

(FH)D 898m 136m 114m 24m

F(DH) --- 604m --- 84m ---

--- 254m --- 30m ---

Table 2. Comparison of efficiency of the normal estimation schemes
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FIGURE 3. Marschner Lobb data set.

central difference +
linear interpolation (DL)

central difference +
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FIGURE 4. Error images of the Marschner Lobb images in Fig. 3 (see color plates)

central difference +
linear interpolation (DL)

central difference +
cubic interpolation (DC) cubic derivative (C)


