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Evaluation and Design of Filters
Using a Taylor Series Expansion

Torsten Méller, Raghu Machiraju, Klaus Mueller, and Roni Yagel

Abstract —We describe a new method for analyzing, classifying, and evaluating filters that can be applied to interpolation filters as
well as to arbitrary derivative filters of any order. Our analysis is based on the Taylor series expansion of the convolution sum. Our
analysis shows the need and derives the method for the normalization of derivative filter weights. Under certain minimal restrictions
of the underlying function, we are able to compute tight absolute error bounds of the reconstruction process. We demonstrate the
utilization of our methods to the analysis of the class of cubic BC-spline filters. As our technique is not restricted to interpolation
filters, we are able to show that the Catmull-Rom spline filter and its derivative are the most accurate reconstruction and derivative
filters, respectively, among the class of BC-spline filters. We also present a new derivative filter which features better spatial
accuracy than any derivative BC-spline filter, and is optimal within our framework. We conclude by demonstrating the use of these
optimal filters for accurate interpolation and gradient estimation in volume rendering.

Index Terms —Interpolation filters, derivative filters, filter design, normal estimation, gradient estimation, normalization of filters,

Taylor series expansion, volume rendering, cubic filters.

1 INTRODUCTION

R ECONSTRUCTION of a continuous function and its de-
rivatives from a set of samples is one of the fundamen-
tal operations in visualization algorithms. In volume ren-
dering, for instance, we must be able to interpolate the
function at arbitrary locations to evaluate the rendering
integral. The gradient (the first derivative of the function) is
employed in volume classification and shading [5], [10].

1.1 Assumptions

We denote by f(t) a continuous function (the signal) which is
sampled into the discrete function f, = f(kT), where T is
the sampling distance and k is an integer. In computer im-
aging f(t) is not available; we only have f,. In order to em-
ploy Taylor series expansion, the foundation of our
method, we require that the first N derivatives of the func-
tion exist, where N depends on our error analysis. This
condition is usually met in practice, since image and vol-
ume acquisition devices, such as scanners and cameras,
inherently perform a lowpass filtering operation that ban-
dlimits the functions [2]. Numerical simulations of physical
phenomena, as performed in computational fluid dynam-
ics, usually generate bandlimited images as well, since typi-
cally robust numerical solutions can be obtained only if the
algorithm incorporates a smoothing step. Finally, all ren-
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dering and scan-conversion algorithms, in order to provide
antialiased images, generally employ a filtering step that
bandlimits the image.

1.2 Motivation

Before resampling we must reconstruct from f, the con-
tinuous function, which we denote by f(t). Here, h denotes
the low-pass interpolation filter. Some applications (e.g.,
volume rendering) perform a gradient-based shading op-
eration. Thus, we need to reconstruct the derivative of f(t)
from the known samples f,. In the following, the derivative
of the continuous function f(t) is denoted by f’(t), and the
reconstructed derivative is denoted by f’(t). Here, d stands
for the high-pass derivative filter. In most applications, effi-
ciency considerations steer the filter selection, ignoring the
adverse effect the chosen filters h and d may have on image
quality. The trilinear and central difference filters are often
used for the reconstruction of the underlying function and
its derivative, respectively, because they do not require
much computational effort. However, the use of the trilin-
ear filter leads to blurring and aliasing in the final image
[13], while the application of the central difference filter
results in the loss of fine detail [1].

With recent advances in hardware (e.g., the emergence
of fast CPUs, DSP boards, texture mapping hardware), we
can now afford to use computationally more expensive fil-
ters with better image quality characteristics than trilinear
and central-difference filters. To enable the evaluation of
the performance of these more expensive filters, there exists
a need for both subjective and objective metrics. Subjective
measures usually involve real human subjects who judge
the suitability for particular applications. Objective metrics
are computational in nature, and may or may not include
the human observer. If the human visual system is in-
cluded, it is usually in the form of a numerical model. For
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example, the frequency response of the human visual sys-
tem can be represented by the Contrast Sensitivity Function
[12]. Thus, the resulting metric will measure the response of
the visual system to frequencies. Objective metrics are used
to measure the numerical accuracy of the filters, and can be
further subdivided into quantitative and qualitative met-
rics. Qualitative methods allow us to make general judg-
ments about the numerical accuracy of filters, whereas
quantitative methods allow us to evaluate the absolute er-
ror. The latter has the potential to lead to improved local
reconstruction methods as was shown by Machiraju and
Yagel [11]. Quantitative methods are useful, since they pro-
vide an error metric to compare and contrast filters. They
also provide a means to select optimal filters. On the other
hand, qualitative methods allow the classification of the
filters into categories, and are based on the asymptotic be-
havior of the error in terms of the original sampling dis-
tance.

For our evaluation methods, we require that the function
is included in the evaluation. In general, metrics should be
independent of the function. However, for certain situa-
tions, it is useful that the function be included, especially if
the filter is to be optimized for a particular function. Also,
the evaluation should be conducted in the spatial domain
instead of the frequency domain. Frequency domain meth-
ods, when used for evaluating function reconstruction, can
only measure global errors, as it is assumed that the con-
volution operation in the spatial domain is invariant (e.g.,
the function interpolation occurs at the same inter-sample
distance everywhere using the same filter kernel).

The outline of this paper is as follows. Section 2 summa-
rizes previous research that has been done in this field. In
Section 3, we introduce the Taylor series expansion of the
convolution sum. Due to their importance, we focus on in-
terpolation and first derivative filters. In Section 4, we
illustrate an application of our method to the group of
cubic BC-spline interpolation and first derivative filters.
In Section 5, we present some experimental results, and in
Section 6, we suggest steps for furthering this research.
Finally, in Section 7, we summarize our findings.

2 RELATED WORK

Researchers have generally studied and evaluated filters in
the frequency domain. One of the earliest comparative
studies of interpolation filters for image resampling was
done by Parker et al. [17]. Here, a comparison of nearest
neighbor, linear, cubic B-splines, and two members of the
class of Cardinal cubic splines was conducted via a discus-
sion of their respective frequency spectra.

A thorough study of Cardinal cubic splines in the fre-
quency domain was performed by Park and Schowengerdt
[16]. They found that the optimal interpolation filter of this
class highly depends on the signal to which it will be ap-
plied. For most signals, the parameter o« was found to be
around -0.6 and -0.5, where the latter corresponds to the
Catmull-Rom spline. Keys [9] showed that, within the class
of Cardinal cubic splines, the Catmull-Rom spline is opti-
mal, in the sense that it interpolates the original function
with the smallest asymptotic spatial error. By using a Tay-

lor series expansion of the convolution sum, he found that
the Catmull-Rom interpolation filter has an error propor-
tional to the cube of the sampling distance.

Mitchell and Netravali [14] introduce a more general class
of cubic splines, which we refer to as BC cubic splines, or, for
short, BC-splines. Cardinal cubic splines are a subclass of the
BC-splines. Mitchell and Netravali conducted a study involv-
ing more than 500 sample images, classifying the parameter
space into different regions of dominating reconstruction
artifacts, such as blurring, ringing, and anisotropy. They
found, by using a Taylor series expansion, that filters for
which B + 2C = 1 are the most accurate numerically within
the class of BC-splines, and have an error proportional to the
square of the sampling distance. Neither Keys nor Mitchell
and Netravali evaluate the absolute error of their filters.

A comparative study by Marschner and Lobb [13] pro-
poses the use of different error metrics for various recon-
struction artifacts. These error metrics are based in the fre-
quency domain, and measure the smoothing, postaliasing,
and overshoot of an interpolation filter. In this study, the
windowed Sinc filter was found to behave the best. How-
ever, their metrics do not depend on the actual function to
be reconstructed or intersample distance. This is unfortu-
nate in light of our earlier comments on filter optimization,
and was found to be crucial by Park and Schowengerdt in
their frequency domain analysis.

All the aforementioned approaches neglect to take into
account the effect of derivative filters on the quality of the
rendered image. In studies that aim at comparing a given
set of filters, the effects of interpolation and derivative fil-
ters must be clearly separated. Otherwise, one may mask
the effect of the interpolation filter by that of the derivative
filter, or vice-versa. For instance, Marschner-Lobb [13], in
their analysis of BC-spline interpolation filters, varied both
the interpolation and derivative filters at the same time. We
will show that many of the effects attributed to the inter-
polation filter are really due to the corresponding deriva-
tive filter. A good survey of existing derivative filters can be
found in the paper by Dutta Roy and Kumar [6], in which
the design of maximal linear filters in the frequency domain
is described. The filter design outlined there can be easily
adapted to various frequency ranges, which is an important
property for practical applications.

Goss [8] extends the idea of windowing from interpola-
tion filters to derivative filters. He uses a Kaiser window to
mitigate the adverse effects of the truncated ideal deriva-
tive filter. In [1], the ideal derivative filter is shown to be
the derivative of the Sinc filter, which we denote as the Cosc
filter. Bentum et al. [1] use the Cardinal cubic splines as a
basis to develop derivative filters. Although the authors
illustrate the effect of various parameters on these filters via
a number of frequency plots, they do not analytically com-
pare the different filters.

While most of the existing research concentrates on fre-
quency analysis, we believe that spatial domain analysis is
just as important. If the local error can be kept small, then
the effect of image artifacts also diminishes. We find that
the results of Keys' [9] spatial analysis are nearly identical
to the results of the frequency analysis done by Park and
Schowengerdt [16].



186 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, APRIL-JUNE 1997

In this work, we develop tools for the spatial analysis of
both interpolation and derivative filters of arbitrary order.
We show the importance of normalizing the filter coeffi-
cients, and how this step is performed. Our method also
yields an absolute error bound of the reconstruction proc-
ess. Specifically, for the class of BC-splines, the application
of the new method allows us to derive both known and
new results (see Section 4).

3 TAYLOR SERIES EXPANSION OF THE
CONVOLUTION SuMm

To reconstruct a continuous function f(t) or its nth deriva-

tive f(”)(t) from a set of sample points f,, we compute a
weighted average of these samples. The sample points are
multiplied with the proper filter weights when convolving
them with a continuous filter h. By convolving the sampled
signal f, with h, we can reconstruct an approximation of
the original function f(t). Similarly, if we convolve the sam-
ples with a continuous derivative filter d, we can recon-
struct an approximation of the nth derivative of the original
function. We denote the result of this operation by f"(t),
where w denotes the type of filter used. Formally, this can be
written as:

d t
£(t) = k_z_“ f, -W[T - k) 1)
The values f, represent the samples of the original func-
tion f(t) at the locations kT, where T is the sampling dis-
tance. Assuming that the first (N + 1) derivatives of f(t) ex-
ist, we can expand f, = f(kT) as a Taylor series in f about t.

Therefore, we write:

f(n)(t)

N F(N+1) )
fo=1(kT) =Y — (5

TINT D!

(kT —t)" (kT — )N
where (&,) € [t,kT]. Substituting this Taylor series expan-

sion into the convolution sum of (1) and reordering the terms
according to the derivatives of f(t), we can rewrite (1) as:

N

1) =Y anOF ") + Y (1) @)
n=0

where the coefficients a,“]fT(t) and the remainder term
ry 1(t) are, respectively:

ay1(t) = % i (kT - t)”w[% - k]
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Let us first have a look at the coefficients a,';. In practice, a

filter w cannot be infinitely long, but must have a finite ex-
tent M. Therefore, w is defined to be zero outside this inter-

val [-M, M]. Furthermore, we observe that a‘ﬁT is a periodic
function with period T. That can easily be verified:

M
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Therefore, a); can be more efficiently studied, if we ex-
press t in terms of a normalized offset =

t
t=(i+r)T,where0£r<1,andi={—J,or

T
t t
TTOT
Hence, the coefficients a,'+ can be expressed in terms of this
offset:

ir(0) = &+ 97) = o S (k= )T =T (e = (k=)

k=i
which can be simplified to:

T" M
ayir(1) == D (k=17)"W(r ~ k) @3)
k=—-M

Since a,; ; does not depend on i, and T is set by the data ac-

quisition step (and thus cannot be changed during the recon-
struction process), we will drop the appropriate subscripts in

the expression for a"'. Here, we note that this formulation
provides a convenient way to study the performance of the
filter w according to the inter-sample distance 7.

If we repeat the same analysis for the remainder term r.",
we find:

(N+1) M

Ni(7) = N+D! 2 f(N+1)(§k,i)(k - 7)(N+1)W(T -k @
k=M

where £, ; €[t,(k+i)T]. Finally, the convolution sum in (1)
can be expressed as:

£¥(t) = i ar(0)f V() + 1y (7) )

n=0

Equation (5) resulted from applying a sequence of alge-
braic manipulations that transformed the convolution sum
of (1) into a form that we can better study. Our next goal is
to interpret this equation, and to derive criteria to help us
evaluate our filter w. In order to do so, let us rewrite (5) in a
more convenient form:

(1) = ay (7)f(t) + &) (7)F"(t) + &) (D) F /() +...+
a0+ (7) (6)
From this expansion, we see that, in the ideal case, all
coefficients aﬁv are zero, except for the one belonging to

the derivative that we want to reconstruct. Furthermore,
the remainder term should also evaluate to zero in the
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The ratio ag/a; in terms of the offset

0.2 04 0.6 0.8 1
offset

Fig. 1. The normalized coefficient a;" of the truncated Cosc filter in
terms of the offset to the next sampled value. It is only zero for
7 =05.

ideal case. Thus, for interpolation filters, we need a, to
evaluate to one and all other coefficients to evaluate to
zero. On the other hand, for first derivative filters, we
need a,' to be one with the other coefficients being zero.
As a result of this observation, we use (6) to derive four
filter evaluation criteria dealing with analysis, normaliza-
tion, classification, and error estimation. We describe
these criteria in the following sections.

Before we end this section, we would like to compare
our methods to previous methods in filter design. This
method outlined here has been used to specify and design
filters, especially those used in wavelet-based multireso-
lution analyses [3]. In [3], a filter w is designed to have the
following n-moment property, namely:

J.xpw(x)dx=0 0<p<n

Thus, the filter w can represent functions which are n-
polynomials accurately. The design of filters as espoused
here is different from classical techniques. Similarly, in
[18], polynomial smoothing filters are designed which
match the function in a least-square sense. On close in-
spection of (3), one can conclude that it represents a dis-
crete evaluation of function moments. Also, the evaluation
depends on the location within each cell. The novelty of
the approach lies not in designing filters, but to actually
use the technique to evaluate the accuracy of function and
(any order) derivative reconstruction. Rather, filter design
occurs as a by-product of the analysis.

3.1 Analysis

According to (6), a filter's characteristics can be analyzed
by its Taylor series coefficients. For example, an interpola-
tion filter will have a nonzero value for a;, while a first

derivative filter will require a, to be zero, and a, to be
nonzero. We can determine the type of the filter we are
dealing with by finding the first Taylor coefficient a, that
is nonzero. More formally speaking, we need to find the
largest n, such that " = 0, V(i < n). The importance of this

test can be demonstrated by an example where the filter,
at first glance, seems to be a first derivative filter. An

Truncated Cosc Filter applied to f(x) = x
15

10

-10

155 0 15 20 25 30 35 40 45

X
Fig. 2. Derivative reconstruction of the function f(x) = x using the
truncated Cosc filter at M = 3. Since the coefficient ag is not zero, we
end up with artifacts that make the filter useless. (The expected result
is the constant function f(x) = 1.)

analysis using (6), however, shows that this filter is far
from perfect.

The reconstruction of the first derivative requires a, to be
zero. In fact, if this condition is violated, the reconstruction
result may not be very useful. For our example, let us exam-
ine the Cosc filter, the ideal derivative filter. It has been
shown that the ideal derivative filter is simply the derivative
of the ideal interpolation filter Sinc [1]. Therefore, we have

t=0

0
Cosc(t) = Sinc’(t) = %[cos(m) B Sir;;ﬂt)] {0

The Cosc filter (like the Sinc filter) is an infinite filter
(IIR), and thus not very practical for graphics and render-
ing. One possible solution could be to use a truncated Cosc
filter, which is equal to the Cosc filter for all [t| < M and zero
outside of this interval. However, we cannot simply use a
truncated Cosc filter, since a, will not be zero. To demon-

strate this, let us set M to three, which results in six filter
weights for the reconstruction. In Fig. 1, we plot the nor-
malized coefficient &y (7)/a}’(7) of the truncated Cosc filter
(we introduce the concept of normalization in the next sec-
tion). It can be seen that this function varies between -0.4
and 0.4 instead of being zero as required from a derivative
filter. Notice the behavior of this specific truncated Cosc
filter when applied to a linear function as shown in Fig. 2.
We would expect a function close to constant one (the
derivative of the linear function f(x) = x), but, instead, we
see a linearly increasing error as f(t) increases. In order to

get a correct result, we need to subtract (a.‘fv(r)/a‘l"’(r))f(t)

from the reconstructed value. This means that we actually
need to reconstruct the original function f(t) in order to
compute its derivative. But this would require another
convolution with an interpolation filter, which would
clearly be inefficient. A proposed way around this problem
is to window the truncated Cosc filter [8].

We conclude that a careful analysis of a filter is neces-
sary before its use.
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3.2 Normalization
Let us assume we have an nth derivative filter that fulfills
the above criteria: a, is nonzero and V(i < n)a" = 0. Since
we want to reconstruct the exact value, we need to require
a, to be one. This can be achieved by normalizing the filter
weights by a.

In the case of an interpolation filter h, we need to require
that ag be exactly one. Using (3), we find:

M
a'(t) = Y w(r - k),
k=—M

Thus, the sum of the filter weights needs to evaluate to
one. This requirement is well known, and is also recom-
mended by Mitchell and Netravali [14] for the design of
filters that fall into the class of BC-splines. To fulfill this
requirement, we simply normalize the filter weights by
dividing them by aj.

As with interpolation filters, we also need to normalize
the first derivative filter d. Since we are reconstructing the
derivative of the function instead of the function itself, we
now set the coefficient for f’(t) to one. Normalization is

performed by dividing the filter weights by af. Using (3)
again, the normalization factor is

a'(n)=T i(k - 7)w(z — k)
Ke—M

The normalization step for derivative filters is a lesser
known fact, but, nevertheless, is very important for accu-
rate normal estimation. Without this normalization step, we
cannot rely on the accuracy of the reconstructed derivative.

3.3 Classification

One of the major objectives of the Taylor series analysis of a
numerical algorithm is to characterize its asymptotic error

behavior. We can do this by comparing the a; and ry of
various filters w. The principal idea is to choose the largest
N such that all coefficients a, (m < N) evaluate to zero,
with the only exception being a, for interpolation filters
and a, for nth order derivative filters, which should evalu-

ate to one. Choosing the value of N in this way, the recon-
struction error is simply the (normalized) remainder term

ry - Equation (5) can therefore be rewritten as:

() = (O + M),
a, (1)
or
) - () = & = 9 ™
a,(1)

Having made these observations, we are now ready to
outline the classification property of our filter design
method. We observe that the coefficients depend solely on
the underlying filter w. This provides us with an intuitive
scheme to compare and classify different filters: All filters
that are characterized by the same asymptotic error be-

havior O(Tk) are grouped into one class and are called kth

degree error filters (k-EF) to comply with standard no-
menclature in numerical mathematics. The reconstruction

error ry is of the order O(TN”), and the normalization

factor a, is of the order O(T”). Therefore, the asymptotic
behavior of the error € of the reconstruction process is
O(TN”'”). That means that for most applications, |rg’,"1| will

be smaller than |r,‘\’,"2|, if and only if N; > N,. Therefore, in

general, we prefer filters in a class with largest N. We can
further distinguish among filters in the same class using

their absolute errors |r,§v|

This classification is very important and should be
considered when selecting a filter for a given applica-
tion. An N-EF filter will reconstruct a polynomial of (N —
1th or lower degree (the original function as well as its
derivatives) without any errors. Since, in most practical
applications, the underlying data can be sufficiently mod-
eled with low degree polynomials, a 3EF or 4EF should
be sufficient.

The presented classification scheme is important for
determining the sufficient and necessary resolution of
voxelization (discretization) algorithms, since the recon-
struction error is tightly bound to the sampling distance.
Note that the placement of a filter in a k-EF group de-
pends on the asymptotic behavior of the filter error. One
can find examples where, for some T, a specific filter in
the 2-EF group will perform better than a specific filter of
the 3-EF group. For instance, if we compare a 2-EF filter
with error T?z and a 3-EF filter with error T3z, then it is
clear that, for T > 1, the 2-EF filter outperforms the 3-EF
filter. By the same token, there are real-life situations
where one is forced to accept a certain sampling distance
T, e.g., when T is predetermined by the maximal resolu-
tion of an MRI scanner. In such cases, one would consider
the error term quantitatively only.

3.4 Absolute Error Approximation

The error as computed in (4) is more of theoretical interest,
because we do not know the &, ;. In order to find an ap-
proximation to the actual error, one could develop one
more term of the Taylor series expansion of (6). That would
allow us to write it as:

fW(t) = f(n)(t) + _a;l\lv”l(r) f(N+1) 1) rl\\’lv+1,i(T)
Wan (T) a, (T) (8)
aN+1(T)

= 1) + D= 1 () + OTNE ),
3 (7)

This equation reconstructs the nth derivative with the nor-
malization step already performed. For small T, the domi-
. N+1
nant error term is clearly fN* >(t)a‘,(,v+1(r)/a;'1" (7).
An alternative way to approximate the error would be
to evaluate the remainder term. We suggest to use the

following approximation of r,‘\’,vyi. In practical applications,
the length M of the used filter w is usually small, since the
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Error of the Cubic Derivative filter applied to f(x) = x>

Error €
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Fig. 3. The absolute error of the cubic derivative filter with the pa-
rameters B = 0 and C =1 applied to a polynomial of fifth degree.
We have also computed the error bound according to (9) using the
result from Table 3 in Section 4.2. We can see that our error bound
matches the actual error well. The actual error is shown as bars and
the computed error-bound is drawn as a connected curve.

use of a larger filter is expensive. Therefore, the interval
[(i = M)T, (i + M)T], in which all the &, ; are to be found, is
relatively short. In addition, practical data sets, like MRI
or CT, are usually bandlimited with only little contribu-
tions coming from high frequencies. Due to this lack of a
significant amount of high frequencies, which would im-
ply a fast changing function within a short interval, it is
reasonable to assume that high derivatives, in particular

f(N”)(t), will not change much on a short interval of
length 2M. We conclude, that:

(o) < ée[(i_l\m%mﬁ](f(N”)(é))‘
T(N"'l) M
(N+1)! k;M(k -1 w(z - k)
o,
|r:'v'i(r)| < ée[(i—ng)]?,)((nmn](f(NH)(@)|a¥“V+1W(T)|‘

After evaluating the first three criteria, we find with (7) a
bound of the absolute error:
a, (1)

a‘l,\lv+1(T)
a, (7)

<

(f(N+1)(§))

If we can approximate the (N + 1)st derivative of the un-
derlying function, then we can approximate the actual er-
ror. Even if this is not possible, we can at least compute
ay,./a, to get an idea about the scale of the error. How
well the error bound of (9) approximates the actual error
can be seen in Fig. 3, where we used the derivative of the
cubic interpolation filter (using B = 0 and C = 1) to compute
the derivative of a quintic polynomial. It is not unreason-
able to assume that real-life data sets can be modeled by
cubic polynomials, at least within a piecewise local neigh-
borhood. Therefore, a quintic polynomial, which is a super-
group of the cubic polynomials and has even larger varia-

ma
Ee[(i-M)T,(i+M)T]

Cubic Interpolation Filter for B=C

14

1.2
1 B=0

0.8
0.6
04 \
0.2

02
04

2 -15 -1

@
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Fig. 4. Representatives of the class of (a) cubic BC-spline interpolation
filters and (b) cubic derivative filters. For our example, we chose to
have B = C and varied B from 0 to 1 in steps of 0.2.

tions and faster changing derivatives, should well suffice to
demonstrate the correctness of our error bound computation.

4 OpPTIMAL CuBIC FILTER

Now, let us apply the methods we developed in Section 3
to a group of cubic filters. This group of cubic filters is
described as (for some examples see Fig. 4a):

(2-3B-C)t’(-3+2B+ Ot +(1-8) 0<lf<1
(-iB-C)t’ +(B+5C)’* + (2B -8C)ft| + (4B +4C) 1<f<2
0 2 <[

h(t) =

and are the aforementioned BC-splines. This class of filters
has been derived by Mitchell and Netravali [14]. They show
that, for 2C + B = 1, this filter is a 2EF. Keys [9] investigated
the Cardinal splines for numerical accuracy. The Cardinal
splines are a subgroup of the BC-splines and are obtained
by settingB=0and C = —«.

Utilizing a Taylor series expansion, Keys found a 3EF for
o = -0.5. In Section 4.1 we will replicate these results using
our method, which demonstrates its validity and power.
Bentum et al. [1] derived a continuous derivative filter
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TABLE 1
COEFFICIENTS FOR THE BC-SPLINE INTERPOLATION FILTER

4o 1
h
49 TRC+B-DH1(21-1) (-1
(1 2 >

a; 7(§B—4(2C+B—1)T (t-1) )
N s
a —1t(2t-1) (t-1) (2C+3(2C+B-1)1(t-1))
3 6

4

T/(1 2 2 2
aZ 2—4(38—1 (t-1) (1+16C+4(2C+B—1)(21 —21+1)))

based on the Cardinal spline. This filter is simply the de-
rivative of the interpolation filter. We now extend their
ideas to the superclass of the Cardinal splines, the BC-
splines. The resulting derivative filter can be written as (for
some examples see Fig. 4b):

(4B+3C)t" +(2B+10C)t + (2B+8C) -2<t<-1
(-6+9B+3C)t* + (-6 + 4B + 20)t -1<t<0

d(t) = (6—$B-3C)t* + (-6 + 4B+ 2C)t 0<t<1
(-1B-3C)t° + (2B +10C)t + (-2B-8C) 1<t<?2

0 2<|t

In Section 4.2, we show that, for this derivative filter as
well, 2C + B = 1 is optimal and produces a 2EF.

4.1 Evaluation of the BC-spline Interpolation Filter
The cubic filter has a window size of two, i.e., has an over-
all extent of four. Therefore, four weights have to be con-
sidered. We have computed these weights and show them
in the first row in Table 3 (see Appendix). We use the filter
weights to compute the coefficients aﬂ in (3). A few alge-
braic manipulations yield the coefficients shown in Table 1.

For ag we compute the sum of the filter weights and
find that this coefficient is exactly one. This is an important
outcome, for it tells us that BC-spline interpolation filters do
not need to be normalized. Due to this circumstance, it is
not necessary to accumulate the sum of weights and divide
the convolution sum by it, which makes this class of filters
more efficient and more attractive for practical applications.
This was also one of the design criteria for Mitchell and
Netravali [14] and was to be expected.

In order for the filter to be as accurate as possible, we de-
sire that subsequent coefficients evaluate to zero. Recall that
the number of coefficients that evaluate to zero yields the

class of the filter (classification phase). With respect to af,
we find that there are three cases where this coefficient can
be zero (keeping in mind that 7 < 1). These are:

e Casel: 7=0,

e Case2:2t-1=0,(i.e., r=0.5)and

e Case3:2C+B=1.
If none of these three cases apply, the cubic interpolation
filter represents a linear order filter (1EF), and a{‘ substi-

tuted in (9) (or (8)) represents an error bound for this class
of cubic filters. To demonstrate the error behavior in this
specific case, the error coefficients are drawn in Fig. 6a.
The error coefficients in Fig. 6a correspond to the same
interpolation filters that are drawn in Fig. 4a. Note that, in
these and all subsequent error plots, we have assumed T
(the sampling distance of our underlying function that is to
be reconstructed) to be equal to one. Also, we have only
drawn the normalized error coefficient ay,,(7)/a\ (7). That
gives us an idea about the general error behavior, inde-
pendent of f. For a careful analysis of a certain application
f (the function to be reconstructed) should possibly be in-
corporated.

Cases one and two are rather special cases, and can lead
to 2EF and 4EF filters, respectively. The results of our
analysis are listed in Table 3 (see Appendix). Let us now
have a closer look at the interesting third case.

4.1.1 Case 3:2C+B=1

This is the class of cubic BC-splines that was also found by
Mitchell and Netravali [14] to provide the best solution
numerically. This class includes the Catmull-Rom spline
and the cubic B-spline. The filter coefficients of this filter
can be expressed in the following way:

(3+2C)t° +(-1-3C)t* + (2 + £C)
(-2-2C)t’ + @+ 30 + (-2 - 40)| + (4B+4C) 1<[]<2

o<|f<1
h(t) =
0 2<|

Some representatives of this filter are drawn in Fig. 7a.
In order to find the convergence rate of this filter, the other

Taylor coefficients need to be explored. The coefficient ag in
Table 1 simplifies to (TZ/G)B. The error is shown graphi-

cally in Fig. 8a. The only way that this error coefficient can
be zero, is for the case that B = 0. That leads us to C = 0.5
which gives rise to the Catmull-Rom spline. The resulting
filter weights are shown in Table 3 (see Appendix) and the
filter is drawn in Fig. 5a. Keys [9] found this filter to be a
3EF as well, but he did not investigate the actual magnitude
of the error. The next coefficient, a;, in Table 1, will now
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Fig. 5. (a) The optimal interpolation filter and (b) its error coefficient. We kept the scale of the y axis the same as for the other filters we have

shown to better illustrate how the absolute errors compare.

simplify to (T3/6)r(21—1)(r—1). According to our error

analysis in Section 3.4 and (9), this represents an approxima-
tion of the error magnitude. The error is plotted in Fig. 5b.

We further realize that this error is zero in the specific
case of T = 0.5. (see Table 3 in Appendix).

4.2 Evaluation of the BC-spline Derivative Filter

Bentum et al. [1] introduced the use of cubic derivative fil-
ters for gradient estimation, but applied that idea only to
Cardinal splines, a subgroup of the BC-splines. The authors
provide a limited analysis, but no analytical comparison of
this filter with different parameters. In our earlier paper
[15], we offer a complete spatial analysis of this filter group.
Although this filter is really just a quadratic filter, we prefer
to call it “cubic derivative” filter, due to its derivation from
a cubic filter, the BC-splines. The four relevant weights for
the BC-spline derivative filter are:

d(r -2) = (4B +3C)r* - 2Ct
d(r—1) =(-6+3B+3C)r* + (6 - 58— 4C)r +($B +C)

d(r) = (6-2B-3C)r” + (-6 + 4B+ 2C)r
d(z+1) = (-1B-3C)t* +(B+4C)r +(-+B-C)

These are the derivatives of the weights for the BC-spline
interpolation filter (given in Table 3). As in the previous
section, we compute the coefficients, shown in Table 2,
using (3).

To compute ag, we sum the filter weights and find that
ag is zero. In Section 3.1, we observed that this is a re-
quirement for good derivative filters. We thus conclude
that the BC-splines form a class of very well behaved filters.

As was shown in Section 3.2, we need to normalize the
other coefficients by af. The normalization step is simpli-
fied for filters that satisfy 2C + B = 1, or at those reconstruc-
tion locations where 1— 67+ 672 =0. In these cases, we
only have to divide by a constant, the sample distance T.

We note that, for af = 0, the filter computes a higher or-
der derivative. In fact, for almost every 7, we can find infi-
nitely many pairs (B, C) for which the filter is a higher order
derivative filter. Specifically, when C = 1.5, B = 0, and

TABLE 2
COEFFICIENTS FOR THE BC-SPLINE DERIVATIVE FILTER
d
ag 0
d 2
a; T(1+(2C+B—1)(1—6r+61 ))
d
a, 372(2C+B-1)t(1-1) (21— 1)
3
o %((12052— 12CT + 1) + (2C+B- 1)(1814—3613 +2477 6T+ 1))
4 T4 2
o 5T(1-7) 21-D (12€+ 1) + 2C+B-1| 67 ~61+4
5
o 1%)((6010(213 4t 43— 1) 15T (t-1) 4 1) +(2C+B-1) (301679015 +1357 — 1207 + 510 — 6T + 1))
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Fig. 6. Normalized error coefficients of the same filters that are shown in Fig. 4. (a) Errors for the cubic BC-spline interpolation filters and (b) errors
for the cubic derivative filters. For our example, we chose B = C and varied B from 0 to 1 in steps of 0.2.

BC-spline Interpolation Filter for 2C+B=1

BC-spline Derivative Filter for 2C+B=1

Fig. 7. Representatives of the class of (a) BC-spline interpolation filters and (b) BC-spline derivative filters with the condition 2C + B = 1. Note
these filters have a better error behavior than the general cubic splines. For our example, we varied C from 0 to 1 in steps of 0.2.

7 =0.5, we not only find af to be zero, but also ag. This
means that we recover at least the third derivative of the
underlying function. Thus, not every combination of Bs and
Csresults in a first derivative filter.

In order to evaluate the quality of the filters
(classification), we again need to examine the other coeffi-
cients of the Taylor series expansion. With regards to ag, we
find that there are again three cases where this coefficient
vanishes. These are the same cases as for the filters consid-
ered in Section 4.1. If none of these three conditions holds,
we substitute the normalized coefficient ag into (9) and find
an error bound. To get an idea of the error behavior in this
specific case, we have drawn the normalized error coeffi-
cient in Fig. 6b.

Case one (7 = 0) and case two (7 = 0.5) are again special
cases that can lead to 2EF or 4EF filters. The results of our
analysis are listed in Table 4 (see Appendix).

4.2.1 Case 3:2C+B=1

This case is probably the most interesting one: It doesn't
depend on the reconstruction offset, and is therefore the
most general case. It also leads us to a new 3EF derivative
filter. Note that the normalization step is again a simple
division by the sample distance T, which makes this class of
filters useful for fast and accurate convolution operations.

The actual filter coefficients can also be found in Table 4.
Some members of this family of filters are drawn in

Fig. 7b. The normalized coefficient ag simplifies to
TZ(ZCTZ -2Ct + 1/6) and represents an upper bound of the
derivative reconstruction error (9). The error behavior in
relation to the sampling offset 7 is illustrated in Fig. 8b.

The coefficient ag will be zero for the case in which

and, therefore, B=1

c= 127(1- 1) " 6t(1-1)

This relation, of course, is only meaningful when we are not
trying to reconstruct at a sample point, ie, 7#0
(remember, that t < 1). Table 4 lists the weights for this
new filter for the case 7 # 0. A discussion what weights to
use when t = 0 is given in Section 4.3. For this specific fil-

ter, we find that the normalized coefficient ag/a;j simplifies
to (T3/12)(Zr - 1)(1 +T— rz). Hence, this new filter is a 3EF.

Since 0<1+7—7°for 7 e [0, 1], this coefficient can only be
zero for the special case of t = 0.5. The normalized filter
coefficients in this special case would be:

Td(+15) = +-%

Td(+05) = ¥
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Fig. 8. Normalized error coefficients of the filters of Fig. 7. Errors for the (a) BC-spline interpolation filters and (b) BC-spline derivative filters are
shown on the right. Because we applied the constrained 2C + B = 1, these filters have better asymptotic error behavior (shown in Section 4.1.1
and Section 4.2.1). For our example, we varied C from 0 to 1 in steps of 0.2.
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Fig. 9. (a) New optimal continuous derivative filter and (b) its error coefficient.

Therefore, in the case of 7 = 0.5, ag/af (normalized) simpli-

fies to —3T4/64O , and a 4EF results.

Let us now summarize the results of this section. Table 4,
at the end of this paper, contains a comprehensive listing
of all possible cases within the family of BC-spline based
derivative filters. In the most general case, when
2C + B # 1, we find that both interpolation and derivative
filters are linear error filters (1EF). In Fig. 6, we plot the
coefficients of the error term (given in (9)) for both of

these filters. For the interpolation filter, we plot af, and

for the derivative filter, we plot ag/af. Finally, in Fig. 8,
we plot the coefficients of the error terms when
2C + B = 1. A knowledge of the relative behavior of inter-
polation and derivative filters is useful. For example, to
determine the derivative at a point, it is conceivable that a
cubic derivative be directly applied. Or, the derivatives
can be determined at sample locations and then interpo-
lated. The total error is now determined by the contribu-
tions of the derivative and interpolation filters. Both in
Fig. 6 and Fig. 8, the derivative filters show a larger error.

Errors in functions and their derivatives cannot be com-
pared directly, since they exist in different metric spaces.
However, since the filters themselves are dimensionless in
nature, it is possible to compare them. It is an important
observation that one needs to apply more sophisticated
derivative filters than interpolation filters if one wants to
obtain derivative estimates as reliable as the interpolated

signal. Furthermore, if we use the same parameters B and C
for interpolation and derivative filter, as was done by
Marschner and Lobb [13], the error introduced by the de-
rivative filter will dominate the error due to interpolation.
This is evidenced by our experiments as well (see Fig. 11).

4.3 Our New Derivative Filter

In this section, we take a closer look at the new derivative
filter that we found through our analysis in Section 4.2.1.
The weights of the new filter are given in Table 4 (see Ap-

pendix). Its normalized error coefficient is aﬁ/afI =
(T3/12)(21 - 1)(1+ T-— 12). Fig. 9 illustrates the new filter in

the spatial domain. Note that this filter is not a member of
the BC-spline family. Although the weights at each position
in the filter are determined by a particular combination of
the parameters B and C, this combination is different for
each sampling offset = Recall from Fig. 8b that, depending
on the offset 7, different combinations of B and C yielded
the lowest reconstruction error. This behavior is exactly
what this new derivative filter attempts to capture.

Recall that our new filter is not defined for ¢ = 0. There-
fore, we need to use a different filter at these locations.
Since the error behavior of the central difference filter is
only quadratic (as opposed to cubic for our new filter), we
don't recommend using central differences in combination
with our new filter. To preserve the global error behavior,
we suggest the use of a high order discrete derivative filter
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Fig. 10. Frequency plots of the derivative filters. The x and y axis are normalized by 7 . The straight line represents our new derivative filter. The
dashed line represents the Catmull-Rom derivative filter (B = 0 and C = 0.5), and the dotted line represents a derivative filter for B = C = 0.8.

at the sample points as well. A natural choice would be to
use the average of the left and right side limits at the dis-
continuities, which gives rise to the following filter weights:

Td(£2) = £1/12

Td(£1) = ¥2/3

Td(0) =0

By analyzing this derivative filter (at 7 = 0), we found it to
be a 4EF with an error coefficient of T4/30. Note, however,
that for 7 > 0, the filter is still 3-EF.

In order to get a more complete picture of this filter, we
plotted its frequency response in Fig. 10, along with two
other filters in the class of cubic derivative filters. We see
that its frequency behavior is very similar to the Catmull-
Rom spline. Differences in form of a hump arise near = and
3r. This is the location where the high frequencies of the
first and second signal replica meet. Since, in practice, the
amount of the signal content that falls into this high fre-
quency range is rather small, the effect of that discrepancy
should be negligible. At the important places near zero and
2r (where the DC of the replica is located), our new filter
performs just as well, if not better, than the Catmull-Rom
spline. A thorough frequency analysis, for instance, in the
spirit of the one conducted by Park and Schowengerdt [16],
to proof these assumptions more rigorously are beyond the
scope of this current paper, but currently underway. What
we can learn from the frequency plots is, however, that our
new filter is not expected to perform much worse than the
Catmull-Rom spline. We actually expect that, in some cases,
its behavior is superior.

One deficiency of our new filter is that its error coeffi-
cient (drawn in Fig. 9b) is discontinuous. If the location we
are reconstructing at is just a small distance away from the
sampling grid, T will be either close to one or to zero. We
observe that the error coefficient for 7 close to zero ap-

proaches —1/12, and for 7 close to one, it approaches 1/12.
Hence, there exists a discontinuity to which the human vis-
ual system is very sensitive (see Fig. 15). However, it
should be noted that this effect becomes relevant only for
densely resampled images, i.e., in situations where the re-
sampling rate is a lot higher than the original sampling rate.
If the resampling rate is low in proximity of the discontinu-
ity (e.g., if we only place two or three resampling points
within a sample interval), then this artifact is likely not to be
visible. Mathematically speaking, we desire filters such that:

a,(r) - a,(r) =0,

where a:(r)(a;(r)) denotes the right (left) limit at this coef-
ficient. We also have to keep in mind the special case where
7 =0, i.e,, we need to require a,(0)—a,(1) = 0. (This exact
case causes problems for our new derivative filter.) This
results in the following condition:

-:1_: i(k - T)n(W+(T —-k)-w (7 - k)) =0.

k=-M

(10)

From here it does not necessarily follow that the actual
filter w has to be continuous. However, all continuous fil-
ters fulfill (10). We want to make clear, however, that one
should not discard discontinuous filters just because they
happen to be discontinuous. For instance, our new filter can
produce better images than the Catmull-Rom derivative
filter (see Figs. 11, 13, and 14). Discontinuities of the filter
only become a (visual) problem, if (10) doesn't hold, and if
we densely sample near a discontinuity of the error coeffi-
cient. (see Fig. 15).

In order to avoid these problems of the discontinuity,
one could employ additional filter design techniques, such
as windowing. lJittering would also be a way to get rid of
undesired aliasing effects.
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Fig. 11. Marschner Lobb data set. Column 1: Derivative: B= C = 0.8 (1LEF), Column 2: Derivative: B = 0; C = 0.5 (2EF), Column 3: Derivative: our
new filter (3EF), Row a: Interpolation: B = C = 0.8 (1EF), Row b: Interpolation: B = 0.6; C = 0.2 (2EF), Row c: Interpolation: Catmull-Rom (3EF).

5 EXPERIMENTAL RESULTS

The images were rendered employing a simple raycaster to
find the isosurfaces. The volumes were sampled at an inter-
val of 0.1 voxel lengths. At each sampling point, the raycaster
first applied the interpolation kernel to reconstruct the func-
tion at that point. If the reconstructed value was above a pre-
set isovalue, the derivative filter was used to compute the 3D
gradient. Shading was then performed using the traditional
Phong lighting model [7] with diffuse and specular reflec-
tions. The obtained color and opacity were composited with
the previous ray values, and the ray was terminated after the
opacity reached a value close to one. Since, for all our filters,
both the interpolation and the derivative kernel were separa-
ble, the filter operations could be efficiently performed using
a scheme similar to the one given by Bentum et al [1].

For our experiments, we used an analytic data set and an
MRI data set. The synthetic data set is derived from the same
function as the one used by Marschner and Lobb [13]. In
Fig. 11, we rendered this data set with varying B and C for
interpolation and derivative filters. Along the rows, we

change the derivative filter. For the first column, we use the
parameters B = C = 0.8 (a 1EF filter), the second column has
B = 0 and C = 0.5 (a 2EF filter), and the last column uses our
new derivative filter (a 3EF filter). Along the columns, we
change the interpolation filter. The first row uses the parame-
ters B =C = 0.8 (a 1EF filter), the second row uses B = 0.6
and C = 0.2 (a 2EF filter), and the third column uses the Cat-
mull-Rom filter (a 3EF filter). We find that the differences
between rows are not as striking as the differences between
columns. That demonstrates our findings in Section 4.2,
where we concluded that the derivative filter has more influ-
ence on image quality than the interpolation filter. In order to
be able to compare interpolation filters, we suggest to fix the
derivative filter, preferably one with error that is negligible
compared to the errors in the interpolation filter. In order to
better visualize the influence of the filters, we drew the an-
gular error images of the last row of Fig. 11. For each recon-
structed normal, we computed the actual normal and re-
corded their angular difference. The gray value of 255 was
displayed for an angular error of 5 degrees.
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Fig. 12. Error images of the last row of Fig. 11. We compute the angular difference between the computed normal and the actual normal. The
gray value of 255 represents an angular error of five degrees

P~
///‘; T
/\Qf‘a& 3
MNSS s
:5“:','0'{'5«; 4
"f’ w
"‘v‘» \‘.
g

Fig. 15. Severe close up of the brain data set (30 rays per grid spacing). Artifacts become visible for our new 3EF filter ((a) 1EF,(b) 2EF, (c) 3EF).
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The second data set is an MRI of a human brain. Here, we
fixed the interpolation filter to the optimal cubic filter
(Catmull-Rom) and varied the derivative filter in the same
way as we did for the Marschner Lobb images. In Fig. 13, we
find that the best image is achieved for our new derivative
filter. That is exactly what we expected from our analysis in
Section 4.2. Fig. 14 shows the same set of filters applied to a
small section of the brain and rendered from a close-up view.
Fig. 15 shows the same data set, where we zoom into a 20 by
20 voxel region. Since we have many pixels (rays) within one
voxel cell, we resample the grid very fine around the original
sample points. As explained in Section 4.3, this results in a
discontinuous error behavior that becomes visible in Fig. 15.

6 FUTURE GOALS

In many applications, especially volume rendering, we
want to both reconstruct the underlying function and/or its
derivative, and also resample it on a new grid. Therefore, it
is necessary to study the overall error expressed in the L,
error norm. We are working on developing better tools to
study this error. Eventually, we want to come up with
techniques similar to the ones presented in this paper that
will allow us to classify different filters, and also to quantify

APPENDIX

197

them efficiently computing their L, error.

In terms of filter design, we can use our tools to design fil-
ters of arbitrary order. Setting the coefficients in (2) to zero for
a given N, we end up with N linear equations for 2M + 1 co-
efficients. We can solve this linear system, matching N and M
appropriately, and we find an NEF. It would be interesting to
study how this filter behaves in terms of the offset 7, for it
would enable us to construct filters of arbitrary accuracy.
Similar to the adaptive filter design of Machiraju and Yagel
[11], we can use these different filters adaptively in different
areas of the function. Knowing the error caused by convolv-
ing a particular filter with a particular application, we want
to find ways to adapt the type of filter we use according to a
given error tolerance.

We plan to extend the techniques described in Section 3.1
through Section 3.4 for higher order derivatives and to the
evaluation of filters, others than the BC cubic splines, such as
windowed sinc and other optimal filters [4].

It is also important to study the behavior of different fil-
ters when applied to rapidly changing functions. (Such be-
havior could be caused by noise.) Our analysis remains valid,
except for the error estimation in (9), where we assumed
slowly changing functions.

TABLE 3
FILTER WEIGHTS AND ERROR COEFFICIENTS OF THE CUBIC INTERPOLATION FILTERS
UNDER VARIOUS RESTRICTIONS OF ITS PARAMETERS B AND C
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TABLE 4

FILTER WEIGHTS AND ERROR COEFFICIENTS OF THE CuUBIC DERIVATIVE FILTERS
UNDER VARIOUS RESTRICTIONS OF ITS PARAMETERS B AND C
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= ; N 32
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T=05 —81+100C 374
Td#*0.5) = t———— 22
3+5B-14C =0 (£02) 72-96C 510
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+1.5) = +
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7 CONCLUSION

In this paper, we applied a Taylor series expansion to the
convolution sum. This resulted in an alternative represen-
tation of the convolution sum which lead to a qualitative
and quantitative comparison of both reconstruction and
derivative filters. From this new representation of the con-
volution sum, we derived four new filter evaluation crite-
ria—analysis, normalization, classification, and error esti-
mation. We found that the normalization of the filter coeffi-
cients is important for accurate reconstruction.

We then applied these techniques to the class of cubic
BC-splines. We derived several special filters which are
numerically optimal within this class. Specifically, we con-
centrated our efforts on interpolation and derivative filters
and found that, when both are applied to a function, the

errors introduced by derivative filters are more significant
than those caused by interpolation filters.

We expect the techniques developed here to be applica-
ble to the design and evaluation of other reconstruction and
high order derivative filters.

ACKNOWLEDGMENTS

We thank Ed Overman of the Department of Mathematics
at Ohio State University for providing useful background
information and important references. We thank Wayne
Carlson and the Advanced Computing Center for the Arts
and Design for the use of their computing facilities, and
Prof. Robert Moorehead of the U.S. National Science Foun-
dation Engineering Research Center, Mississippi State



MOLLER ET AL.: EVALUATION AND DESIGN OF FILTERS USING A TAYLOR SERIES EXPANSION 199

University, for providing encouragement and support. This
project was partially supported by the U.S. Department of
Defense USAMRDC 94228001, and by the U.S. Advanced
Research Projects Agency Contract DABT63-C-0056. The
MRI data was provided by Scott E. Lukas, PhD Chief, Clini-
cal Neuropsycopharmacology Laboratory, Alcohol and
Drug Abuse Research Center, McLean Hospital, Harvard
Medical School. Thanks to Naeem Shareef for the segmen-
tation of this data set.

REFERENCES

[1] M.J. Bentum, T. Malzbender, and B.B. Lichtenbelt, “Frequency
Analysis of Gradient Estimators in Volume Rendering,” IEEE
Trans. Visualization and Computer Graphics, vol. 2, no. 3, pp. 242-
254, Sept. 1996.

[2] R.N.Bracewell, Two Dimensional Imaging. Englewoods Cliffs, N.J.:
Prentice Hall, 1995.

[3] 1. Daubechies, “Ten Lectures on Wavelets,” Proc. CBMS-NSF
Regional Conf., SIAM, Philadelphia, 1992.

[4] G. Deslauriers and S. Dubuc, “Symmetric Iterative Interpolation
Processes,” Constructive Approximation, vol. 5, no. 1, pp. 49-68, 1989.

[5] R.A. Drebin, L. Carpenter, and P. Hanrahan, “Volume Render-
ing,” Computer Graphics, vol. 22, no. 4, pp. 51-58, Aug. 1988.

[6] S.C. Dutta Roy and B. Kumar, “Digital Differentiators,” Handbook
of Statistics, N.K. Bise and C.R. Rao, eds., vol. 10, pp. 159-205,
1993.

[7]1 J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes, Computer
Graphics, Principles and Practice, second edition. Reading, Mass.:
Addison-Wesley, 1990.

[8] M.E. Goss, “An Adjustable Gradient Filter for Volume Visualiza-
tion Image Enhancement,” Proc. Graphics Interface ‘94, pp. 67-74,
Toronto, Ont., 1994.

[91 R.G. Keys, “Cubic Convolution Interpolation for Digital Image

Processing,” IEEE Trans. Acoustics, Speech, and Signal Processing,

vol. 29, no. 6, pp. 1,153-1,160, Dec. 1981.

M. Levoy, “Display of Surfaces from Volume Data,” IEEE Com-

puter Graphics and Applications, vol. 8, no. 5, pp. 29-37, May 1988.

R.K. Machiraju and R. Yagel, “Reconstruction Error Characteriza-

tion and Control: A Sampling Theory Approach,” |IEEE Trans.

Visualization and Computer Graphics, vol. 2, no. 4, pp. 364-376,

Dec. 1996.

[12] J.L. Mannos and D.J. Sakrison, “The Effects of a Visual Fidelity
Criterion on the Encoding of Images,” IEEE Trans. Information
Theory, vol. 20, no. 3, pp. 525-536, July 1974.

[13] S.R. Marschner and R.J. Lobb, “An Evaluation of Reconstruction

Filters for Volume Rendering,” Proc. Visualization ‘94, pp. 100-

107, IEEE CS Press, Oct. 1994.

D.P. Mitchell and A.N. Netravali, “Reconstruction Filters in

Computer Graphics,” Computer Graphics, vol. 22, no. 4, pp. 221-

228, Aug. 1988.

[15] T. Méller, R.K. Machiraju, K. Mueller, and R. Yagel, “Classification
and Local Error Estimation of Interpolation and Derivative Filters
for Volume Rendering,” Proc. 1996 Symp. Volume Visualization,
pp. 71-78, Oct. 1996.

[16] S.K. Park and R.A. Schowengerdt, “Image Reconstruction by
Parametric Cubic Convolution,” Computer Vision, Graphics, and
Image Processing, vol. 23, pp. 258-272, 1983.

[17] J.A. Parker, R.V. Kenyon, and D.E. Troxel, “Comparison of Inter-
polating Methods for Image Resampling,” IEEE Trans. Medical
Imaging, vol. 2, no. 1, pp. 31-39, Mar. 1983.

[18] A. Savitzky and M.J.E. Golay, “Analytical Chemistry,* vol. 36,
pp. 1,627-1,639, 1964.

[10]

[11]

[14]

Torsten Moller received a Vordiplom (BSc de-
gree) in mathematical computer science from
Humboldt University in Berlin, Germany, in 1992,
and an MSc degree in computer and information
science from the Ohio State University in 1993.
Previous employment includes summer em-
ployment by the Lawrence Livermore National
Laboratories Scientific Visualization Group and
an internship at Mental Images, Berlin, Ger-
many. He is presently working on a PhD degree
in computer and information science at the Ohio
State University, where he also holds a graduate research appoint-
ment. His interests reside in the field of computer graphics, in particu-
lar in applying mathematical methods and ideas from signal processing
to evaluate the rendering process. His current focus is on the devel-
opment of algorithms for fast and accurate rendering of unstructured
three-dimensional data sets.

Raghu Machiraju received his PhD in com-
puter science from the Ohio State University in
August 1996, and has been at Mississippi State
University since then. He is an assistant pro-
fessor in the Department of Computer Science
and the U.S. National Science Foundation
Engineering Research Center at Mississippi
State University. Earlier, he worked for Control
Data Corporation and the Ohio Supercomputer
Center as a programmer. His research inter-
ests include filter design and wavelet methods
for visualization algorithms.

Klaus Mueller received a BSc degree in electri-
cal engineering from the Polytechnic University
of Ulm, Germany, in 1987, and a MSc degree in
biomedical engineering from the Ohio State
University in 1990. Previous employment in-
cludes an internship at Mercedes Benz, Ger-
many, and research and development engineer
)| positions at Medical Devices, Minneapolis, and
Bopp and Reuther, Mannheim, Germany. Muel-
ler is presently working on a PhD degree in
computer and information science at the Ohio
State University, where he also holds a graduate research appoint-
ment funded by General Electric. Mr. Mueller’s interests reside in the
field of computer graphics, in particular volume graphics as applied for
the visualization of medical image data. His current focus is on the
development of iterative algorithms for fast and accurate 3D and 4D
reconstruction from limited sets of 2D projections.

Roni Yagel received his PhD in 1991 from the
State University of New York at Stony Brook,
where he was also a researcher in the Depart-
ment of Anatomy and the Department of Physi-
ology and Biophysics. He received his BSc
(cum laude) and MSc (cum laude) from the
Department of Mathematics and Computer
Science at Ben Gurion University of the Negev,
Israel, in 1986 and 1987, respectively. He is an
assistant professor in the Department of Com-
puter and Information Science and the Advanced Computing Center
for the Arts and Design at the Ohio State University. His research and
technical publications deal mainly with a variety of topics in volume
graphics and visualization. His research interests also include algo-
rithms for graphics, imaging, and animation, error control in image
generation, and visualization.



