
ABSTRACT

Splatting is a popular direct volume rendering algorithm. However,
the algorithm does not correctly render cases where the volume
sampling rate is higher than the image sampling rate (e.g. more
than one voxel maps into a pixel). This situation arises with ortho-
graphic projections of high-resolution volumes, as well as with
perspective projections of volumes of any resolution. The result is
potentially severe spatial and temporal aliasing artifacts. Some vol-
ume ray-casting algorithms avoid these artifacts by employing
reconstruction kernels which vary in width as the rays diverge.
Unlike ray-casting algorithms, existing splatting algorithms do not
have an equivalent mechanism for avoiding these artifacts. In this
paper we propose such a mechanism, which delivers high-quality
splatted images and has the potential for a very efficient hardware
implementation.

Keywords and Phrases: volume rendering, splatting, direct vol-
ume rendering, resampling, reconstruction, anti-aliasing, perspec-
tive projection.

1.  INTRODUCTION

In the past several years, direct volume rendering has emerged as
an important technology in the fields of computer graphics and sci-
entific visualization, and splatting is one of several popular tech-
niques for direct volume rendering. The majority of images
produced through direct volume rendering have used orthographic
projections, in part because such projections are useful in many of
the application areas (such as biomedical and fluid flow visualiza-
tion) which have initially motivated work in volume rendering.
Perspective projections offer a viewpoint which more naturally
correlates to the way we perceive the physical world, and perspec-
tive projections are essential when it is desirable to “fly through”
the data — flight simulators are one example. A perspective pro-
jection of a volume dataset gives another perceptual cue which can
be employed when comprehending spatial relationships.

Any volume rendering algorithm which supports perspective
projections has to deal with the problem of non-uniform sampling
produced by diverging viewing rays. If not addressed this can
result in potentially severe aliasing artifacts. Although other vol-
ume rendering approaches have dealt with this problem (e.g. ray-
casting [15] and shear-warp [5][6]), to date the problem has not
been addressed in the context of splatting. In this paper, we present
a modification to the splatting algorithm which prevents the alias-
ing that arises from this non-uniform sampling. The same type of
resampling problems occur with an orthographic projection if the
volume resolution is higher than the image resolution (e.g. if many
voxels project into each pixel). Our modified splatting algorithm
also avoids aliasing in this situation.
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In the next section we describe the splatting algorithm and
related previous work, and then we give some advantages and dis-
advantages of splatting as compared to other volume rendering
techniques. In Section 4 we describe our anti-aliasing technique
and argue for its correctness. We follow this with implementation
details and example images. In Section 6 we discuss our findings
and indicate areas of future work.   

2.  PREVIOUS WORK

The splatting technique has been used to directly render volumes
of various grid structures [11][21] and for both scalar [8][21][22]
[23] and vector fields [4]. The basic algorithm, first described by
Westover [21], projects each voxel to the screen and composites it
into an accumulating image. It solves the hidden surface problem
by using a painter’s algorithm: it visits the voxels in either a back-
to-front or front-to-back order, with closer voxels overwriting far-
ther voxels. Splatting is an object-order algorithm: the resulting
image is built up voxel-by-voxel. This is in contrast to volume ren-
dering by ray-casting, which is an image-order algorithm that
builds up the resulting image pixel by pixel.

As each voxel is projected onto the image plane, the voxel’s
energy is spread over the image raster using a reconstruction kernel
centered at the voxel’s projection point. This reconstruction kernel
is called a “splat”; its name comes from the colorful analogy of
throwing a snowball against a wall, with the spreading energy anal-
ogous to the “splatting” snow. Conceptually, the splat is considered
a spherically symmetric 3D reconstruction kernel centered at a
voxel. But because the splat is reconstructed into a 2D image ras-
ter, it can be implemented as a 2D reconstruction kernel. This 2D
kernel, called a “footprint function”, contains the integration of the
3D kernel along one dimension. Because the 3D kernel is spheri-
cally symmetric, it does not matter along which axis this integra-
tion is performed. The integration is usually pre-computed, and the
footprint function is represented as a finely sampled 2D lookup
table. The 2D table is centered at the projection point and sampled
by the pixels which lie within its extent. Each pixel composites the
value it already contains with the new value from the footprint
table. Under certain conditions (regular volume grid spacing,
orthographic view projection, radially symmetric splat kernel) the
footprint table can be computed once and used unmodified for all
voxels. Under different conditions, the footprint function will vary,
and consequently must be re-computed for each view (when there
is a non-symmetric kernel) and possibly for each voxel (when
there is a perspective projection). 

Recent work has extended the original splatting algorithm to
achieve higher quality as well as faster rendering. To improve
image quality, in later work Westover [22][23] first accumulates
splats onto a 2D sheet that is aligned with the volume axis most
parallel to the view plane, and then composites the sheets in depth
order into the image with a matting operation. Image quality is also
affected by the size, shape, and type of the reconstruction kernel
used. Laur and Hanrahan [8] change the size of a splat based upon
the cell it represents in an octree representation of the volume.
Mao [11] uses spherical and ellipsoidal kernels with varying sizes
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to splat non-rectilinear grids. Mueller and Yagel [14] use an image-
order splatting approach which improves accuracy when using a
perspective projection. And while to date most splatting imple-
mentations have used a Gaussian reconstruction kernel, other ker-
nel types can generate higher quality images. Max [12] and
Crawfis and Max [4] propose quadratic spline functions, optimized
for certain conditions, as splat kernels. 

To improve rendering speed, Westover [22] maps view depen-
dent footprints with a circular or elliptical shape to a generic foot-
print table which only needs to be computed once. Laur and
Hanrahan [8] approximate splats with a triangle mesh and use
graphics hardware to quickly scan convert the footprint. Crawfis
and Max [4] and Yagel et al. [26] also use texture mapping hard-
ware to quickly render splats represented as textures mapped to
polygons. Splatting can also be accelerated by preprocessing the
volume and culling voxels which will not contribute to the final
image. Laur and Hanrahan [8] cull with an octree structure, and
Yagel et al. [26] extract and store only the most visually significant
voxels.

3.  ADVANTAGES AND DISADVANTAGES 
OF SPLATTING

In this section we compare splatting to other rendering algorithms.
When listing the disadvantages of splatting, we distinguish
between inherent problems and those that are due to inaccuracies
in current splatting implementations. 

3.1  Advantages of Splatting

The main advantage of splatting over ray-casting is that splatting is
inherently faster. In ray-casting, reconstruction is performed for
each sample point along the ray. At each sample point a  convo-
lution filter is applied. Even if, on the average, each of the  vox-
els are sampled only once, ray-casting has a complexity of at least

. In splatting, on the other hand, the convolution is precom-
puted, and every voxel is splatted exactly once. Each splat requires

 compositing operations. Therefore, one can expect a complex-
ity of at most . This gives splatting an inherent speed advan-
tage. An additional benefit is that one can afford to employ larger
reconstruction kernels and improve the accuracy of splatting,
incurring an  penalty instead of an  penalty.

Because splatting is an object-order rendering algorithm, it
has a simple, static parallel decomposition [9][23], where the vol-
ume raster is evenly divided among the processors. It is more diffi-
cult to distribute the data with ray-driven approaches, because each
ray might need to access many different parts of the volume raster.

Splatting is trivially accelerated by ignoring empty voxels. It
can be accelerated further by extracting and storing just those vox-
els which contribute to the final image [26], which prevents tra-
versing the entire volume raster. This is equivalent to similar
acceleration techniques for volume ray-casting, such as space-
leaping [25] or fitted extents [19], which accelerate ray-casting by
quickly traversing empty space.

Because splatting generates images in a strict front-to-back or
back-to-front order, observing the partially created images can give
insight into the data which is not available from image-order tech-
niques. In particular, with a back-to-front ordering, partial images
reveal interior structures, while with a front-to-back ordering it is
possible to terminate the rendering early [14]. 

Finally, splatting is the preferred volume rendering technique
when the desired result is an X-ray projection image instead of the
usual composited image [14]. This is because the summation of
pre-integrated reconstruction kernels is both faster and more accu-
rate than ray-casting approaches, which require the summation of

many discrete sums. Creating X-ray projection images from vol-
umes is an important step in the reconstruction algorithms
employed by tomographic medical imaging devices [14][3], such
as CT and PET.

3.2  Inherent Disadvantages of Splatting

There are some disadvantages inherent to the splatting method.
One is that while an ideal volume renderer first performs the pro-
cess of reconstruction and then the process of integration (or com-
position) for the entire volume, splatting forces both reconstruction
and integration to be performed on a per-splat basis. The result is
incorrect where the splats overlap, and the splats must overlap to
ensure a smooth image. This problem is particularly noticeable
when the traversal order of the volume raster changes during an
animation [22].

Another disadvantage of splatting lies in the ordering of the
classification, shading, and reconstruction steps. For efficiency rea-
sons, in splatting both (transfer function-based) classification and
shading are usually applied to the data prior to reconstruction. This
is also commonly done in ray-casting [7]. However, this produces
correct results only if both classification and shading are linear
operators. The result of employing a non-linear classification or
illumination model may cause the appearance of pseudo-features
that do not exist in the original data. For example, if we want to
find the color and opacity at the center point between the two data
values a and b using linear interpolation, we would compute

 performing classification first, but the correct
value would be  performing interpolation first.
Clearly, if C is a non-linear operator, these two results will be dif-
ferent. Requiring C to be linear generally means that the shading
model can only model diffuse illumination. While methods exist
for ray-casting that perform classification and shading after recon-
struction [2][13][17], this is not possible in splatting.

3.3  Implementation-Based Disadvantages 
of Splatting

With a ray-casting volume rendering algorithm it is easy to termi-
nate the rays early when using a front-to-back compositing
scheme, which can substantially accelerate rendering. Although
not reported in the literature, early termination could potentially be
implemented for splatting by employing the dynamic screen mech-
anism [18] (also used by [6] for shear-warp volume rendering).
Also, the ray-driven splatting [14] implementation can support
early ray termination.

While ray-casting of volumes was originally implemented for
both orthographic and perspective viewing, splatting was fully
implemented only for orthographic viewing. Although ray-casting
has to include some mechanism to deal with the non-uniform
reconstruction that is necessary with diverging viewing rays, it
seems splatting needs to address several more inaccuracies. For the
following discussion, it is useful to adopt the definitions given in
[4], [14], and [26] which view the footprint table as a polygon in
world space centered at the voxel position with the pre-integrated
filter kernel function texture-mapped onto it. As is described in
[14], when mapping the footprint polygon onto the screen an accu-
rate perspective splatting implementation must: (1) align the foot-
print polygon perpendicularly with the projector (sight ray) that
goes through the polygon center; (2) perspectively project it to the
screen to get its screen extent, and (3) ensure that the projector
(sight ray) for every pixel that falls within this extent traverses the
polygon at a perpendicular angle as well. All three conditions are
violated in Westover’s splatting algorithm [21]. Mueller and Yagel
[14] give a voxel-driven splatting approach that takes care of con-
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dition (1) and (2), and a ray-driven approach that fulfills all three
conditions. 

4.  AN ANTI-ALIASING TECHNIQUE FOR 
SPLATTING

In this section we describe our splatting-based anti-aliasing
method and argue for its correctness. In Section 4.1 we describe
why anti-aliasing is needed for volume rendering algorithms. In
Section 4.2 we develop an expression (Equation 2) which, if satis-
fied by a given volume rendering algorithm, indicates that the algo-
rithm will not produce the sample-rate aliasing artifacts that arise
from the resampling phase of the rendering process. In Section 4.3
we describe our anti-aliasing method, and in Section 4.4 we show
that our method satisfies the equation developed in Section 4.2,
which argues for the correctness of the method. Section 4.5
describes the anti-aliasing method’s frequency domain characteris-
tics and discusses the effects of using a non-ideal reconstruction
kernel. Finally, Section 4.6 analyzes the error that results from the
way the technique estimates the local sampling rate. 

4.1  The Need for Anti-Aliasing in Volume 
Rendering

The process of volume rendering is based on the integration (or
composition), along an integration grid, of the volume raster. This
integration grid is composed of sight projectors (or rays) which
pass from the eye point, through the view plane, and into the vol-
ume raster. Before this integration can occur, the volume raster has
to be reconstructed and then resampled along the integration grid.
This is illustrated in Figure 1 for a perspective view of the volume,
where the volume raster is shown as a lattice of dots, and the inte-
gration grid is shown as a series of rays, cast through pixels, which
traverse the volume raster. Figure 1a shows the scene in eye space,
where the eye is located at point  and is looking down the
positive z-axis (denoted ). The perspective transformation
means the integration grid diverges as it traverses the volume.
Figure 1b shows the same scene in perspective space, after per-
spective transformation and perspective division. Here the volume
raster is distorted according to the perspective transformation, and
the integration grid lines are parallel. Because of this the eye is no
longer located at a point, but can be considered the plane .

The reconstruction and resampling of the volume raster onto
the integration grid has to be done properly to avoid aliasing arti-
facts. Ideally, aliasing is avoided by (1) sampling above the
Nyquist limit, and (2) reconstructing with an ideal filter. The alias-
ing that results from an insufficient sampling rate (below the
Nyquist limit) is called prealiasing — it is caused by energy from
the alias spectra spilling over into the primary spectrum. The alias-
ing that results from a non-ideal reconstruction filter is called post-
aliasing — it is caused by the non-ideal filter picking up energy
from the alias spectra beyond the Nyquist limit (see Figure 5 and
[16][10][24]). In practice, it is not possible to implement an ideal
reconstruction filter, and so criteria (2) cannot be achieved — any
realizable filter inevitably results in a tradeoff among aliasing,
blurring, and other artifacts [10]. However, reconstruction filters
previously used for splatting, in particular Gaussian filters, contrib-
ute very little postaliasing at the cost of substantial blurring [10]. In
current splatting implementations, the great majority of aliasing is
prealiasing; it arises from not achieving criteria (1). Therefore, in
the rest of this paper, when referring to the term ‘aliasing’ we gen-
erally mean prealiasing, or aliasing that results from not sampling
above the Nyquist limit.

It may be possible to sample above the Nyquist limit, but if
this is not possible then aliasing can also be avoided by low-pass
filtering the volume to reduce its frequency content. For an ortho-
graphic view this low-pass filtering must be applied to the entire
volume, but for a perspective view low-pass filtering may only be
required for a portion of the volume. This can most easily be seen
in perspective space (Figure 1b). Note that there is a distance along
the  axis, denoted , where the sampling rate of the volume
raster and the sampling rate of the integration grid are the same.
Previous to this distance there is less than one voxel per pixel, and
beyond this distance there is more than one voxel per pixel. When
there is more than one voxel per pixel, the volume raster can con-
tain frequency information which is higher than the integration
grid can represent, and so aliasing is possible. In the next section
this concept is developed into an equation. 

Note that same concept holds in eye space (Figure 1a). Here
there is an equivalent distance along the  axis, denoted k,
where the sampling rates of the volume raster and the integration
grid are the same (note that in general , but the two dis-
tances are related by the perspective transformation). Aliasing arti-
facts can occur beyond k, when the distance between adjacent rays
is greater than one voxel.

Volume ray-casting algorithms generally perform the recon-
struction in eye space. Some avoid aliasing by employing recon-

FIGURE 1. Resampling the volume raster onto the integration grid. (a) In eye space. (b) In perspective space.
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struction kernels which become larger as the rays diverge [15][17].
This provides an amount of low-pass filtering which is propor-
tional to the distance between the rays. Splatting algorithms gener-
ally perform the reconstruction in perspective space. Unlike ray-
casting algorithms, existing splatting algorithms do not have an
equivalent mechanism to avoid aliasing. In this paper we propose
such a mechanism.

4.2  Necessary Conditions to Avoid 
Aliasing

In this section we give the conditions which are necessary for the
volume rendering resampling process to avoid introducing sample-
rate aliasing artifacts into the integration grid samples. Let s be the
volume raster grid spacing (Figure 1a), and  be the vol-
ume raster sampling rate. The volume raster contains aliasing
when either (1) the sampled function is not bandlimited, or (2) the
function is bandlimited at frequency w but the sampling rate ρ is
below the Nyquist limit: 

If the first condition holds then aliasing will be present no
matter how large ρ becomes. However, if the function is bandlim-
ited at w, then as long as

 (1)

there is no aliasing in the volume raster. Assuming that Equation 1
is true, our job is to resample the volume raster onto the integration
grid in a manner that guarantees that no aliasing is introduced. 

Let φ represent the sampling frequency of the integration grid.
For a perspective projection the integration grid diverges
(Figure 1a) and therefore φ is a function of distance along the 
axis: , where d is the distance. For an orthographic pro-
jection we can still express  as a function, but it will have a
constant value. As illustrated in Figure 1, at k the sampling rates of
the volume raster and the integration grid are the same: 

The distance k means there are two cases to consider:

• Case 1: . This is the case for the portion of the grid in
Figure 1a previous to k. Here , and if Equation 1 holds
then  and there is no aliasing. 

• Case 2: . This is the case for the portion of the grid in
Figure 1a beyond k. Here , and so it may be that

. If this is the case, then the integration grid will contain
an aliased signal once d is large enough.

This argument shows that, given Equation 1, volume rendering
algorithms do not have to perform anti-aliasing as long as Case 1
holds (previous to the distance k). However, once Case 2 holds
(beyond k), it is necessary to low-pass filter the volume raster to
avoid aliasing. Ideally the amount of this filtering is a function of
d* , and reduces the highest frequency in the volume raster from w
to . To avoid aliasing there must be enough low-pass filtering
so that 

(2)

By showing that this equation holds for a particular volume render-
ing technique, we can claim that the technique does not introduce
sample-rate aliasing artifacts when resampling from the volume
raster onto the integration grid.

4.3  An Anti-Aliasing Method for Splatting

As mentioned in Section 4.1 above, volume ray-casting algorithms
avoid aliasing by using reconstruction kernels which increase in
size as the integration grid rays diverge, which satisfies Equation 2.
In this section we give a similar anti-aliasing algorithm for splat-
ting.

As shown in Figure 1a, at distance k the ratio of the volume
raster sampling frequency ρ and the integration grid sampling fre-
quency  is one-to-one. k can be calculated from similar trian-
gles:

 (3)

where s is the sample spacing of the volume raster, p is the extent
of a pixel, and D is the distance from the eye point to the screen.

Figure 3 gives a “side view” of splatting as implemented by
Westover [21][22][23], as well as our anti-aliasing method. In
Figure 3 the y-axis is drawn vertically, the z-axis is drawn horizon-
tally, the x-axis comes out of and goes into the page, and diagrams
are shown in both eye space  and perspective space

. The top row illustrates standard splatting. As in
Figure 1, D is the distance of the view plane from the eye point,
and k is calculated from Equation 3. For this example we are ren-
dering a single row of splats, which are equally spaced along the

 axis (Figure 3a). Each splat is the same size in eye space.
Figure 3b shows the same scene in perspective space. Here 
and  are D and k expressed in  coordinates. As expected,
because of the non-linear perspective transformation, the splat
spacing is now non-uniform along the  axis, and the size of the
splats decreases with increasing distance from the eye. 

The bottom row illustrates our anti-aliasing method. Previous
to k we draw splats the same size in eye space (Figure 3c). Begin-
ning at k, we scale the splats so they become larger with increasing
distance from the view plane. This scaling is proportional to the
viewing frustum, and is given in Equation 4 below. Figure 3d
shows what happens in perspective space. Previous to  we draw
the splats with decreasing sizes according to the perspective trans-
formation. Beginning at , we draw all splats the same size, so
splats with a  coordinate greater than  are the same size as
splats with a  coordinate equal to . 

Figure 2 gives the geometry for scaling splats drawn beyond
k. If a splat drawn at distance k has the radius , then the radius

of a splat drawn at distance  is the projection of  along
the viewing frustum. This is calculated by similar triangles:

(4)

*This is because a portion of the volume raster may not require any filter-
ing (Case 1), and for the portion that does require filtering (Case 2), if there
is a perspective projection then the amount of filtering required is itself a
function of d.
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Scaling the splats drawn beyond k is not enough to provide
anti-aliasing, however. In addition to scaling, the energy that these
splats contribute to the image needs to be the same as it would have
been if they had not been scaled. As shown in Figure 2, both splat
1 and splat 2 project to the same sized area on the view plane.
Because they are composited into the view plane in the form of
two-dimensional “footprint” filter kernels [22], the amount of
energy the splats contribute to the view plane is proportional to
their areas. We want the amount of energy per unit area contributed
by the splats to be the same. We accomplish this by attenuating the
energy of splat 2 according to the ratio of the areas of the splats:

(5)

where ,  are the areas of the splats and ,  are some
energy measure for the splats. Examples of energy measures
include the volume under the splat kernel or the alpha channel of
the polygon defining the 2D splat footprint.

Assume for now that the filter kernel is a circle for both
splats. Then the areas of the splats are  and .
By Equation 4 we can express  in terms of :

(6)

Then

(7)

which can be simplified to

(8)

Although here we have derived Equation 8 using circular filter ker-
nels, we can also use any other two-dimensional shape for the ker-
nel, such as an ellipse, square, rectangle, parallelogram, etc. and
derive the same equation. We use Equation 8 to attenuate the
energy of all splats drawn beyond k.

4.4  Correctness of the Method

We now demonstrate that Equation 2 holds for our anti-aliasing
technique. We begin by deriving expressions for the two functions
in Equation 2 —  (the integration grid sampling frequency at
d) and  (the maximum volume raster frequency at d). 

We derive the integration grid sampling frequency  with
a similar-triangles argument. Consider Figure 4, where q is the
integration grid spacing at distance d from the eyepoint. By similar
triangles

(9)
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which can be written as

(10)

Now , and  is simply , the integration grid
sampling frequency at d. Thus we have

(11)

The maximum volume raster frequency  can be derived
from the scaling property of the Fourier transform [1]:

(12)

where “↔” indicates a Fourier transform pair. This shows that
widening a function by the factor a in the spatial domain is equiva-
lent to narrowing the function in the frequency domain by the fac-
tor . In our anti-aliasing method, the widening for the splat
kernels drawn beyond k is given by Equation 4:

(13)

Thus we have

(14)

which shows that as the splat kernels are widened by , the fre-
quency components of the function they reconstruct are narrowed
by . Since all the frequencies of the volume raster are attenu-
ated by , the maximum frequency w is attenuated by the same
amount, and we have:

(15)

Now we are ready to show that our technique satisfies
Equation 2. We start with Equation 1:  which implies that
the volume raster has sampled the function above the Nyquist
limit. Multiplying both sides by  we have

(16)

which we can write as:

(17)

This derivation says that if the volume raster has sampled the func-
tion above the Nyquist limit, our anti-aliasing technique provides
enough low-pass filtering so that aliasing is not introduced when
the volume raster is resampled onto the integration grid. Note that
this derivation only deals with the prealiasing that results from an
inadequate sampling rate — it does not address the aliasing or
blurring effects which result from using a non-ideal reconstruction
filter. 

4.5  Frequency Domain Behavior

This section describes the frequency-domain behavior of the anti-
aliasing method, and it illustrates the effects of reconstructing with

a non-ideal reconstruction kernel. Figure 5 compares the fre-
quency-domain behavior of the standard splatting technique with
the new anti-aliasing technique. For clarity, the diagrams are all
drawn in one dimension; the extension to three dimensions is
straightforward. 

Figure 5a shows what happens in the frequency domain when
resampling from the volume raster onto the integration grid previ-
ous to the distance k (e.g. ). There is a primary spectrum at
the origin of frequency space, and alias spectra replicated at regu-
lar intervals of , the integration grid frequency for the dis-
tance d. Assuming Equation 1 is true, then  and the
primary and alias spectra do not overlap, and therefore there is no
prealiasing [16][10]. As shown, an ideal reconstruction filter
would have the value 1 between  and ,
and 0 elsewhere, which would yield the primary spectrum. Of
course, an ideal filter cannot be implemented, and a standard, real-
izable splatting reconstruction kernel is also shown. This filter
blurs the primary spectrum, yielding the reconstructed spectrum as
shown. A realizable filter also typically picks up some energy
beyond the Nyquist limit of , and so it is susceptible
to postaliasing as well [16][10].

Figure 5b shows what happens in standard splatting beyond
the distance k (e.g. ). Here  has shrunk, which pulls the
alias spectra into the primary spectrum, resulting in prealiasing. An
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ideal reconstruction kernel would shrink as well — thus getting
larger in the spatial domain — which would pick up some prealias-
ing but reject the postaliasing. A standard splatting reconstruction
kernel stays the same size, so it picks up both more of the prealias-
ing and the postaliasing. Figure 5c shows what happens with the
anti-aliasing method at the same location — the splatting recon-
struction kernel shrinks in the frequency domain according to d.
This eliminates almost all of the postaliasing and most of the pre-
aliasing, at the expense of blurring.

4.6  Integration Grid Sampling Rate Error

As calculated from Figure 1 and Equation 3, the integration grid
sampling rate at position k is only exactly correct for splats cen-
tered on the  axis. In this section we analyze the amount of
error incurred for splats that do not lie along this axis.

The geometry of the calculation is given in Figure 6. For the
two rays shown, let r be the length, calculated from Equation 4, of
the radius of the splat. A more accurate way to approximate the
integration grid sampling rate is to measure the “perpendicular”
distance between the two rays, given by  (as shown  is only
perpendicular to the bottom ray; it is not quite perpendicular to the
top ray). As calculated from the angle α, the error is given by

, where we say “approximately equal” because the
angle β is not exactly a right angle. This means that Equation 4
underestimates  by a small amount, and thus voxels which do
not lie on the  axis receive a greater amount of low-pass filter-
ing than they actually require. For example, at the view cone
boundary with  Equation 4 chooses a kernel that is about

 times larger than it needs to be. It is important
to note, however, that because this error results in more low-pass
filtering than is actually required, Equation 2 is still satisfied and
so this error does not result in aliasing.

5.  RESULTS

In our implementation of this algorithm we make use of rendering
hardware to quickly draw the splats, in a manner similar to [4],
[14], and [26]. For each splat we draw a polygon in world space
centered at the voxel position. The polygon is rotated so it is per-
pendicular to the ray passing from the eye point through the voxel
position. The splat kernel is pre-computed and stored in a

 table which is texture mapped onto the polygon by the
rendering hardware. We use the optimal cubic spline splat kernel
reported in [4]. We attenuate the alpha channel of the polygon as a
measure of splat energy when evaluating Equation 8, and then
composite the semi-transparent splat polygon into the screen
buffer.

Our renderer is a modified version of the “splat renderer”
reported in [26]. For a given volume we extract and store a subset
of the voxels. For each voxel we evaluate a transfer function

, where ∇ and ρ are the gradient and density of the
voxel, respectively; we include the voxel in the subset if t exceeds a
user-defined threshold. We store this volume subset as a 2D array
of splat rows, where each row contains only the extracted voxels.
Each row is implemented as an array of voxels, but the voxels are
not necessarily contiguous, and so we must store each voxel’s loca-
tion and normal vector. In general each row may contain a different
numbers of voxels. Despite not storing the empty voxels, we can
still traverse this data structure in either a back-to-front or front-to-
back order. 

Figure 7 (see color plates) shows a collection of images
obtained from both a standard splatting algorithm and the anti-
aliased algorithm reported in this paper. The images in the left col-
umn are rendered without anti-aliasing, while the images in the
right column are rendered with anti-aliasing. 

Figures 7 (a) and (b) show a  volume consist-
ing of a single sheet, where alternate  squares are colored
either red or white to create a checkerboard effect. The resulting
dataset contains 198K splats which are rendered into a 
image. In Figure 7 (a) a black line is drawn at the distance k;
beyond this line there is more than one voxel per pixel. As
expected, the left-hand image shows strong aliasing effects, but
these are smoothed out in the right-hand image.

Figures 7 (c) and (d) show a  volume con-
taining a terrain dataset acquired from a satellite photograph and a
corresponding height field. The resulting dataset contains 386K
splats (this is more than the expected  splats because extra
splats are required to fill in the “holes” formed where adjacent
splats differ in height). Each column of splats is given the color of
the corresponding pixel from the satellite photograph. The dataset
is rendered into a  image. In Figure 7 (c) a black line is
drawn at the distance k. The left-hand image shows strong aliasing
in the upper half of the image (containing about 90% of the data);
when animated, these regions show prominent flickering and strob-
ing effects. In the right-hand image these regions have been
smoothed out; and although this technique does not address tempo-
ral aliasing effects, when animated these regions are free of flicker-
ing and strobing effects.

Figures 7 (e) and (f) show a  volume contain-
ing a microtubule study acquired from confocal microscopy. The
resulting dataset contains 103K splats which are rendered into a

 image. Unlike the previous images, where the view-
point is set so that the datasets disappear into the horizon and thus
the splats have a great range of sizes (covering several pixels to
much less than a single pixel), in this image the entire dataset is
visible, and the range of splat sizes is much smaller. However,
because the volume has a higher resolution than the image it is still
liable to aliasing effects (all of the splats are drawn beyond the dis-
tance k). This is shown in the left-hand image, which contains
jagged artifacts that shimmer when animated. In the right-hand
image these effects have been smoothed out; when animated this
shimmering effect disappears. 

6.  FUTURE WORK

An area of future work is modifying our implementation to take
better advantage of the rendering hardware. As reported in [26],
depending on the machine and the number of extracted voxels, our
renderer can give real-time performance. However, our current
implementation does not take full advantage of the rendering
speeds offered by the graphics hardware. Since the anti-aliased
splats defined by Equation 4 project to the same size on the screen,
it would be more efficient to draw the splats directly on the screen
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instead of drawing the scaled splats in eye space. We are currently
looking into hardware-supported bitblt operations to provide opti-
mal rendering speeds.

Another area of future work is an effort in the opposite direc-
tion. In this project there is a mismatch between the type of render-
ing algorithm we have written and the available programming
tools: the Silicon Graphics rendering hardware we used is designed
to accelerate scenes using traditional surface graphics primitives
such as polygons and spline surfaces; it does not contain an opti-
mized splat primitive. To this end, new hardware architectures
which better support operations which are common in volume ren-
dering are needed. Some possible avenues of exploration are:

• Extended bitblt-like operators that can be sub-pixel centered
and subsequently composited.

• Hardware support for point rendering using different recon-
struction kernels (cubic, Gaussian, etc.) with common footprints
(circular, elliptical, etc.). Potentially this offers a far more efficient
implementation of splatting than hardware texture mapping.

• A higher resolution alpha channel to allow for the accurate
accumulation of very transparent splats.

• Splat primitives with automatic size scaling based on their z-
depth.

A splat primitive has properties of both simple points (always lying
in the projection plane) and texture maps (non-linear intensities
across the primitive). We are currently working on scanline algo-
rithms to efficiently render splat primitives, with the goal of future
hardware implementations.

The implications of our technique for rendering other types of
objects needs to be explored. As shown in Figure 7 (a)–(d), one
can employ our technique for traditional texture mapping. Our
method obviously provides an accurate solution to the texture sam-
pling problem — a solution which is much more accurate than
either mip-maps or summed area tables [20]. We are exploring this
point-based approach to viewing and rendering as an alternative to
the traditional scanline rendering of discrete objects, and we are
exploring its applications for texture mapping, image-base render-
ing, and volume rendering.
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