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Abstract
Implicit curves are widely used in computer graphics because of their powerful fea-

tures for modeling and their ability for general function description. The most pop-

ular rasterization techniques for implicit curves are space subdivision and curve

tracking. In this paper we are introducing an efficient curve tracking algorithm that

is also more robust then existing methods. We employ the Predictor-Corrector

Method on the implicit function to get a very accurate curve approximation in a

short time. Speedup is achieved by adapting the step size to the curvature. In addi-

tion, we provide mechanisms to detect and properly handle bifurcation points,

where the curve intersects itself. Finally, the algorithm allows the user to trade-off

accuracy for speed and vice a versa. We conclude by providing examples that dem-

onstrate the capabilities of our algorithm.

1.  Introduction
Implicit surfaces are surfaces that are defined by implicit functions. An implicit function  is a map-

ping from an n dimensional space  to the space , described by an expression in which all vari-

ables appear on one side of the equation. This is a very general way of describing a mapping. An n

dimensional implicit surface  is defined by all the points  in  such that the implicit mapping

projects  to 0. More formally, one can describe  by
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Often times, one is interested in visualizing isosurfaces (or isocontours for 2D functions) which are

functions of the form for some constant c.

Different classes of implicit surfaces are of importance. Implicit surfaces that are defined by a polyno-

mial are called algebraic surfaces. Since almost all continuous functions can be approximated by poly-

nomials, algebraic surfaces represent a powerful class. Since polynomials have been studied and

understood fairly well, one has a better mathematical handle at algebraic surfaces.

Another special class of implicit surfaces have density functions as their defining functions. Density

functions decrease exponentially with increasing distance to a certain center point. The models where

these functions find usage usually arise in the study of physical phenomena, e.g. atom models. Blinn [4]

was one of the first to try to visualize these surfaces on a computer. They became to be known as

Blinn’s “Blobby Model” or Metaballs.

Yet another model which is gaining importance is the discrete data set. Such data set is commonly gen-

erated by various medical scanners such as MRI and CT. These data sets can also be seen as implicit

functions, where  and v is the scanned value at the location p. We assume that if p is not on a

grid point then some sort of interpolation from neighboring grid points defines v at p.

Rendering implicit surfaces is very difficult and computationaly very expensive. Usually existing algo-

rithms to render implicit surfaces work only for special cases or special sets of functions. In fact, to date

there is no such algorithm that can render arbitrary implicit surfaces accurately and in a stable and

timely manner.

Algorithms for rendering 3D implicit surfaces can be classified into three groups: representation trans-

forms, ray tracing, and surface tracking. The first approach tries to transform the problem from implicit

surfaces to another representation which is easier to display such as polygon meshes [1][5][10][15] or

parametric representations [16]. The second approach to rendering of implicit surfaces is to ray-trace

them. Efficient ray-object intersection algorithms have been devised for algebraic surfaces [11], meta-

balls [4], and a class of functions for which Lipschitz constants can be efficiently computed [12][14].

The third approach to rendering implicit functions is to scan convert or discretize the function. Seder-
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berg and Zundel [17] introduced such a scan line algorithm for a class of implicit functions that can be

represented by Bernstein polynomials.

When it comes to drawing 2D implicit functions (curves) an attractive approach is to follow the path of

the curve. The algorithm starts at a seed point on the curve. It then looks at the pixels adjacent to the

seed point to see if any of them is the next pixel along the curve. Various algorithms exist which mainly

differ in the method they use to find the next pixel along the curve.

One way to find the next pixel is based on digital difference analysis (DDA). A lot of work has been

done in this field and the most popular algorithm applying this technique are Bresenham's and the mid-

point line and circle drawing algorithms [8]. The rate of change in x and y is computed through fast inte-

gral updates of dx and dy, which are then used as decision variables to determine the next pixel center.

This idea was generalized for algebraic curves by Hobby [13]. One problem of this approach is that the

inherent integer arithmetic can only be exploited for a small set of algebraic functions. Furthermore,

this algorithm is not able to deal properly with self intersecting curves. Hobby assumes that these inter-

section points are given by the user.

A different way to continue a curve would be to evaluate the underlying function at the center of the

neighboring pixels to find the one with the smallest absolute function value. This idea has been imple-

mented by Jordan et. al. [9] and was improved by Chandler [7]. Since there are only eight neighboring

pixels, eight function evaluations are the maximum needed to find the next pixel on the curve. Since we

will very likely be traveling in the same direction we have been traveling when we picked the current

pixel, Chandler tests first the pixel continuing in the same direction, then its neighbors etc. For most

'nicely' behaving functions two to three function evaluations per pixel will be sufficient. To increase

accuracy, Chandler prefers to look for a sign change rather than the smallest absolute value. Therefore,

he evaluates the function not at pixel centers but rather halfway in between pixels. Although the algo-

rithm does not depend on the actual description of the function and therefore is applicable to arbitrary

functions, it is still not able to deal with self intersecting functions. To deal with such points the algo-

rithm requires user intervention. Alternatively, it includes a brute-force Monte Carlo method to visual-

ize the positive and negative regions of the function. Finally, if the curve enters and leaves the pixel in-



4

between the same two neighboring sample points, this algorithm will not be able to register a sign

change and therefore fail.

For density functions, Arvo et. al. applied a numerical method known as the predictor-corrector method

[2]. Their main goal is the rendering of iso-curves of medical data sets. In this paper we introduce an

efficient and more robust predictor-corrector method. Our algorithm deals with self intersecting curves

properly and increases the efficiency of the algorithm to less than one function evaluation per pixel on

the average. Finally, unlike existing curve tracking methods, our algorithm can be applied to a large

family of implicit functions including selfintersecting functions with at most two branches at the inter-

section point.

2.  The Predictor-Corrector Method
The predictor-corrector method is a well known numerical algorithm which has its origin in solving

ordinary differential equations and bifurcation theory. Arvo and Novins [2] used a two dimensional

standard method for extracting isocurves in a 2D medical image. Although the predictor-corrector

method offers ways to detect and properly deal with self intersecting curves and curves “very close” to

themselves, Arvo and Novins did not explore these capabilities.

The predictor-corrector method is a numerical continuation method (tracking algorithm). The goal is to

find a point set which represents a discretized approximation of a curve that is defined by some implicit

function as in Equation (1). As the name suggests, the predictor-corrector method consists of two steps.

In the predictor step we take a (more or less sophisticated) guess of a point on the curve, denoted by .

Depending on how much thought and work we put into predicting the point , it will be closer or far-

ther away from an actual point on the curve. Depending on the assumption we make about the curve

and its actual shape, we will not be able to always accurately predict an exact point on the curve. In the

corrector step we use our predicted point  as a starting point for an iterative method that converges to

an actual point on the curve. We denote this new, corrected point, by . We repeat these two steps until

we tracked the whole curve. The resulting discrete point set can then be displayed on a screen.
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There are many different ways to implement the predictor or corrector steps. We use the standard Euler-

Newton method with an adaptive step size and introduce techniques to handle selfintersecting curves.

2.1  The Predictor Step

The focus of the predictor step is to find a point  that is very close or even on the curve, so that the

costs for the corrector step are reduced or even eliminated. If we already know points on the curve, we

can approximate the curve through a polynomial and get a new approximate for this curve through

extrapolation or interpolation.

Finding the very first point on the curve is not always easy. One usually has some understanding of the

kind of function one tries to discretize and can therefore provide an initial seed value to the algorithm. If

this is not possible, one needs to apply a brute force algorithm or some other heuristic to find an initial

seed value. The image space is limited (usually a screen in computer graphics). Therefore one rather

brute-force method would be to impose a grid onto the screen and evaluate the underlying implicit func-

tion at each grid point to choose a closest point (where |f(p)| becomes smallest). Another possibility

would be to look for a sign change of the underlying function between neighboring grid points. We

employ a faster method that is based on a quadtree subdivision algorithm as explained in Section 3.1.

We now present one way to implement the predictor step. One-step methods only employ one point (the

point of the previous iteration) to predict a new point. The standard Euler method is a good example of

a one-step method. However, one can envision the use of Hermites method which employs more than

one point and is therefore called multi-step method. Although multi-step methods are usually more

expensive, they lead to better, higher order approximations, reducing the number of necessary corrector

steps.

Euler’s method starts at a point which is known to be on the curve. Because this is a one-step method,

each point on the curve will lead to exactly one new point on the curve. Since we execute many predic-

tor-corrector iterations to obtain a point set that approximates our curve, it is just obvious to use the

resulting point of the previous iteration as the initial point for the current iteration. We call this initial

point . We also want to have some control over the distance between the new point and

pp
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the initial point. That is, we want  to be located at a certain distance  from  and not at some

unpredictable “end” of the curve.  is called the arc length parameter and it represents a parameteriza-

tion of our curve. The linear approximation of the predicted point results in

, (2)

where  now depends on the arc length and the initial point. Since  is the euclidean dis-

tance between  and , we need to make sure that:

(3)

Equation (3) defines a unit circle around the origin. Combining it with Equation (2) we are describing a

circle of radius  and origin . Next, we have to find the intersection points of that circle with our

curve. We choose one of these points as our new predicted value. Since the origin of this circle lies

already on the curve, we are guaranteed that our circle will intersect our implicit curve, unless the whole

curve is contained within the circle. In that particular case, the choice of the distance  between neigh-

boring points is not appropriate and needs to be changed. If  is in the order of the size of a pixel and

the curve is still contained within such a small circle, the discretization of this curve would just be one

pixel and we are done.

Assuming a closed curve, we will actually get an even number of intersection points. Choosing our step

size (arc length) small enough, we will get exactly two intersection points (see Figure 1). However, in

the case of a self intersecting curve or when a curve comes “close” to itself, we will get more than two

intersection points, even if  is very small. We will explore these special cases in Section 2.2.

The second condition for the new predicted point is, of course, that it should lie on the curve defined by

the underlying implicit function f. That means we require

. (4)

Since we are processing an arbitrary functions f we are not able to use Equation (4) directly to compute

. Instead, we substitute Equation (2) into Equation (4) and through a Taylor series expansion we are
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able to compute an approximation to the actual point on the curve. This approximation serves as the

predicted value .

Let’s have a look at the equations. The substitution results in

. (5)

Now the actual approximation takes place. We expand Equation (5) in a Taylor series and keep only the

linear terms. That results in:

(6)

The initial point was assumed to be on the curve, i.e. . We conclude

(7)

Using Equation (3) and Equation (7), we can actually solve for the unknowns . Using a short-

cut notation for the partial derivatives of , where  is replaced by  (and similarly

for the partial derivative in y) the result can be written as

(8)

which is also proven by Baker and Overman [3]. Here  stands for the sign plus or minus which repre-

sents the direction in which we continue to track the curve. In the case of the seed point we want to

make sure, that we trace both directions. However, in the general case we don’t want to step back into

the direction we were coming from. A simple sign check of the scalar product of the direction, where

we were coming from and our new direction, helps us determining the appropriate .

Although our new predicted value lies on a circle around the initial point, we only find a point near the

curve because of the approximation in Equation (6). If we take a closer look at Equation (7), the one we

actually used as an approximation to Equation (5), we realize that  describes the components
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of the tangent to the curve at the initial point. That leads us to a better geometric understanding of this

process, captured in Figure 1.

2.2  Bifurcation Points

The intersection of the circle equation (originating in Equation (3)) with the implicit curve results usu-

ally in two points. As pointed out earlier, in case of a selfintersecting curve (Figure 2a) or if it just

comes “close” to itself (Figure 2b) we expect at least four intersection points. These special points are

also called bifurcation points. Looking at our formulas in Equation (7) and Equation (3), we are only

able to compute two points, since it is an intersection of a quadratic (Equation (3)) curve with a linear

curve (Equation (7)). In a case of a bifurcation point the linear approximation of the Taylor series as in

Equation (7) will not be enough. In fact, from the implicit function theorem we can conclude, that the

first partial derivatives will be zero for these bifurcation points. Therefore we cannot compute

as derived above. We have to include the second order terms of the Taylor series expansion in Equation

(6) to get the appropriate results.

The more accurate approximation to Equation (5), replacing Equation (6), is now

FIGURE 1. The predictor step. Here  is the step size we want to step along the curve
starting at the initial point . Because Equation (7) is only an approximation, the predicted
value will not necessarily lie on the curve described by f.
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(9)

As already mentioned, the first three terms in the sum vanish, which leads to

(10)

In order to increase the readability of the following formulas, we use the following notation:

(11)

If we consider Equation (10) as a quadratic equation in the quotient q defined by dx/dy, we get the fol-

lowing solution:

(12)

To actually compute dx and dy, we substitute this result in Equation (3), which results in

y

x

y

x

(a) (b)

FIGURE 2. Possible cases of bifurcation points where the circle represents the actual
step size. (a) The curve intersects itself; (b) The curve comes very “close” to itself.
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(13)

where any arbitrary combination of plus and minus from Equation (12) and Equation (13) results in four

different distinct direction vectors . We will store all four directions in a list and follow their

branches one at a time. This is explained in greater detail in Section 3.

We discussed the usual case of two intersection points and studied in detail what happens when these

formulas fail when we encounter bifurcation points. Unfortunately, it could happen that we do not have

four intersection points, but six, eight, or more. That means, that actually more then the two branches,

as shown in Figure 1, meet at the same area. In that case, we realize that the second partial derivatives in

Equation (9) vanishes also, leaving us with no choice other than including even higher order terms in

the approximation of the Taylor series. This implies that we will have to solve higher order polynomials

to produce the expected number of solutions.

2.3  The Corrector Step

Although we have tried hard to predict a new point  on the curve, it is not guaranteed to fall accu-

rately on the curve. We can only hope to find a point that is “very close” to the curve. The goal of the

corrector step is to find a “closest” point on the curve, starting at . Among the many methods for

finding zero points of functions, the Newton method is very stable and fast, and therefore very common.

The Newton method is a numerical iteration method which converges to a zero point of a function f,

starting at a point  that should be fairly close to the zero point already. In our case, the starting point

for the Newton method will be  < the result of the predictor step.

The predictor step produced an initial value  for the iteration method. At

each iteration step we take the new and improved value from the previous iteration and try to improve it

even further, so that we actually end up on the curve itself. The result of the current iteration can be

written as:
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, (14)

where  marks the iteration number.

But how can we determine ? Here we exploit the same idea as we did in Euler’s Method. Of

course, we want that our new point  lies on the curve. So we add the condition that  is

a curve point:

. (15)

The same ideas and manipulations as used for Equation (4) will lead us towards a solution. Substituting

Equation (14) into Equation (15) and using a Taylor series expansion of f will result in:

. (16)

That is, in fact, the formula for Newton’s method for a two dimensional function. Since this is one equa-

tion with two unknowns, we have the freedom and duty to specify another condition, we want our iter-

ate to satisfy. First of all, we want to make sure that our iteration process converges. Other than that, it

would be nice if we could guarantee some sort of constant discretization of our curve. That is, we do not

want the distance between samples to vary too much. Both of these ideas can be realized if we restrict

our convergence to move in a right angle away from our previous iterate. To be more specific, the trian-

gle formed by the points ,  and  should form a right angled triangle. Here,  is the initial

point on the curve < the one we used in the predictor step to compute the point .  and  are the

previous and current iterates. In Figure 1 it was shown that this condition on our new iterate results in a

somewhat circular movement around the initial point . Because of this circular movement, we stay in

a certain proximity to , which increases the chances of convergence.

More formally, we want to add the condition that the vector  is perpendicular to . That is

expressed in the following manner:

(17)
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Equation (16) together with Equation (17) uniquely describe a new, corrected iterate , which con-

cludes the Corrector step. A geometric interpretation of these steps is illustrated in Figure 3.

3.  The Algorithm
The pseudo code for our numerical algorithm is given in Figure 4. The algorithm starts by looking for a

seed point (using a space subdivision method, as described in Section 3.1). The initial point will be

most likely on some arbitrary part of the curve. Therefore, we will usually have two possible directions

we can follow. We record both in a list for later retrieval (Line 3). At a bifurcation point a pixel will

have four branches leaving it. In this case we will also record all possible branch directions in this list

(Line 18). After retrieving a starting point for a new branch (Line 5) we trace the branch until we find

another bifurcation point or until we reach the limits of our display device. In the case of a closed curve

we also need to check when we get back to an already traced branch of the curve. A simple way to do

this is explained in Section 3.5.
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FIGURE 3. The corrector step. The Newton iterations and a forced circular movement of
the iterates  converge towards an actual point on the curve .pk 1+ pc
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For each new predictor point we need to make sure that the corrector didn’t fail (Line 7 through Line

12). Once we have gained confidence about our corrected point, we check whether we can adjust the

step size (Line 15). We connect the previous point to the current point by a simple line (Line 16). If we

found a new bifurcation point, we need to record it (Line 18) and quit this loop. In any other case we

repeat this procedure and find another point on the same branch.

We now describe in more detail the implementation of some of the more involved segments of the algo-

rithm.

1. find an initial point  on the surface;
2. determine initial step size ;
3. record (p, , bifurlist); /* for both initial direction */
4. repeat
5. get , from bifurlist
6. repeat /* continue current branch */
7. repeat /* find a reliable new point on the curve */
8.  := Predictor( )
9.  := Corrector( )
10. C := approx_curvature( , )
11.  := /2
12. until ( converges AND 1/(2C) < ) OR bifur_test( )
13.  := *2;
14. if 1/(2C) > then
15. increase ;
16. draw_line( , );
17. if bifur_test( ) then
18. record( , , bifurlist)
19.  := ;
20. until ( is in the covered region or outside the screen OR bifur_test( ));
21. until bifurlist is empty

FIGURE 4. pseudo code for the curve tracking algorithm.
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3.1  Finding a Starting Point

If a seed point is not provided by the user, we employ a space subdivision approach. We divide the

image region into four quadrants and compute the function at each corner of the quadrants. If the sign of

the function is the same at all corners, we will apply the same subdivision to all four quadrants in a

breath-first scheme. If we do find a sign change, we continue to subdivide this specific quadrant in a

depth-first scheme up to the pixel- or even subpixel level, depending on how accurate our initial point

should be.

3.2  Implementing the Corrector Step

Since the predicted point is only an approximation of a curve point, the corrector step is employed to

converge to an actual point on the curve. Because of the approximations in our formulas, the Newton

corrector step (explained in Section 2.3) usually needs to be repeated a few times. That is done within

the Corrector procedure in Line 9. But how many times should we repeat the Newton step? Of course,

we have to fight round off errors caused by the discrete computer arithmetic as well. The quality of our

discretized curve greatly depends on our stopping criteria, as well as the successful completion of our

algorithm. Therefore, we need to know when  gets close enough to zero. The problem is that

close means very different things for different functions. If we had more knowledge about the function,

we could employ an absolute error test, like . For a general algorithm, we will have no idea

how small  needs to be to assure spatial proximity. This notion of being close to the curve might also

change at different ranges for the curve.

The method we chose adapts the value of  and utilizes the fact that we draw to a finite grid. Every once

in a while (e.g. every tenth time we call the Corrector procedure) we check the quality of the corrected

point . For this quality check we define a rectangular region centered at  and check for a sign

change of the function f at the corner points. The size of this rectangular region can be a parameter L

specified by the user or simply the current grid size. If there is a sign change in the corner points, we

know that our curve will be at most  away. Therefore, we could relax our stopping criteria and set

 to . On the other hand, if we find that our corrected value isn’t close enough to our

curve, we should strengthen our stopping condition and set  to  and redo the corrector

f pk 1+( )

f pk 1+( ) ¡<
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¡

pc pc
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step. This finally results in a relative (adaptive) error test, which is certainly superior than an absolute

(static) error test.

3.3  Determining The Step Size

The other crucial and very sensitive parameter of this algorithm is the step size . One big advantage

of our algorithm is the freedom to choose the step size. When the curve shows a small curvature we will

choose a fairly large , allowing the algorithm to step quickly through this “almost linear” part of the

curve. On the other hand, when the curve changes rather quickly, i.e. the curvature of the function is

high, we have to decrease  appropriately. This adaptive mechanism gives us the ability to capture the

nature of our curve in greater detail when necessary.

The mathematical definition of the curvature is

, (18)

where  denotes the angel of the tangent with the x-axis and  denotes the arc length between the

two points. For implicit functions, C can be computed as

(19)

(See [6]). We compute first derivatives anyway for the Newton corrector, but would like to avoid com-

puting second derivatives. Therefore, we use an approximation to the curvature that is based on Equa-

tion (18), where we use the current and previous point on the curve. Since we have the first derivatives

already computed we can precisely compute the tangent angles. The arc length between the two points

is simply approximated with the current step size. To compute the initial step size we could either use

Equation (19) or just use the grid size. Choosing the initial step size for a bifurcation point can be a

problem. If we are stepping too far, we might ‘loose track’ of the current branch. If we are stepping too

close, the corrector might converge to a different, neighboring branch. Therefore we left it up to the user

to choose this initial step size.
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Another indicator of the quality of our step size would be the number of corrector steps we had to take

before we converged to a curve point. In our predictor step we are basically following the tangent of the

curve. If the curve is fairly linear the predicted point  will be almost on the curve, resulting in just

very few corrector steps. If the curve changes its direction rather fast,  will not be the best guess and

we expect more correction steps. Therefore, if we use at most one Newton step to find a point on the

curve, we simply double the step size.

3.4  Detecting Bifurcation Points

Bifurcation points are points where the curve intersects itself. At these points the first derivatives of the

function evaluate to zero. Of course, it will be very unlikely to find the mathematically exact bifurcation

point (in case one exists), because of the numerical nature of the algorithm. Therefore, we need to keep

watching the first derivatives of a function for regions where they are close to zero. We have seen

already how difficult such a test can be (see Section 3.2). Therefore, whenever we find a sign change in

one of the partial derivatives (from the previous to the current point) we have good reason to suspect

that there might be a bifurcation point close by. As a result, we decrease our step size and repeat the last

predictor/corrector step until the step size is smaller than a given size, which can be defined by the user.

If there is still reason to believe that there might be a bifurcation point, we create a rectangular region

around the current point on the curve. Similar to the test we performed in Section 3.2, we test whether

there is a sign change in the partial derivatives fx and fy. If we find a sign change in both partial deriva-

tives we conclude that we detected a bifurcation point. Otherwise, we conclude that we probably found

a turning point of the curve.

3.5  Stopping Criteria

We assume that we deal with a closed curve. Therefore, we need to find out if and when we returned to

a part of a branch we have traced already. If we do not include this exit test (in Line 20), we will trace

the curve over and over again, ending up in an infinite loop.

Because of the nature of a numeric algorithm it is very unlikely to return to the exact same point from

where we started. Therefore, we cannot just test for equality. We also do not want to test the proximity
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of the new point  to every one of the computed values along the curve. That might be possible for the

first few values, when the cost is still low, but certainly not for arbitrary curves, where we have to com-

pute many points to reasonably approximate the curves shape. The other problem is again the meaning

of “very close”. To solve this problem, we maintain a counter that counts the number of times we

attempt to draw a pixel that has been drawn already. When the algorithm computes a point on the curve

that is mapped to a pixel that was not drawn before, we set the counter to zero. Every time we compute

a new point on the curve within a pixel that was previously drawn, we increase a counter by one. If the

counter’s value exceeds some threshold, the algorithm stops pursuing this path.

4.  Results
We applied our algorithm to many different functions with and without bifurcation points and found

that they were drawn correctly in any image resolution of 1282 to 5122. For images of low resolution

(322 and sometimes 642) the user may have to explicitly specify a smaller step size. We have chosen

three very common functions without a bifurcation point (Figure 5) and three interesting functions with

many bifurcation points (Figure 6). Some interesting statistics for each group of functions is summa-

rized in Table 1 and compared to Chandlers algorithm [7]. The test cases where drawn onto a 5122

image. Drawing times, for all examples, was under 0.2 seconds on a Silicon Graphics Crimson

(150Mhz R4400). In the table we also provide the average number of pixels per one predictor step

(showing the adaptive step size), and the average number of correct steps per predictor.

TABLE 1. Performance results comparing our algorithm. The empty cells denote cases where Chan-
dler’s algorithm could not draw the curve.

Figure

 # Function evaluation per
pixel # pixels per

predictor
# pixels per
predictor

 Our Method  Chandler
 5a  1.89  2.68  6.21  2.55
 5b  2.01 2.80  6.79  3.20
 5c  3.27  2.92  3.51  2.49
6a  2.88 <  6.66  5.04
6b  4.18 <  4.05  3.67
6c  4.55 <  2.38  2.30

pc
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In general, the number of function evaluations per pixel for low resolutions is expectably high, since the

curvature of a curve considered within a pixel is larger than if the same curve is subdivided into smaller

parts (i.e. for smaller pixel sizes). Therefore, the step size (in terms of the number of pixels) is smaller

and the algorithm must perform more calculations on a per pixel basis. For high resolutions we have

much fewer function evaluations per pixel than Chandler’s algorithm without loss of quality. This dem-

onstrates the power of the adaptive step size.
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5.  Conclusions
We presented here a numerical algorithm that is able to draw a large family of implicit functions.

Through an adaptive step size design our performance is greatly optimized. We have shown that our

approach outperforms previous tracking algorithms.

Our future research includes the improvement of the accuracy of the predictor step. Since we already

know the derivatives at the previous point and, most of the time, also have this information available for

the point before that, we could use the Hermite interpolation scheme and approximate our curve with a
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polynom of third degree. This higher order approximation of our curve should result in fewer corrector

steps. Since the higher order polynomial is computed only at the predictor step, saving several corrector

steps, we expect a more efficient algorithm. A similar improvement can be made when connecting a

new point on the curve with the previous one. Instead of a line through these point, one could use a

higher order polynomial. Improvements to the accuracy of the corrector procedure are also possible, for

example, by using a better corrector than Newton’s. Finally, we plan to explore the extension of our

methods to 3D voxelization of implicit surfaces.
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Abstract
Implicit curves are widely used in computer graphics because of their powerful fea-

tures for modeling and their ability for general function description. The most pop-

ular rasterization techniques for implicit curves are space subdivision and curve

tracking. In this paper we are introducing an efficient curve tracking algorithm that

is also more robust then existing methods. We employ the Predictor-Corrector

Method on the implicit function to get a very accurate curve approximation in a

short time. Speedup is achieved by adapting the step size to the curvature. In addi-

tion, we provide mechanisms to detect and properly handle bifurcation points,

where the curve intersects itself. Finally, the algorithm allows the user to trade-off

accuracy for speed and vice a versa. We conclude by providing examples that dem-

onstrate the capabilities of our algorithm.

1.  Introduction
Implicit surfaces are surfaces that are defined by implicit functions. An implicit function  is a map-

ping from an n dimensional space  to the space , described by an expression in which all vari-

ables appear on one side of the equation. This is a very general way of describing a mapping. An n

dimensional implicit surface  is defined by all the points  in  such that the implicit mapping

projects  to 0. More formally, one can describe  by

. (1)
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Often times, one is interested in visualizing isosurfaces (or isocontours for 2D functions) which are

functions of the form for some constant c.

Different classes of implicit surfaces are of importance. Implicit surfaces that are defined by a polyno-

mial are called algebraic surfaces. Since almost all continuous functions can be approximated by poly-

nomials, algebraic surfaces represent a powerful class. Since polynomials have been studied and

understood fairly well, one has a better mathematical handle at algebraic surfaces.

Another special class of implicit surfaces have density functions as their defining functions. Density

functions decrease exponentially with increasing distance to a certain center point. The models where

these functions find usage usually arise in the study of physical phenomena, e.g. atom models. Blinn [4]

was one of the first to try to visualize these surfaces on a computer. They became to be known as

Blinn’s “Blobby Model” or Metaballs.

Yet another model which is gaining importance is the discrete data set. Such data set is commonly gen-

erated by various medical scanners such as MRI and CT. These data sets can also be seen as implicit

functions, where  and v is the scanned value at the location p. We assume that if p is not on a

grid point then some sort of interpolation from neighboring grid points defines v at p.

Rendering implicit surfaces is very difficult and computationaly very expensive. Usually existing algo-

rithms to render implicit surfaces work only for special cases or special sets of functions. In fact, to date

there is no such algorithm that can render arbitrary implicit surfaces accurately and in a stable and

timely manner.

Algorithms for rendering 3D implicit surfaces can be classified into three groups: representation trans-

forms, ray tracing, and surface tracking. The first approach tries to transform the problem from implicit

surfaces to another representation which is easier to display such as polygon meshes [1][5][10][15] or

parametric representations [16]. The second approach to rendering of implicit surfaces is to ray-trace

them. Efficient ray-object intersection algorithms have been devised for algebraic surfaces [11], meta-

balls [4], and a class of functions for which Lipschitz constants can be efficiently computed [12][14].

The third approach to rendering implicit functions is to scan convert or discretize the function. Seder-

f p( ) c=

f p( ) v=
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berg and Zundel [17] introduced such a scan line algorithm for a class of implicit functions that can be

represented by Bernstein polynomials.

When it comes to drawing 2D implicit functions (curves) an attractive approach is to follow the path of

the curve. The algorithm starts at a seed point on the curve. It then looks at the pixels adjacent to the

seed point to see if any of them is the next pixel along the curve. Various algorithms exist which mainly

differ in the method they use to find the next pixel along the curve.

One way to find the next pixel is based on digital difference analysis (DDA). A lot of work has been

done in this field and the most popular algorithm applying this technique are Bresenham's and the mid-

point line and circle drawing algorithms [8]. The rate of change in x and y is computed through fast inte-

gral updates of dx and dy, which are then used as decision variables to determine the next pixel center.

This idea was generalized for algebraic curves by Hobby [13]. One problem of this approach is that the

inherent integer arithmetic can only be exploited for a small set of algebraic functions. Furthermore,

this algorithm is not able to deal properly with self intersecting curves. Hobby assumes that these inter-

section points are given by the user.

A different way to continue a curve would be to evaluate the underlying function at the center of the

neighboring pixels to find the one with the smallest absolute function value. This idea has been imple-

mented by Jordan et. al. [9] and was improved by Chandler [7]. Since there are only eight neighboring

pixels, eight function evaluations are the maximum needed to find the next pixel on the curve. Since we

will very likely be traveling in the same direction we have been traveling when we picked the current

pixel, Chandler tests first the pixel continuing in the same direction, then its neighbors etc. For most

'nicely' behaving functions two to three function evaluations per pixel will be sufficient. To increase

accuracy, Chandler prefers to look for a sign change rather than the smallest absolute value. Therefore,

he evaluates the function not at pixel centers but rather halfway in between pixels. Although the algo-

rithm does not depend on the actual description of the function and therefore is applicable to arbitrary

functions, it is still not able to deal with self intersecting functions. To deal with such points the algo-

rithm requires user intervention. Alternatively, it includes a brute-force Monte Carlo method to visual-

ize the positive and negative regions of the function. Finally, if the curve enters and leaves the pixel in-
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between the same two neighboring sample points, this algorithm will not be able to register a sign

change and therefore fail.

For density functions, Arvo et. al. applied a numerical method known as the predictor-corrector method

[2]. Their main goal is the rendering of iso-curves of medical data sets. In this paper we introduce an

efficient and more robust predictor-corrector method. Our algorithm deals with self intersecting curves

properly and increases the efficiency of the algorithm to less than one function evaluation per pixel on

the average. Finally, unlike existing curve tracking methods, our algorithm can be applied to a large

family of implicit functions including selfintersecting functions with at most two branches at the inter-

section point.

2.  The Predictor-Corrector Method
The predictor-corrector method is a well known numerical algorithm which has its origin in solving

ordinary differential equations and bifurcation theory. Arvo and Novins [2] used a two dimensional

standard method for extracting isocurves in a 2D medical image. Although the predictor-corrector

method offers ways to detect and properly deal with self intersecting curves and curves “very close” to

themselves, Arvo and Novins did not explore these capabilities.

The predictor-corrector method is a numerical continuation method (tracking algorithm). The goal is to

find a point set which represents a discretized approximation of a curve that is defined by some implicit

function as in Equation (1). As the name suggests, the predictor-corrector method consists of two steps.

In the predictor step we take a (more or less sophisticated) guess of a point on the curve, denoted by .

Depending on how much thought and work we put into predicting the point , it will be closer or far-

ther away from an actual point on the curve. Depending on the assumption we make about the curve

and its actual shape, we will not be able to always accurately predict an exact point on the curve. In the

corrector step we use our predicted point  as a starting point for an iterative method that converges to

an actual point on the curve. We denote this new, corrected point, by . We repeat these two steps until

we tracked the whole curve. The resulting discrete point set can then be displayed on a screen.
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There are many different ways to implement the predictor or corrector steps. We use the standard Euler-

Newton method with an adaptive step size and introduce techniques to handle selfintersecting curves.

2.1  The Predictor Step

The focus of the predictor step is to find a point  that is very close or even on the curve, so that the

costs for the corrector step are reduced or even eliminated. If we already know points on the curve, we

can approximate the curve through a polynomial and get a new approximate for this curve through

extrapolation or interpolation.

Finding the very first point on the curve is not always easy. One usually has some understanding of the

kind of function one tries to discretize and can therefore provide an initial seed value to the algorithm. If

this is not possible, one needs to apply a brute force algorithm or some other heuristic to find an initial

seed value. The image space is limited (usually a screen in computer graphics). Therefore one rather

brute-force method would be to impose a grid onto the screen and evaluate the underlying implicit func-

tion at each grid point to choose a closest point (where |f(p)| becomes smallest). Another possibility

would be to look for a sign change of the underlying function between neighboring grid points. We

employ a faster method that is based on a quadtree subdivision algorithm as explained in Section 3.1.

We now present one way to implement the predictor step. One-step methods only employ one point (the

point of the previous iteration) to predict a new point. The standard Euler method is a good example of

a one-step method. However, one can envision the use of Hermites method which employs more than

one point and is therefore called multi-step method. Although multi-step methods are usually more

expensive, they lead to better, higher order approximations, reducing the number of necessary corrector

steps.

Euler’s method starts at a point which is known to be on the curve. Because this is a one-step method,

each point on the curve will lead to exactly one new point on the curve. Since we execute many predic-

tor-corrector iterations to obtain a point set that approximates our curve, it is just obvious to use the

resulting point of the previous iteration as the initial point for the current iteration. We call this initial

point . We also want to have some control over the distance between the new point and

pp
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the initial point. That is, we want  to be located at a certain distance  from  and not at some

unpredictable “end” of the curve.  is called the arc length parameter and it represents a parameteriza-

tion of our curve. The linear approximation of the predicted point results in

, (2)

where  now depends on the arc length and the initial point. Since  is the euclidean dis-

tance between  and , we need to make sure that:

(3)

Equation (3) defines a unit circle around the origin. Combining it with Equation (2) we are describing a

circle of radius  and origin . Next, we have to find the intersection points of that circle with our

curve. We choose one of these points as our new predicted value. Since the origin of this circle lies

already on the curve, we are guaranteed that our circle will intersect our implicit curve, unless the whole

curve is contained within the circle. In that particular case, the choice of the distance  between neigh-

boring points is not appropriate and needs to be changed. If  is in the order of the size of a pixel and

the curve is still contained within such a small circle, the discretization of this curve would just be one

pixel and we are done.

Assuming a closed curve, we will actually get an even number of intersection points. Choosing our step

size (arc length) small enough, we will get exactly two intersection points (see Figure 1). However, in

the case of a self intersecting curve or when a curve comes “close” to itself, we will get more than two

intersection points, even if  is very small. We will explore these special cases in Section 2.2.

The second condition for the new predicted point is, of course, that it should lie on the curve defined by

the underlying implicit function f. That means we require

. (4)

Since we are processing an arbitrary functions f we are not able to use Equation (4) directly to compute

. Instead, we substitute Equation (2) into Equation (4) and through a Taylor series expansion we are
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able to compute an approximation to the actual point on the curve. This approximation serves as the

predicted value .

Let’s have a look at the equations. The substitution results in

. (5)

Now the actual approximation takes place. We expand Equation (5) in a Taylor series and keep only the

linear terms. That results in:

(6)

The initial point was assumed to be on the curve, i.e. . We conclude

(7)

Using Equation (3) and Equation (7), we can actually solve for the unknowns . Using a short-

cut notation for the partial derivatives of , where  is replaced by  (and similarly

for the partial derivative in y) the result can be written as

(8)

which is also proven by Baker and Overman [3]. Here  stands for the sign plus or minus which repre-

sents the direction in which we continue to track the curve. In the case of the seed point we want to

make sure, that we trace both directions. However, in the general case we don’t want to step back into

the direction we were coming from. A simple sign check of the scalar product of the direction, where

we were coming from and our new direction, helps us determining the appropriate .

Although our new predicted value lies on a circle around the initial point, we only find a point near the

curve because of the approximation in Equation (6). If we take a closer look at Equation (7), the one we

actually used as an approximation to Equation (5), we realize that  describes the components
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of the tangent to the curve at the initial point. That leads us to a better geometric understanding of this

process, captured in Figure 1.

2.2  Bifurcation Points

The intersection of the circle equation (originating in Equation (3)) with the implicit curve results usu-

ally in two points. As pointed out earlier, in case of a selfintersecting curve (Figure 2a) or if it just

comes “close” to itself (Figure 2b) we expect at least four intersection points. These special points are

also called bifurcation points. Looking at our formulas in Equation (7) and Equation (3), we are only

able to compute two points, since it is an intersection of a quadratic (Equation (3)) curve with a linear

curve (Equation (7)). In a case of a bifurcation point the linear approximation of the Taylor series as in

Equation (7) will not be enough. In fact, from the implicit function theorem we can conclude, that the

first partial derivatives will be zero for these bifurcation points. Therefore we cannot compute

as derived above. We have to include the second order terms of the Taylor series expansion in Equation

(6) to get the appropriate results.

The more accurate approximation to Equation (5), replacing Equation (6), is now

FIGURE 1. The predictor step. Here  is the step size we want to step along the curve
starting at the initial point . Because Equation (7) is only an approximation, the predicted
value will not necessarily lie on the curve described by f.

s6
pi

y

x

6s

6x = dx 6s
6y = dy 6s

<6s

f

pi

pp

dx dy,( )



9

(9)

As already mentioned, the first three terms in the sum vanish, which leads to

(10)

In order to increase the readability of the following formulas, we use the following notation:

(11)

If we consider Equation (10) as a quadratic equation in the quotient q defined by dx/dy, we get the fol-

lowing solution:

(12)

To actually compute dx and dy, we substitute this result in Equation (3), which results in

y

x

y

x

(a) (b)

FIGURE 2. Possible cases of bifurcation points where the circle represents the actual
step size. (a) The curve intersects itself; (b) The curve comes very “close” to itself.
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(13)

where any arbitrary combination of plus and minus from Equation (12) and Equation (13) results in four

different distinct direction vectors . We will store all four directions in a list and follow their

branches one at a time. This is explained in greater detail in Section 3.

We discussed the usual case of two intersection points and studied in detail what happens when these

formulas fail when we encounter bifurcation points. Unfortunately, it could happen that we do not have

four intersection points, but six, eight, or more. That means, that actually more then the two branches,

as shown in Figure 1, meet at the same area. In that case, we realize that the second partial derivatives in

Equation (9) vanishes also, leaving us with no choice other than including even higher order terms in

the approximation of the Taylor series. This implies that we will have to solve higher order polynomials

to produce the expected number of solutions.

2.3  The Corrector Step

Although we have tried hard to predict a new point  on the curve, it is not guaranteed to fall accu-

rately on the curve. We can only hope to find a point that is “very close” to the curve. The goal of the

corrector step is to find a “closest” point on the curve, starting at . Among the many methods for

finding zero points of functions, the Newton method is very stable and fast, and therefore very common.

The Newton method is a numerical iteration method which converges to a zero point of a function f,

starting at a point  that should be fairly close to the zero point already. In our case, the starting point

for the Newton method will be  < the result of the predictor step.

The predictor step produced an initial value  for the iteration method. At

each iteration step we take the new and improved value from the previous iteration and try to improve it

even further, so that we actually end up on the curve itself. The result of the current iteration can be

written as:
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, (14)

where  marks the iteration number.

But how can we determine ? Here we exploit the same idea as we did in Euler’s Method. Of

course, we want that our new point  lies on the curve. So we add the condition that  is

a curve point:

. (15)

The same ideas and manipulations as used for Equation (4) will lead us towards a solution. Substituting

Equation (14) into Equation (15) and using a Taylor series expansion of f will result in:

. (16)

That is, in fact, the formula for Newton’s method for a two dimensional function. Since this is one equa-

tion with two unknowns, we have the freedom and duty to specify another condition, we want our iter-

ate to satisfy. First of all, we want to make sure that our iteration process converges. Other than that, it

would be nice if we could guarantee some sort of constant discretization of our curve. That is, we do not

want the distance between samples to vary too much. Both of these ideas can be realized if we restrict

our convergence to move in a right angle away from our previous iterate. To be more specific, the trian-

gle formed by the points ,  and  should form a right angled triangle. Here,  is the initial

point on the curve < the one we used in the predictor step to compute the point .  and  are the

previous and current iterates. In Figure 1 it was shown that this condition on our new iterate results in a

somewhat circular movement around the initial point . Because of this circular movement, we stay in

a certain proximity to , which increases the chances of convergence.

More formally, we want to add the condition that the vector  is perpendicular to . That is

expressed in the following manner:

(17)
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Equation (16) together with Equation (17) uniquely describe a new, corrected iterate , which con-

cludes the Corrector step. A geometric interpretation of these steps is illustrated in Figure 3.

3.  The Algorithm
The pseudo code for our numerical algorithm is given in Figure 4. The algorithm starts by looking for a

seed point (using a space subdivision method, as described in Section 3.1). The initial point will be

most likely on some arbitrary part of the curve. Therefore, we will usually have two possible directions

we can follow. We record both in a list for later retrieval (Line 3). At a bifurcation point a pixel will

have four branches leaving it. In this case we will also record all possible branch directions in this list

(Line 18). After retrieving a starting point for a new branch (Line 5) we trace the branch until we find

another bifurcation point or until we reach the limits of our display device. In the case of a closed curve

we also need to check when we get back to an already traced branch of the curve. A simple way to do

this is explained in Section 3.5.

y

x

6s

f

pi

pp=p0

pc

FIGURE 3. The corrector step. The Newton iterations and a forced circular movement of
the iterates  converge towards an actual point on the curve .pk 1+ pc

pk+1

pk 1+



13

For each new predictor point we need to make sure that the corrector didn’t fail (Line 7 through Line

12). Once we have gained confidence about our corrected point, we check whether we can adjust the

step size (Line 15). We connect the previous point to the current point by a simple line (Line 16). If we

found a new bifurcation point, we need to record it (Line 18) and quit this loop. In any other case we

repeat this procedure and find another point on the same branch.

We now describe in more detail the implementation of some of the more involved segments of the algo-

rithm.

1. find an initial point  on the surface;
2. determine initial step size ;
3. record (p, , bifurlist); /* for both initial direction */
4. repeat
5. get , from bifurlist
6. repeat /* continue current branch */
7. repeat /* find a reliable new point on the curve */
8.  := Predictor( )
9.  := Corrector( )
10. C := approx_curvature( , )
11.  := /2
12. until ( converges AND 1/(2C) < ) OR bifur_test( )
13.  := *2;
14. if 1/(2C) > then
15. increase ;
16. draw_line( , );
17. if bifur_test( ) then
18. record( , , bifurlist)
19.  := ;
20. until ( is in the covered region or outside the screen OR bifur_test( ));
21. until bifurlist is empty

FIGURE 4. pseudo code for the curve tracking algorithm.
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3.1  Finding a Starting Point

If a seed point is not provided by the user, we employ a space subdivision approach. We divide the

image region into four quadrants and compute the function at each corner of the quadrants. If the sign of

the function is the same at all corners, we will apply the same subdivision to all four quadrants in a

breath-first scheme. If we do find a sign change, we continue to subdivide this specific quadrant in a

depth-first scheme up to the pixel- or even subpixel level, depending on how accurate our initial point

should be.

3.2  Implementing the Corrector Step

Since the predicted point is only an approximation of a curve point, the corrector step is employed to

converge to an actual point on the curve. Because of the approximations in our formulas, the Newton

corrector step (explained in Section 2.3) usually needs to be repeated a few times. That is done within

the Corrector procedure in Line 9. But how many times should we repeat the Newton step? Of course,

we have to fight round off errors caused by the discrete computer arithmetic as well. The quality of our

discretized curve greatly depends on our stopping criteria, as well as the successful completion of our

algorithm. Therefore, we need to know when  gets close enough to zero. The problem is that

close means very different things for different functions. If we had more knowledge about the function,

we could employ an absolute error test, like . For a general algorithm, we will have no idea

how small  needs to be to assure spatial proximity. This notion of being close to the curve might also

change at different ranges for the curve.

The method we chose adapts the value of  and utilizes the fact that we draw to a finite grid. Every once

in a while (e.g. every tenth time we call the Corrector procedure) we check the quality of the corrected

point . For this quality check we define a rectangular region centered at  and check for a sign

change of the function f at the corner points. The size of this rectangular region can be a parameter L

specified by the user or simply the current grid size. If there is a sign change in the corner points, we

know that our curve will be at most  away. Therefore, we could relax our stopping criteria and set

 to . On the other hand, if we find that our corrected value isn’t close enough to our

curve, we should strengthen our stopping condition and set  to  and redo the corrector

f pk 1+( )

f pk 1+( ) ¡<

¡

¡

pc pc

L 2⁄

¡ 1.1 f pk 1+( )

¡ 10 2– f pk 1+( )
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step. This finally results in a relative (adaptive) error test, which is certainly superior than an absolute

(static) error test.

3.3  Determining The Step Size

The other crucial and very sensitive parameter of this algorithm is the step size . One big advantage

of our algorithm is the freedom to choose the step size. When the curve shows a small curvature we will

choose a fairly large , allowing the algorithm to step quickly through this “almost linear” part of the

curve. On the other hand, when the curve changes rather quickly, i.e. the curvature of the function is

high, we have to decrease  appropriately. This adaptive mechanism gives us the ability to capture the

nature of our curve in greater detail when necessary.

The mathematical definition of the curvature is

, (18)

where  denotes the angel of the tangent with the x-axis and  denotes the arc length between the

two points. For implicit functions, C can be computed as

(19)

(See [6]). We compute first derivatives anyway for the Newton corrector, but would like to avoid com-

puting second derivatives. Therefore, we use an approximation to the curvature that is based on Equa-

tion (18), where we use the current and previous point on the curve. Since we have the first derivatives

already computed we can precisely compute the tangent angles. The arc length between the two points

is simply approximated with the current step size. To compute the initial step size we could either use

Equation (19) or just use the grid size. Choosing the initial step size for a bifurcation point can be a

problem. If we are stepping too far, we might ‘loose track’ of the current branch. If we are stepping too

close, the corrector might converge to a different, neighboring branch. Therefore we left it up to the user

to choose this initial step size.
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Another indicator of the quality of our step size would be the number of corrector steps we had to take

before we converged to a curve point. In our predictor step we are basically following the tangent of the

curve. If the curve is fairly linear the predicted point  will be almost on the curve, resulting in just

very few corrector steps. If the curve changes its direction rather fast,  will not be the best guess and

we expect more correction steps. Therefore, if we use at most one Newton step to find a point on the

curve, we simply double the step size.

3.4  Detecting Bifurcation Points

Bifurcation points are points where the curve intersects itself. At these points the first derivatives of the

function evaluate to zero. Of course, it will be very unlikely to find the mathematically exact bifurcation

point (in case one exists), because of the numerical nature of the algorithm. Therefore, we need to keep

watching the first derivatives of a function for regions where they are close to zero. We have seen

already how difficult such a test can be (see Section 3.2). Therefore, whenever we find a sign change in

one of the partial derivatives (from the previous to the current point) we have good reason to suspect

that there might be a bifurcation point close by. As a result, we decrease our step size and repeat the last

predictor/corrector step until the step size is smaller than a given size, which can be defined by the user.

If there is still reason to believe that there might be a bifurcation point, we create a rectangular region

around the current point on the curve. Similar to the test we performed in Section 3.2, we test whether

there is a sign change in the partial derivatives fx and fy. If we find a sign change in both partial deriva-

tives we conclude that we detected a bifurcation point. Otherwise, we conclude that we probably found

a turning point of the curve.

3.5  Stopping Criteria

We assume that we deal with a closed curve. Therefore, we need to find out if and when we returned to

a part of a branch we have traced already. If we do not include this exit test (in Line 20), we will trace

the curve over and over again, ending up in an infinite loop.

Because of the nature of a numeric algorithm it is very unlikely to return to the exact same point from

where we started. Therefore, we cannot just test for equality. We also do not want to test the proximity

pp

pp
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of the new point  to every one of the computed values along the curve. That might be possible for the

first few values, when the cost is still low, but certainly not for arbitrary curves, where we have to com-

pute many points to reasonably approximate the curves shape. The other problem is again the meaning

of “very close”. To solve this problem, we maintain a counter that counts the number of times we

attempt to draw a pixel that has been drawn already. When the algorithm computes a point on the curve

that is mapped to a pixel that was not drawn before, we set the counter to zero. Every time we compute

a new point on the curve within a pixel that was previously drawn, we increase a counter by one. If the

counter’s value exceeds some threshold, the algorithm stops pursuing this path.

4.  Results
We applied our algorithm to many different functions with and without bifurcation points and found

that they were drawn correctly in any image resolution of 1282 to 5122. For images of low resolution

(322 and sometimes 642) the user may have to explicitly specify a smaller step size. We have chosen

three very common functions without a bifurcation point (Figure 5) and three interesting functions with

many bifurcation points (Figure 6). Some interesting statistics for each group of functions is summa-

rized in Table 1 and compared to Chandlers algorithm [7]. The test cases where drawn onto a 5122

image. Drawing times, for all examples, was under 0.2 seconds on a Silicon Graphics Crimson

(150Mhz R4400). In the table we also provide the average number of pixels per one predictor step

(showing the adaptive step size), and the average number of correct steps per predictor.

TABLE 1. Performance results comparing our algorithm. The empty cells denote cases where Chan-
dler’s algorithm could not draw the curve.

Figure

 # Function evaluation per
pixel # pixels per

predictor
# pixels per
predictor

 Our Method  Chandler
 5a  1.89  2.68  6.21  2.55
 5b  2.01 2.80  6.79  3.20
 5c  3.27  2.92  3.51  2.49
6a  2.88 <  6.66  5.04
6b  4.18 <  4.05  3.67
6c  4.55 <  2.38  2.30

pc
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In general, the number of function evaluations per pixel for low resolutions is expectably high, since the

curvature of a curve considered within a pixel is larger than if the same curve is subdivided into smaller

parts (i.e. for smaller pixel sizes). Therefore, the step size (in terms of the number of pixels) is smaller

and the algorithm must perform more calculations on a per pixel basis. For high resolutions we have

much fewer function evaluations per pixel than Chandler’s algorithm without loss of quality. This dem-

onstrates the power of the adaptive step size.
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5.  Conclusions
We presented here a numerical algorithm that is able to draw a large family of implicit functions.

Through an adaptive step size design our performance is greatly optimized. We have shown that our

approach outperforms previous tracking algorithms.

Our future research includes the improvement of the accuracy of the predictor step. Since we already

know the derivatives at the previous point and, most of the time, also have this information available for

the point before that, we could use the Hermite interpolation scheme and approximate our curve with a
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polynom of third degree. This higher order approximation of our curve should result in fewer corrector

steps. Since the higher order polynomial is computed only at the predictor step, saving several corrector

steps, we expect a more efficient algorithm. A similar improvement can be made when connecting a

new point on the curve with the previous one. Instead of a line through these point, one could use a

higher order polynomial. Improvements to the accuracy of the corrector procedure are also possible, for

example, by using a better corrector than Newton’s. Finally, we plan to explore the extension of our

methods to 3D voxelization of implicit surfaces.
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Abstract
Implicit curves are widely used in computer graphics because of their powerful fea-

tures for modeling and their ability for general function description. The most pop-

ular rasterization techniques for implicit curves are space subdivision and curve

tracking. In this paper we are introducing an efficient curve tracking algorithm that

is also more robust then existing methods. We employ the Predictor-Corrector

Method on the implicit function to get a very accurate curve approximation in a

short time. Speedup is achieved by adapting the step size to the curvature. In addi-

tion, we provide mechanisms to detect and properly handle bifurcation points,

where the curve intersects itself. Finally, the algorithm allows the user to trade-off

accuracy for speed and vice a versa. We conclude by providing examples that dem-

onstrate the capabilities of our algorithm.

1.  Introduction
Implicit surfaces are surfaces that are defined by implicit functions. An implicit function  is a map-

ping from an n dimensional space  to the space , described by an expression in which all vari-

ables appear on one side of the equation. This is a very general way of describing a mapping. An n

dimensional implicit surface  is defined by all the points  in  such that the implicit mapping

projects  to 0. More formally, one can describe  by

. (1)
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Often times, one is interested in visualizing isosurfaces (or isocontours for 2D functions) which are

functions of the form for some constant c.

Different classes of implicit surfaces are of importance. Implicit surfaces that are defined by a polyno-

mial are called algebraic surfaces. Since almost all continuous functions can be approximated by poly-

nomials, algebraic surfaces represent a powerful class. Since polynomials have been studied and

understood fairly well, one has a better mathematical handle at algebraic surfaces.

Another special class of implicit surfaces have density functions as their defining functions. Density

functions decrease exponentially with increasing distance to a certain center point. The models where

these functions find usage usually arise in the study of physical phenomena, e.g. atom models. Blinn [4]

was one of the first to try to visualize these surfaces on a computer. They became to be known as

Blinn’s “Blobby Model” or Metaballs.

Yet another model which is gaining importance is the discrete data set. Such data set is commonly gen-

erated by various medical scanners such as MRI and CT. These data sets can also be seen as implicit

functions, where  and v is the scanned value at the location p. We assume that if p is not on a

grid point then some sort of interpolation from neighboring grid points defines v at p.

Rendering implicit surfaces is very difficult and computationaly very expensive. Usually existing algo-

rithms to render implicit surfaces work only for special cases or special sets of functions. In fact, to date

there is no such algorithm that can render arbitrary implicit surfaces accurately and in a stable and

timely manner.

Algorithms for rendering 3D implicit surfaces can be classified into three groups: representation trans-

forms, ray tracing, and surface tracking. The first approach tries to transform the problem from implicit

surfaces to another representation which is easier to display such as polygon meshes [1][5][10][15] or

parametric representations [16]. The second approach to rendering of implicit surfaces is to ray-trace

them. Efficient ray-object intersection algorithms have been devised for algebraic surfaces [11], meta-

balls [4], and a class of functions for which Lipschitz constants can be efficiently computed [12][14].

The third approach to rendering implicit functions is to scan convert or discretize the function. Seder-

f p( ) c=

f p( ) v=
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berg and Zundel [17] introduced such a scan line algorithm for a class of implicit functions that can be

represented by Bernstein polynomials.

When it comes to drawing 2D implicit functions (curves) an attractive approach is to follow the path of

the curve. The algorithm starts at a seed point on the curve. It then looks at the pixels adjacent to the

seed point to see if any of them is the next pixel along the curve. Various algorithms exist which mainly

differ in the method they use to find the next pixel along the curve.

One way to find the next pixel is based on digital difference analysis (DDA). A lot of work has been

done in this field and the most popular algorithm applying this technique are Bresenham's and the mid-

point line and circle drawing algorithms [8]. The rate of change in x and y is computed through fast inte-

gral updates of dx and dy, which are then used as decision variables to determine the next pixel center.

This idea was generalized for algebraic curves by Hobby [13]. One problem of this approach is that the

inherent integer arithmetic can only be exploited for a small set of algebraic functions. Furthermore,

this algorithm is not able to deal properly with self intersecting curves. Hobby assumes that these inter-

section points are given by the user.

A different way to continue a curve would be to evaluate the underlying function at the center of the

neighboring pixels to find the one with the smallest absolute function value. This idea has been imple-

mented by Jordan et. al. [9] and was improved by Chandler [7]. Since there are only eight neighboring

pixels, eight function evaluations are the maximum needed to find the next pixel on the curve. Since we

will very likely be traveling in the same direction we have been traveling when we picked the current

pixel, Chandler tests first the pixel continuing in the same direction, then its neighbors etc. For most

'nicely' behaving functions two to three function evaluations per pixel will be sufficient. To increase

accuracy, Chandler prefers to look for a sign change rather than the smallest absolute value. Therefore,

he evaluates the function not at pixel centers but rather halfway in between pixels. Although the algo-

rithm does not depend on the actual description of the function and therefore is applicable to arbitrary

functions, it is still not able to deal with self intersecting functions. To deal with such points the algo-

rithm requires user intervention. Alternatively, it includes a brute-force Monte Carlo method to visual-

ize the positive and negative regions of the function. Finally, if the curve enters and leaves the pixel in-
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between the same two neighboring sample points, this algorithm will not be able to register a sign

change and therefore fail.

For density functions, Arvo et. al. applied a numerical method known as the predictor-corrector method

[2]. Their main goal is the rendering of iso-curves of medical data sets. In this paper we introduce an

efficient and more robust predictor-corrector method. Our algorithm deals with self intersecting curves

properly and increases the efficiency of the algorithm to less than one function evaluation per pixel on

the average. Finally, unlike existing curve tracking methods, our algorithm can be applied to a large

family of implicit functions including selfintersecting functions with at most two branches at the inter-

section point.

2.  The Predictor-Corrector Method
The predictor-corrector method is a well known numerical algorithm which has its origin in solving

ordinary differential equations and bifurcation theory. Arvo and Novins [2] used a two dimensional

standard method for extracting isocurves in a 2D medical image. Although the predictor-corrector

method offers ways to detect and properly deal with self intersecting curves and curves “very close” to

themselves, Arvo and Novins did not explore these capabilities.

The predictor-corrector method is a numerical continuation method (tracking algorithm). The goal is to

find a point set which represents a discretized approximation of a curve that is defined by some implicit

function as in Equation (1). As the name suggests, the predictor-corrector method consists of two steps.

In the predictor step we take a (more or less sophisticated) guess of a point on the curve, denoted by .

Depending on how much thought and work we put into predicting the point , it will be closer or far-

ther away from an actual point on the curve. Depending on the assumption we make about the curve

and its actual shape, we will not be able to always accurately predict an exact point on the curve. In the

corrector step we use our predicted point  as a starting point for an iterative method that converges to

an actual point on the curve. We denote this new, corrected point, by . We repeat these two steps until

we tracked the whole curve. The resulting discrete point set can then be displayed on a screen.
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There are many different ways to implement the predictor or corrector steps. We use the standard Euler-

Newton method with an adaptive step size and introduce techniques to handle selfintersecting curves.

2.1  The Predictor Step

The focus of the predictor step is to find a point  that is very close or even on the curve, so that the

costs for the corrector step are reduced or even eliminated. If we already know points on the curve, we

can approximate the curve through a polynomial and get a new approximate for this curve through

extrapolation or interpolation.

Finding the very first point on the curve is not always easy. One usually has some understanding of the

kind of function one tries to discretize and can therefore provide an initial seed value to the algorithm. If

this is not possible, one needs to apply a brute force algorithm or some other heuristic to find an initial

seed value. The image space is limited (usually a screen in computer graphics). Therefore one rather

brute-force method would be to impose a grid onto the screen and evaluate the underlying implicit func-

tion at each grid point to choose a closest point (where |f(p)| becomes smallest). Another possibility

would be to look for a sign change of the underlying function between neighboring grid points. We

employ a faster method that is based on a quadtree subdivision algorithm as explained in Section 3.1.

We now present one way to implement the predictor step. One-step methods only employ one point (the

point of the previous iteration) to predict a new point. The standard Euler method is a good example of

a one-step method. However, one can envision the use of Hermites method which employs more than

one point and is therefore called multi-step method. Although multi-step methods are usually more

expensive, they lead to better, higher order approximations, reducing the number of necessary corrector

steps.

Euler’s method starts at a point which is known to be on the curve. Because this is a one-step method,

each point on the curve will lead to exactly one new point on the curve. Since we execute many predic-

tor-corrector iterations to obtain a point set that approximates our curve, it is just obvious to use the

resulting point of the previous iteration as the initial point for the current iteration. We call this initial

point . We also want to have some control over the distance between the new point and

pp

pi xi yi,( )=
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the initial point. That is, we want  to be located at a certain distance  from  and not at some

unpredictable “end” of the curve.  is called the arc length parameter and it represents a parameteriza-

tion of our curve. The linear approximation of the predicted point results in

, (2)

where  now depends on the arc length and the initial point. Since  is the euclidean dis-

tance between  and , we need to make sure that:

(3)

Equation (3) defines a unit circle around the origin. Combining it with Equation (2) we are describing a

circle of radius  and origin . Next, we have to find the intersection points of that circle with our

curve. We choose one of these points as our new predicted value. Since the origin of this circle lies

already on the curve, we are guaranteed that our circle will intersect our implicit curve, unless the whole

curve is contained within the circle. In that particular case, the choice of the distance  between neigh-

boring points is not appropriate and needs to be changed. If  is in the order of the size of a pixel and

the curve is still contained within such a small circle, the discretization of this curve would just be one

pixel and we are done.

Assuming a closed curve, we will actually get an even number of intersection points. Choosing our step

size (arc length) small enough, we will get exactly two intersection points (see Figure 1). However, in

the case of a self intersecting curve or when a curve comes “close” to itself, we will get more than two

intersection points, even if  is very small. We will explore these special cases in Section 2.2.

The second condition for the new predicted point is, of course, that it should lie on the curve defined by

the underlying implicit function f. That means we require

. (4)

Since we are processing an arbitrary functions f we are not able to use Equation (4) directly to compute

. Instead, we substitute Equation (2) into Equation (4) and through a Taylor series expansion we are

pp s6 pi

s6
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s6 pi
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able to compute an approximation to the actual point on the curve. This approximation serves as the

predicted value .

Let’s have a look at the equations. The substitution results in

. (5)

Now the actual approximation takes place. We expand Equation (5) in a Taylor series and keep only the

linear terms. That results in:

(6)

The initial point was assumed to be on the curve, i.e. . We conclude

(7)

Using Equation (3) and Equation (7), we can actually solve for the unknowns . Using a short-

cut notation for the partial derivatives of , where  is replaced by  (and similarly

for the partial derivative in y) the result can be written as

(8)

which is also proven by Baker and Overman [3]. Here  stands for the sign plus or minus which repre-

sents the direction in which we continue to track the curve. In the case of the seed point we want to

make sure, that we trace both directions. However, in the general case we don’t want to step back into

the direction we were coming from. A simple sign check of the scalar product of the direction, where

we were coming from and our new direction, helps us determining the appropriate .

Although our new predicted value lies on a circle around the initial point, we only find a point near the

curve because of the approximation in Equation (6). If we take a closer look at Equation (7), the one we

actually used as an approximation to Equation (5), we realize that  describes the components

pp
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of the tangent to the curve at the initial point. That leads us to a better geometric understanding of this

process, captured in Figure 1.

2.2  Bifurcation Points

The intersection of the circle equation (originating in Equation (3)) with the implicit curve results usu-

ally in two points. As pointed out earlier, in case of a selfintersecting curve (Figure 2a) or if it just

comes “close” to itself (Figure 2b) we expect at least four intersection points. These special points are

also called bifurcation points. Looking at our formulas in Equation (7) and Equation (3), we are only

able to compute two points, since it is an intersection of a quadratic (Equation (3)) curve with a linear

curve (Equation (7)). In a case of a bifurcation point the linear approximation of the Taylor series as in

Equation (7) will not be enough. In fact, from the implicit function theorem we can conclude, that the

first partial derivatives will be zero for these bifurcation points. Therefore we cannot compute

as derived above. We have to include the second order terms of the Taylor series expansion in Equation

(6) to get the appropriate results.

The more accurate approximation to Equation (5), replacing Equation (6), is now

FIGURE 1. The predictor step. Here  is the step size we want to step along the curve
starting at the initial point . Because Equation (7) is only an approximation, the predicted
value will not necessarily lie on the curve described by f.

s6
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(9)

As already mentioned, the first three terms in the sum vanish, which leads to

(10)

In order to increase the readability of the following formulas, we use the following notation:

(11)

If we consider Equation (10) as a quadratic equation in the quotient q defined by dx/dy, we get the fol-

lowing solution:

(12)

To actually compute dx and dy, we substitute this result in Equation (3), which results in

y

x

y

x

(a) (b)

FIGURE 2. Possible cases of bifurcation points where the circle represents the actual
step size. (a) The curve intersects itself; (b) The curve comes very “close” to itself.
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(13)

where any arbitrary combination of plus and minus from Equation (12) and Equation (13) results in four

different distinct direction vectors . We will store all four directions in a list and follow their

branches one at a time. This is explained in greater detail in Section 3.

We discussed the usual case of two intersection points and studied in detail what happens when these

formulas fail when we encounter bifurcation points. Unfortunately, it could happen that we do not have

four intersection points, but six, eight, or more. That means, that actually more then the two branches,

as shown in Figure 1, meet at the same area. In that case, we realize that the second partial derivatives in

Equation (9) vanishes also, leaving us with no choice other than including even higher order terms in

the approximation of the Taylor series. This implies that we will have to solve higher order polynomials

to produce the expected number of solutions.

2.3  The Corrector Step

Although we have tried hard to predict a new point  on the curve, it is not guaranteed to fall accu-

rately on the curve. We can only hope to find a point that is “very close” to the curve. The goal of the

corrector step is to find a “closest” point on the curve, starting at . Among the many methods for

finding zero points of functions, the Newton method is very stable and fast, and therefore very common.

The Newton method is a numerical iteration method which converges to a zero point of a function f,

starting at a point  that should be fairly close to the zero point already. In our case, the starting point

for the Newton method will be  < the result of the predictor step.

The predictor step produced an initial value  for the iteration method. At

each iteration step we take the new and improved value from the previous iteration and try to improve it

even further, so that we actually end up on the curve itself. The result of the current iteration can be

written as:
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yd¤ ¦
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, (14)

where  marks the iteration number.

But how can we determine ? Here we exploit the same idea as we did in Euler’s Method. Of

course, we want that our new point  lies on the curve. So we add the condition that  is

a curve point:

. (15)

The same ideas and manipulations as used for Equation (4) will lead us towards a solution. Substituting

Equation (14) into Equation (15) and using a Taylor series expansion of f will result in:

. (16)

That is, in fact, the formula for Newton’s method for a two dimensional function. Since this is one equa-

tion with two unknowns, we have the freedom and duty to specify another condition, we want our iter-

ate to satisfy. First of all, we want to make sure that our iteration process converges. Other than that, it

would be nice if we could guarantee some sort of constant discretization of our curve. That is, we do not

want the distance between samples to vary too much. Both of these ideas can be realized if we restrict

our convergence to move in a right angle away from our previous iterate. To be more specific, the trian-

gle formed by the points ,  and  should form a right angled triangle. Here,  is the initial

point on the curve < the one we used in the predictor step to compute the point .  and  are the

previous and current iterates. In Figure 1 it was shown that this condition on our new iterate results in a

somewhat circular movement around the initial point . Because of this circular movement, we stay in

a certain proximity to , which increases the chances of convergence.

More formally, we want to add the condition that the vector  is perpendicular to . That is

expressed in the following manner:

(17)
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Equation (16) together with Equation (17) uniquely describe a new, corrected iterate , which con-

cludes the Corrector step. A geometric interpretation of these steps is illustrated in Figure 3.

3.  The Algorithm
The pseudo code for our numerical algorithm is given in Figure 4. The algorithm starts by looking for a

seed point (using a space subdivision method, as described in Section 3.1). The initial point will be

most likely on some arbitrary part of the curve. Therefore, we will usually have two possible directions

we can follow. We record both in a list for later retrieval (Line 3). At a bifurcation point a pixel will

have four branches leaving it. In this case we will also record all possible branch directions in this list

(Line 18). After retrieving a starting point for a new branch (Line 5) we trace the branch until we find

another bifurcation point or until we reach the limits of our display device. In the case of a closed curve

we also need to check when we get back to an already traced branch of the curve. A simple way to do

this is explained in Section 3.5.

y

x

6s

f

pi

pp=p0

pc

FIGURE 3. The corrector step. The Newton iterations and a forced circular movement of
the iterates  converge towards an actual point on the curve .pk 1+ pc

pk+1
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For each new predictor point we need to make sure that the corrector didn’t fail (Line 7 through Line

12). Once we have gained confidence about our corrected point, we check whether we can adjust the

step size (Line 15). We connect the previous point to the current point by a simple line (Line 16). If we

found a new bifurcation point, we need to record it (Line 18) and quit this loop. In any other case we

repeat this procedure and find another point on the same branch.

We now describe in more detail the implementation of some of the more involved segments of the algo-

rithm.

1. find an initial point  on the surface;
2. determine initial step size ;
3. record (p, , bifurlist); /* for both initial direction */
4. repeat
5. get , from bifurlist
6. repeat /* continue current branch */
7. repeat /* find a reliable new point on the curve */
8.  := Predictor( )
9.  := Corrector( )
10. C := approx_curvature( , )
11.  := /2
12. until ( converges AND 1/(2C) < ) OR bifur_test( )
13.  := *2;
14. if 1/(2C) > then
15. increase ;
16. draw_line( , );
17. if bifur_test( ) then
18. record( , , bifurlist)
19.  := ;
20. until ( is in the covered region or outside the screen OR bifur_test( ));
21. until bifurlist is empty

FIGURE 4. pseudo code for the curve tracking algorithm.
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3.1  Finding a Starting Point

If a seed point is not provided by the user, we employ a space subdivision approach. We divide the

image region into four quadrants and compute the function at each corner of the quadrants. If the sign of

the function is the same at all corners, we will apply the same subdivision to all four quadrants in a

breath-first scheme. If we do find a sign change, we continue to subdivide this specific quadrant in a

depth-first scheme up to the pixel- or even subpixel level, depending on how accurate our initial point

should be.

3.2  Implementing the Corrector Step

Since the predicted point is only an approximation of a curve point, the corrector step is employed to

converge to an actual point on the curve. Because of the approximations in our formulas, the Newton

corrector step (explained in Section 2.3) usually needs to be repeated a few times. That is done within

the Corrector procedure in Line 9. But how many times should we repeat the Newton step? Of course,

we have to fight round off errors caused by the discrete computer arithmetic as well. The quality of our

discretized curve greatly depends on our stopping criteria, as well as the successful completion of our

algorithm. Therefore, we need to know when  gets close enough to zero. The problem is that

close means very different things for different functions. If we had more knowledge about the function,

we could employ an absolute error test, like . For a general algorithm, we will have no idea

how small  needs to be to assure spatial proximity. This notion of being close to the curve might also

change at different ranges for the curve.

The method we chose adapts the value of  and utilizes the fact that we draw to a finite grid. Every once

in a while (e.g. every tenth time we call the Corrector procedure) we check the quality of the corrected

point . For this quality check we define a rectangular region centered at  and check for a sign

change of the function f at the corner points. The size of this rectangular region can be a parameter L

specified by the user or simply the current grid size. If there is a sign change in the corner points, we

know that our curve will be at most  away. Therefore, we could relax our stopping criteria and set

 to . On the other hand, if we find that our corrected value isn’t close enough to our

curve, we should strengthen our stopping condition and set  to  and redo the corrector

f pk 1+( )

f pk 1+( ) ¡<

¡

¡

pc pc

L 2⁄

¡ 1.1 f pk 1+( )
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step. This finally results in a relative (adaptive) error test, which is certainly superior than an absolute

(static) error test.

3.3  Determining The Step Size

The other crucial and very sensitive parameter of this algorithm is the step size . One big advantage

of our algorithm is the freedom to choose the step size. When the curve shows a small curvature we will

choose a fairly large , allowing the algorithm to step quickly through this “almost linear” part of the

curve. On the other hand, when the curve changes rather quickly, i.e. the curvature of the function is

high, we have to decrease  appropriately. This adaptive mechanism gives us the ability to capture the

nature of our curve in greater detail when necessary.

The mathematical definition of the curvature is

, (18)

where  denotes the angel of the tangent with the x-axis and  denotes the arc length between the

two points. For implicit functions, C can be computed as

(19)

(See [6]). We compute first derivatives anyway for the Newton corrector, but would like to avoid com-

puting second derivatives. Therefore, we use an approximation to the curvature that is based on Equa-

tion (18), where we use the current and previous point on the curve. Since we have the first derivatives

already computed we can precisely compute the tangent angles. The arc length between the two points

is simply approximated with the current step size. To compute the initial step size we could either use

Equation (19) or just use the grid size. Choosing the initial step size for a bifurcation point can be a

problem. If we are stepping too far, we might ‘loose track’ of the current branch. If we are stepping too

close, the corrector might converge to a different, neighboring branch. Therefore we left it up to the user

to choose this initial step size.
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Another indicator of the quality of our step size would be the number of corrector steps we had to take

before we converged to a curve point. In our predictor step we are basically following the tangent of the

curve. If the curve is fairly linear the predicted point  will be almost on the curve, resulting in just

very few corrector steps. If the curve changes its direction rather fast,  will not be the best guess and

we expect more correction steps. Therefore, if we use at most one Newton step to find a point on the

curve, we simply double the step size.

3.4  Detecting Bifurcation Points

Bifurcation points are points where the curve intersects itself. At these points the first derivatives of the

function evaluate to zero. Of course, it will be very unlikely to find the mathematically exact bifurcation

point (in case one exists), because of the numerical nature of the algorithm. Therefore, we need to keep

watching the first derivatives of a function for regions where they are close to zero. We have seen

already how difficult such a test can be (see Section 3.2). Therefore, whenever we find a sign change in

one of the partial derivatives (from the previous to the current point) we have good reason to suspect

that there might be a bifurcation point close by. As a result, we decrease our step size and repeat the last

predictor/corrector step until the step size is smaller than a given size, which can be defined by the user.

If there is still reason to believe that there might be a bifurcation point, we create a rectangular region

around the current point on the curve. Similar to the test we performed in Section 3.2, we test whether

there is a sign change in the partial derivatives fx and fy. If we find a sign change in both partial deriva-

tives we conclude that we detected a bifurcation point. Otherwise, we conclude that we probably found

a turning point of the curve.

3.5  Stopping Criteria

We assume that we deal with a closed curve. Therefore, we need to find out if and when we returned to

a part of a branch we have traced already. If we do not include this exit test (in Line 20), we will trace

the curve over and over again, ending up in an infinite loop.

Because of the nature of a numeric algorithm it is very unlikely to return to the exact same point from

where we started. Therefore, we cannot just test for equality. We also do not want to test the proximity

pp

pp
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of the new point  to every one of the computed values along the curve. That might be possible for the

first few values, when the cost is still low, but certainly not for arbitrary curves, where we have to com-

pute many points to reasonably approximate the curves shape. The other problem is again the meaning

of “very close”. To solve this problem, we maintain a counter that counts the number of times we

attempt to draw a pixel that has been drawn already. When the algorithm computes a point on the curve

that is mapped to a pixel that was not drawn before, we set the counter to zero. Every time we compute

a new point on the curve within a pixel that was previously drawn, we increase a counter by one. If the

counter’s value exceeds some threshold, the algorithm stops pursuing this path.

4.  Results
We applied our algorithm to many different functions with and without bifurcation points and found

that they were drawn correctly in any image resolution of 1282 to 5122. For images of low resolution

(322 and sometimes 642) the user may have to explicitly specify a smaller step size. We have chosen

three very common functions without a bifurcation point (Figure 5) and three interesting functions with

many bifurcation points (Figure 6). Some interesting statistics for each group of functions is summa-

rized in Table 1 and compared to Chandlers algorithm [7]. The test cases where drawn onto a 5122

image. Drawing times, for all examples, was under 0.2 seconds on a Silicon Graphics Crimson

(150Mhz R4400). In the table we also provide the average number of pixels per one predictor step

(showing the adaptive step size), and the average number of correct steps per predictor.

TABLE 1. Performance results comparing our algorithm. The empty cells denote cases where Chan-
dler’s algorithm could not draw the curve.

Figure

 # Function evaluation per
pixel # pixels per

predictor
# pixels per
predictor

 Our Method  Chandler
 5a  1.89  2.68  6.21  2.55
 5b  2.01 2.80  6.79  3.20
 5c  3.27  2.92  3.51  2.49
6a  2.88 <  6.66  5.04
6b  4.18 <  4.05  3.67
6c  4.55 <  2.38  2.30

pc
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In general, the number of function evaluations per pixel for low resolutions is expectably high, since the

curvature of a curve considered within a pixel is larger than if the same curve is subdivided into smaller

parts (i.e. for smaller pixel sizes). Therefore, the step size (in terms of the number of pixels) is smaller

and the algorithm must perform more calculations on a per pixel basis. For high resolutions we have

much fewer function evaluations per pixel than Chandler’s algorithm without loss of quality. This dem-

onstrates the power of the adaptive step size.
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5.  Conclusions
We presented here a numerical algorithm that is able to draw a large family of implicit functions.

Through an adaptive step size design our performance is greatly optimized. We have shown that our

approach outperforms previous tracking algorithms.

Our future research includes the improvement of the accuracy of the predictor step. Since we already

know the derivatives at the previous point and, most of the time, also have this information available for

the point before that, we could use the Hermite interpolation scheme and approximate our curve with a
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polynom of third degree. This higher order approximation of our curve should result in fewer corrector

steps. Since the higher order polynomial is computed only at the predictor step, saving several corrector

steps, we expect a more efficient algorithm. A similar improvement can be made when connecting a

new point on the curve with the previous one. Instead of a line through these point, one could use a

higher order polynomial. Improvements to the accuracy of the corrector procedure are also possible, for

example, by using a better corrector than Newton’s. Finally, we plan to explore the extension of our

methods to 3D voxelization of implicit surfaces.
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Abstract
Implicit curves are widely used in computer graphics because of their powerful fea-

tures for modeling and their ability for general function description. The most pop-

ular rasterization techniques for implicit curves are space subdivision and curve

tracking. In this paper we are introducing an efficient curve tracking algorithm that

is also more robust then existing methods. We employ the Predictor-Corrector

Method on the implicit function to get a very accurate curve approximation in a

short time. Speedup is achieved by adapting the step size to the curvature. In addi-

tion, we provide mechanisms to detect and properly handle bifurcation points,

where the curve intersects itself. Finally, the algorithm allows the user to trade-off

accuracy for speed and vice a versa. We conclude by providing examples that dem-

onstrate the capabilities of our algorithm.

1.  Introduction
Implicit surfaces are surfaces that are defined by implicit functions. An implicit function  is a map-

ping from an n dimensional space  to the space , described by an expression in which all vari-

ables appear on one side of the equation. This is a very general way of describing a mapping. An n

dimensional implicit surface  is defined by all the points  in  such that the implicit mapping

projects  to 0. More formally, one can describe  by

. (1)
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Often times, one is interested in visualizing isosurfaces (or isocontours for 2D functions) which are

functions of the form for some constant c.

Different classes of implicit surfaces are of importance. Implicit surfaces that are defined by a polyno-

mial are called algebraic surfaces. Since almost all continuous functions can be approximated by poly-

nomials, algebraic surfaces represent a powerful class. Since polynomials have been studied and

understood fairly well, one has a better mathematical handle at algebraic surfaces.

Another special class of implicit surfaces have density functions as their defining functions. Density

functions decrease exponentially with increasing distance to a certain center point. The models where

these functions find usage usually arise in the study of physical phenomena, e.g. atom models. Blinn [4]

was one of the first to try to visualize these surfaces on a computer. They became to be known as

Blinn’s “Blobby Model” or Metaballs.

Yet another model which is gaining importance is the discrete data set. Such data set is commonly gen-

erated by various medical scanners such as MRI and CT. These data sets can also be seen as implicit

functions, where  and v is the scanned value at the location p. We assume that if p is not on a

grid point then some sort of interpolation from neighboring grid points defines v at p.

Rendering implicit surfaces is very difficult and computationaly very expensive. Usually existing algo-

rithms to render implicit surfaces work only for special cases or special sets of functions. In fact, to date

there is no such algorithm that can render arbitrary implicit surfaces accurately and in a stable and

timely manner.

Algorithms for rendering 3D implicit surfaces can be classified into three groups: representation trans-

forms, ray tracing, and surface tracking. The first approach tries to transform the problem from implicit

surfaces to another representation which is easier to display such as polygon meshes [1][5][10][15] or

parametric representations [16]. The second approach to rendering of implicit surfaces is to ray-trace

them. Efficient ray-object intersection algorithms have been devised for algebraic surfaces [11], meta-

balls [4], and a class of functions for which Lipschitz constants can be efficiently computed [12][14].

The third approach to rendering implicit functions is to scan convert or discretize the function. Seder-

f p( ) c=

f p( ) v=
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berg and Zundel [17] introduced such a scan line algorithm for a class of implicit functions that can be

represented by Bernstein polynomials.

When it comes to drawing 2D implicit functions (curves) an attractive approach is to follow the path of

the curve. The algorithm starts at a seed point on the curve. It then looks at the pixels adjacent to the

seed point to see if any of them is the next pixel along the curve. Various algorithms exist which mainly

differ in the method they use to find the next pixel along the curve.

One way to find the next pixel is based on digital difference analysis (DDA). A lot of work has been

done in this field and the most popular algorithm applying this technique are Bresenham's and the mid-

point line and circle drawing algorithms [8]. The rate of change in x and y is computed through fast inte-

gral updates of dx and dy, which are then used as decision variables to determine the next pixel center.

This idea was generalized for algebraic curves by Hobby [13]. One problem of this approach is that the

inherent integer arithmetic can only be exploited for a small set of algebraic functions. Furthermore,

this algorithm is not able to deal properly with self intersecting curves. Hobby assumes that these inter-

section points are given by the user.

A different way to continue a curve would be to evaluate the underlying function at the center of the

neighboring pixels to find the one with the smallest absolute function value. This idea has been imple-

mented by Jordan et. al. [9] and was improved by Chandler [7]. Since there are only eight neighboring

pixels, eight function evaluations are the maximum needed to find the next pixel on the curve. Since we

will very likely be traveling in the same direction we have been traveling when we picked the current

pixel, Chandler tests first the pixel continuing in the same direction, then its neighbors etc. For most

'nicely' behaving functions two to three function evaluations per pixel will be sufficient. To increase

accuracy, Chandler prefers to look for a sign change rather than the smallest absolute value. Therefore,

he evaluates the function not at pixel centers but rather halfway in between pixels. Although the algo-

rithm does not depend on the actual description of the function and therefore is applicable to arbitrary

functions, it is still not able to deal with self intersecting functions. To deal with such points the algo-

rithm requires user intervention. Alternatively, it includes a brute-force Monte Carlo method to visual-

ize the positive and negative regions of the function. Finally, if the curve enters and leaves the pixel in-
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between the same two neighboring sample points, this algorithm will not be able to register a sign

change and therefore fail.

For density functions, Arvo et. al. applied a numerical method known as the predictor-corrector method

[2]. Their main goal is the rendering of iso-curves of medical data sets. In this paper we introduce an

efficient and more robust predictor-corrector method. Our algorithm deals with self intersecting curves

properly and increases the efficiency of the algorithm to less than one function evaluation per pixel on

the average. Finally, unlike existing curve tracking methods, our algorithm can be applied to a large

family of implicit functions including selfintersecting functions with at most two branches at the inter-

section point.

2.  The Predictor-Corrector Method
The predictor-corrector method is a well known numerical algorithm which has its origin in solving

ordinary differential equations and bifurcation theory. Arvo and Novins [2] used a two dimensional

standard method for extracting isocurves in a 2D medical image. Although the predictor-corrector

method offers ways to detect and properly deal with self intersecting curves and curves “very close” to

themselves, Arvo and Novins did not explore these capabilities.

The predictor-corrector method is a numerical continuation method (tracking algorithm). The goal is to

find a point set which represents a discretized approximation of a curve that is defined by some implicit

function as in Equation (1). As the name suggests, the predictor-corrector method consists of two steps.

In the predictor step we take a (more or less sophisticated) guess of a point on the curve, denoted by .

Depending on how much thought and work we put into predicting the point , it will be closer or far-

ther away from an actual point on the curve. Depending on the assumption we make about the curve

and its actual shape, we will not be able to always accurately predict an exact point on the curve. In the

corrector step we use our predicted point  as a starting point for an iterative method that converges to

an actual point on the curve. We denote this new, corrected point, by . We repeat these two steps until

we tracked the whole curve. The resulting discrete point set can then be displayed on a screen.

pp

pp

pp
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There are many different ways to implement the predictor or corrector steps. We use the standard Euler-

Newton method with an adaptive step size and introduce techniques to handle selfintersecting curves.

2.1  The Predictor Step

The focus of the predictor step is to find a point  that is very close or even on the curve, so that the

costs for the corrector step are reduced or even eliminated. If we already know points on the curve, we

can approximate the curve through a polynomial and get a new approximate for this curve through

extrapolation or interpolation.

Finding the very first point on the curve is not always easy. One usually has some understanding of the

kind of function one tries to discretize and can therefore provide an initial seed value to the algorithm. If

this is not possible, one needs to apply a brute force algorithm or some other heuristic to find an initial

seed value. The image space is limited (usually a screen in computer graphics). Therefore one rather

brute-force method would be to impose a grid onto the screen and evaluate the underlying implicit func-

tion at each grid point to choose a closest point (where |f(p)| becomes smallest). Another possibility

would be to look for a sign change of the underlying function between neighboring grid points. We

employ a faster method that is based on a quadtree subdivision algorithm as explained in Section 3.1.

We now present one way to implement the predictor step. One-step methods only employ one point (the

point of the previous iteration) to predict a new point. The standard Euler method is a good example of

a one-step method. However, one can envision the use of Hermites method which employs more than

one point and is therefore called multi-step method. Although multi-step methods are usually more

expensive, they lead to better, higher order approximations, reducing the number of necessary corrector

steps.

Euler’s method starts at a point which is known to be on the curve. Because this is a one-step method,

each point on the curve will lead to exactly one new point on the curve. Since we execute many predic-

tor-corrector iterations to obtain a point set that approximates our curve, it is just obvious to use the

resulting point of the previous iteration as the initial point for the current iteration. We call this initial

point . We also want to have some control over the distance between the new point and

pp

pi xi yi,( )=
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the initial point. That is, we want  to be located at a certain distance  from  and not at some

unpredictable “end” of the curve.  is called the arc length parameter and it represents a parameteriza-

tion of our curve. The linear approximation of the predicted point results in

, (2)

where  now depends on the arc length and the initial point. Since  is the euclidean dis-

tance between  and , we need to make sure that:

(3)

Equation (3) defines a unit circle around the origin. Combining it with Equation (2) we are describing a

circle of radius  and origin . Next, we have to find the intersection points of that circle with our

curve. We choose one of these points as our new predicted value. Since the origin of this circle lies

already on the curve, we are guaranteed that our circle will intersect our implicit curve, unless the whole

curve is contained within the circle. In that particular case, the choice of the distance  between neigh-

boring points is not appropriate and needs to be changed. If  is in the order of the size of a pixel and

the curve is still contained within such a small circle, the discretization of this curve would just be one

pixel and we are done.

Assuming a closed curve, we will actually get an even number of intersection points. Choosing our step

size (arc length) small enough, we will get exactly two intersection points (see Figure 1). However, in

the case of a self intersecting curve or when a curve comes “close” to itself, we will get more than two

intersection points, even if  is very small. We will explore these special cases in Section 2.2.

The second condition for the new predicted point is, of course, that it should lie on the curve defined by

the underlying implicit function f. That means we require

. (4)

Since we are processing an arbitrary functions f we are not able to use Equation (4) directly to compute

. Instead, we substitute Equation (2) into Equation (4) and through a Taylor series expansion we are
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able to compute an approximation to the actual point on the curve. This approximation serves as the

predicted value .

Let’s have a look at the equations. The substitution results in

. (5)

Now the actual approximation takes place. We expand Equation (5) in a Taylor series and keep only the

linear terms. That results in:

(6)

The initial point was assumed to be on the curve, i.e. . We conclude

(7)

Using Equation (3) and Equation (7), we can actually solve for the unknowns . Using a short-

cut notation for the partial derivatives of , where  is replaced by  (and similarly

for the partial derivative in y) the result can be written as

(8)

which is also proven by Baker and Overman [3]. Here  stands for the sign plus or minus which repre-

sents the direction in which we continue to track the curve. In the case of the seed point we want to

make sure, that we trace both directions. However, in the general case we don’t want to step back into

the direction we were coming from. A simple sign check of the scalar product of the direction, where

we were coming from and our new direction, helps us determining the appropriate .

Although our new predicted value lies on a circle around the initial point, we only find a point near the

curve because of the approximation in Equation (6). If we take a closer look at Equation (7), the one we

actually used as an approximation to Equation (5), we realize that  describes the components

pp
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of the tangent to the curve at the initial point. That leads us to a better geometric understanding of this

process, captured in Figure 1.

2.2  Bifurcation Points

The intersection of the circle equation (originating in Equation (3)) with the implicit curve results usu-

ally in two points. As pointed out earlier, in case of a selfintersecting curve (Figure 2a) or if it just

comes “close” to itself (Figure 2b) we expect at least four intersection points. These special points are

also called bifurcation points. Looking at our formulas in Equation (7) and Equation (3), we are only

able to compute two points, since it is an intersection of a quadratic (Equation (3)) curve with a linear

curve (Equation (7)). In a case of a bifurcation point the linear approximation of the Taylor series as in

Equation (7) will not be enough. In fact, from the implicit function theorem we can conclude, that the

first partial derivatives will be zero for these bifurcation points. Therefore we cannot compute

as derived above. We have to include the second order terms of the Taylor series expansion in Equation

(6) to get the appropriate results.

The more accurate approximation to Equation (5), replacing Equation (6), is now

FIGURE 1. The predictor step. Here  is the step size we want to step along the curve
starting at the initial point . Because Equation (7) is only an approximation, the predicted
value will not necessarily lie on the curve described by f.
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(9)

As already mentioned, the first three terms in the sum vanish, which leads to

(10)

In order to increase the readability of the following formulas, we use the following notation:

(11)

If we consider Equation (10) as a quadratic equation in the quotient q defined by dx/dy, we get the fol-

lowing solution:

(12)

To actually compute dx and dy, we substitute this result in Equation (3), which results in

y

x

y

x

(a) (b)

FIGURE 2. Possible cases of bifurcation points where the circle represents the actual
step size. (a) The curve intersects itself; (b) The curve comes very “close” to itself.
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(13)

where any arbitrary combination of plus and minus from Equation (12) and Equation (13) results in four

different distinct direction vectors . We will store all four directions in a list and follow their

branches one at a time. This is explained in greater detail in Section 3.

We discussed the usual case of two intersection points and studied in detail what happens when these

formulas fail when we encounter bifurcation points. Unfortunately, it could happen that we do not have

four intersection points, but six, eight, or more. That means, that actually more then the two branches,

as shown in Figure 1, meet at the same area. In that case, we realize that the second partial derivatives in

Equation (9) vanishes also, leaving us with no choice other than including even higher order terms in

the approximation of the Taylor series. This implies that we will have to solve higher order polynomials

to produce the expected number of solutions.

2.3  The Corrector Step

Although we have tried hard to predict a new point  on the curve, it is not guaranteed to fall accu-

rately on the curve. We can only hope to find a point that is “very close” to the curve. The goal of the

corrector step is to find a “closest” point on the curve, starting at . Among the many methods for

finding zero points of functions, the Newton method is very stable and fast, and therefore very common.

The Newton method is a numerical iteration method which converges to a zero point of a function f,

starting at a point  that should be fairly close to the zero point already. In our case, the starting point

for the Newton method will be  < the result of the predictor step.

The predictor step produced an initial value  for the iteration method. At

each iteration step we take the new and improved value from the previous iteration and try to improve it

even further, so that we actually end up on the curve itself. The result of the current iteration can be

written as:
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, (14)

where  marks the iteration number.

But how can we determine ? Here we exploit the same idea as we did in Euler’s Method. Of

course, we want that our new point  lies on the curve. So we add the condition that  is

a curve point:

. (15)

The same ideas and manipulations as used for Equation (4) will lead us towards a solution. Substituting

Equation (14) into Equation (15) and using a Taylor series expansion of f will result in:

. (16)

That is, in fact, the formula for Newton’s method for a two dimensional function. Since this is one equa-

tion with two unknowns, we have the freedom and duty to specify another condition, we want our iter-

ate to satisfy. First of all, we want to make sure that our iteration process converges. Other than that, it

would be nice if we could guarantee some sort of constant discretization of our curve. That is, we do not

want the distance between samples to vary too much. Both of these ideas can be realized if we restrict

our convergence to move in a right angle away from our previous iterate. To be more specific, the trian-

gle formed by the points ,  and  should form a right angled triangle. Here,  is the initial

point on the curve < the one we used in the predictor step to compute the point .  and  are the

previous and current iterates. In Figure 1 it was shown that this condition on our new iterate results in a

somewhat circular movement around the initial point . Because of this circular movement, we stay in

a certain proximity to , which increases the chances of convergence.

More formally, we want to add the condition that the vector  is perpendicular to . That is

expressed in the following manner:

(17)
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Equation (16) together with Equation (17) uniquely describe a new, corrected iterate , which con-

cludes the Corrector step. A geometric interpretation of these steps is illustrated in Figure 3.

3.  The Algorithm
The pseudo code for our numerical algorithm is given in Figure 4. The algorithm starts by looking for a

seed point (using a space subdivision method, as described in Section 3.1). The initial point will be

most likely on some arbitrary part of the curve. Therefore, we will usually have two possible directions

we can follow. We record both in a list for later retrieval (Line 3). At a bifurcation point a pixel will

have four branches leaving it. In this case we will also record all possible branch directions in this list

(Line 18). After retrieving a starting point for a new branch (Line 5) we trace the branch until we find

another bifurcation point or until we reach the limits of our display device. In the case of a closed curve

we also need to check when we get back to an already traced branch of the curve. A simple way to do

this is explained in Section 3.5.
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pp=p0
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FIGURE 3. The corrector step. The Newton iterations and a forced circular movement of
the iterates  converge towards an actual point on the curve .pk 1+ pc
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For each new predictor point we need to make sure that the corrector didn’t fail (Line 7 through Line

12). Once we have gained confidence about our corrected point, we check whether we can adjust the

step size (Line 15). We connect the previous point to the current point by a simple line (Line 16). If we

found a new bifurcation point, we need to record it (Line 18) and quit this loop. In any other case we

repeat this procedure and find another point on the same branch.

We now describe in more detail the implementation of some of the more involved segments of the algo-

rithm.

1. find an initial point  on the surface;
2. determine initial step size ;
3. record (p, , bifurlist); /* for both initial direction */
4. repeat
5. get , from bifurlist
6. repeat /* continue current branch */
7. repeat /* find a reliable new point on the curve */
8.  := Predictor( )
9.  := Corrector( )
10. C := approx_curvature( , )
11.  := /2
12. until ( converges AND 1/(2C) < ) OR bifur_test( )
13.  := *2;
14. if 1/(2C) > then
15. increase ;
16. draw_line( , );
17. if bifur_test( ) then
18. record( , , bifurlist)
19.  := ;
20. until ( is in the covered region or outside the screen OR bifur_test( ));
21. until bifurlist is empty

FIGURE 4. pseudo code for the curve tracking algorithm.
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3.1  Finding a Starting Point

If a seed point is not provided by the user, we employ a space subdivision approach. We divide the

image region into four quadrants and compute the function at each corner of the quadrants. If the sign of

the function is the same at all corners, we will apply the same subdivision to all four quadrants in a

breath-first scheme. If we do find a sign change, we continue to subdivide this specific quadrant in a

depth-first scheme up to the pixel- or even subpixel level, depending on how accurate our initial point

should be.

3.2  Implementing the Corrector Step

Since the predicted point is only an approximation of a curve point, the corrector step is employed to

converge to an actual point on the curve. Because of the approximations in our formulas, the Newton

corrector step (explained in Section 2.3) usually needs to be repeated a few times. That is done within

the Corrector procedure in Line 9. But how many times should we repeat the Newton step? Of course,

we have to fight round off errors caused by the discrete computer arithmetic as well. The quality of our

discretized curve greatly depends on our stopping criteria, as well as the successful completion of our

algorithm. Therefore, we need to know when  gets close enough to zero. The problem is that

close means very different things for different functions. If we had more knowledge about the function,

we could employ an absolute error test, like . For a general algorithm, we will have no idea

how small  needs to be to assure spatial proximity. This notion of being close to the curve might also

change at different ranges for the curve.

The method we chose adapts the value of  and utilizes the fact that we draw to a finite grid. Every once

in a while (e.g. every tenth time we call the Corrector procedure) we check the quality of the corrected

point . For this quality check we define a rectangular region centered at  and check for a sign

change of the function f at the corner points. The size of this rectangular region can be a parameter L

specified by the user or simply the current grid size. If there is a sign change in the corner points, we

know that our curve will be at most  away. Therefore, we could relax our stopping criteria and set

 to . On the other hand, if we find that our corrected value isn’t close enough to our

curve, we should strengthen our stopping condition and set  to  and redo the corrector
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¡

pc pc
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step. This finally results in a relative (adaptive) error test, which is certainly superior than an absolute

(static) error test.

3.3  Determining The Step Size

The other crucial and very sensitive parameter of this algorithm is the step size . One big advantage

of our algorithm is the freedom to choose the step size. When the curve shows a small curvature we will

choose a fairly large , allowing the algorithm to step quickly through this “almost linear” part of the

curve. On the other hand, when the curve changes rather quickly, i.e. the curvature of the function is

high, we have to decrease  appropriately. This adaptive mechanism gives us the ability to capture the

nature of our curve in greater detail when necessary.

The mathematical definition of the curvature is

, (18)

where  denotes the angel of the tangent with the x-axis and  denotes the arc length between the

two points. For implicit functions, C can be computed as

(19)

(See [6]). We compute first derivatives anyway for the Newton corrector, but would like to avoid com-

puting second derivatives. Therefore, we use an approximation to the curvature that is based on Equa-

tion (18), where we use the current and previous point on the curve. Since we have the first derivatives

already computed we can precisely compute the tangent angles. The arc length between the two points

is simply approximated with the current step size. To compute the initial step size we could either use

Equation (19) or just use the grid size. Choosing the initial step size for a bifurcation point can be a

problem. If we are stepping too far, we might ‘loose track’ of the current branch. If we are stepping too

close, the corrector might converge to a different, neighboring branch. Therefore we left it up to the user

to choose this initial step size.
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Another indicator of the quality of our step size would be the number of corrector steps we had to take

before we converged to a curve point. In our predictor step we are basically following the tangent of the

curve. If the curve is fairly linear the predicted point  will be almost on the curve, resulting in just

very few corrector steps. If the curve changes its direction rather fast,  will not be the best guess and

we expect more correction steps. Therefore, if we use at most one Newton step to find a point on the

curve, we simply double the step size.

3.4  Detecting Bifurcation Points

Bifurcation points are points where the curve intersects itself. At these points the first derivatives of the

function evaluate to zero. Of course, it will be very unlikely to find the mathematically exact bifurcation

point (in case one exists), because of the numerical nature of the algorithm. Therefore, we need to keep

watching the first derivatives of a function for regions where they are close to zero. We have seen

already how difficult such a test can be (see Section 3.2). Therefore, whenever we find a sign change in

one of the partial derivatives (from the previous to the current point) we have good reason to suspect

that there might be a bifurcation point close by. As a result, we decrease our step size and repeat the last

predictor/corrector step until the step size is smaller than a given size, which can be defined by the user.

If there is still reason to believe that there might be a bifurcation point, we create a rectangular region

around the current point on the curve. Similar to the test we performed in Section 3.2, we test whether

there is a sign change in the partial derivatives fx and fy. If we find a sign change in both partial deriva-

tives we conclude that we detected a bifurcation point. Otherwise, we conclude that we probably found

a turning point of the curve.

3.5  Stopping Criteria

We assume that we deal with a closed curve. Therefore, we need to find out if and when we returned to

a part of a branch we have traced already. If we do not include this exit test (in Line 20), we will trace

the curve over and over again, ending up in an infinite loop.

Because of the nature of a numeric algorithm it is very unlikely to return to the exact same point from

where we started. Therefore, we cannot just test for equality. We also do not want to test the proximity

pp
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of the new point  to every one of the computed values along the curve. That might be possible for the

first few values, when the cost is still low, but certainly not for arbitrary curves, where we have to com-

pute many points to reasonably approximate the curves shape. The other problem is again the meaning

of “very close”. To solve this problem, we maintain a counter that counts the number of times we

attempt to draw a pixel that has been drawn already. When the algorithm computes a point on the curve

that is mapped to a pixel that was not drawn before, we set the counter to zero. Every time we compute

a new point on the curve within a pixel that was previously drawn, we increase a counter by one. If the

counter’s value exceeds some threshold, the algorithm stops pursuing this path.

4.  Results
We applied our algorithm to many different functions with and without bifurcation points and found

that they were drawn correctly in any image resolution of 1282 to 5122. For images of low resolution

(322 and sometimes 642) the user may have to explicitly specify a smaller step size. We have chosen

three very common functions without a bifurcation point (Figure 5) and three interesting functions with

many bifurcation points (Figure 6). Some interesting statistics for each group of functions is summa-

rized in Table 1 and compared to Chandlers algorithm [7]. The test cases where drawn onto a 5122

image. Drawing times, for all examples, was under 0.2 seconds on a Silicon Graphics Crimson

(150Mhz R4400). In the table we also provide the average number of pixels per one predictor step

(showing the adaptive step size), and the average number of correct steps per predictor.

TABLE 1. Performance results comparing our algorithm. The empty cells denote cases where Chan-
dler’s algorithm could not draw the curve.

Figure

 # Function evaluation per
pixel # pixels per

predictor
# pixels per
predictor

 Our Method  Chandler
 5a  1.89  2.68  6.21  2.55
 5b  2.01 2.80  6.79  3.20
 5c  3.27  2.92  3.51  2.49
6a  2.88 <  6.66  5.04
6b  4.18 <  4.05  3.67
6c  4.55 <  2.38  2.30

pc
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In general, the number of function evaluations per pixel for low resolutions is expectably high, since the

curvature of a curve considered within a pixel is larger than if the same curve is subdivided into smaller

parts (i.e. for smaller pixel sizes). Therefore, the step size (in terms of the number of pixels) is smaller

and the algorithm must perform more calculations on a per pixel basis. For high resolutions we have

much fewer function evaluations per pixel than Chandler’s algorithm without loss of quality. This dem-

onstrates the power of the adaptive step size.
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5.  Conclusions
We presented here a numerical algorithm that is able to draw a large family of implicit functions.

Through an adaptive step size design our performance is greatly optimized. We have shown that our

approach outperforms previous tracking algorithms.

Our future research includes the improvement of the accuracy of the predictor step. Since we already

know the derivatives at the previous point and, most of the time, also have this information available for

the point before that, we could use the Hermite interpolation scheme and approximate our curve with a
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polynom of third degree. This higher order approximation of our curve should result in fewer corrector

steps. Since the higher order polynomial is computed only at the predictor step, saving several corrector

steps, we expect a more efficient algorithm. A similar improvement can be made when connecting a

new point on the curve with the previous one. Instead of a line through these point, one could use a

higher order polynomial. Improvements to the accuracy of the corrector procedure are also possible, for

example, by using a better corrector than Newton’s. Finally, we plan to explore the extension of our

methods to 3D voxelization of implicit surfaces.
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Abstract
Implicit curves are widely used in computer graphics because of their powerful fea-

tures for modeling and their ability for general function description. The most pop-

ular rasterization techniques for implicit curves are space subdivision and curve

tracking. In this paper we are introducing an efficient curve tracking algorithm that

is also more robust then existing methods. We employ the Predictor-Corrector

Method on the implicit function to get a very accurate curve approximation in a

short time. Speedup is achieved by adapting the step size to the curvature. In addi-

tion, we provide mechanisms to detect and properly handle bifurcation points,

where the curve intersects itself. Finally, the algorithm allows the user to trade-off

accuracy for speed and vice a versa. We conclude by providing examples that dem-

onstrate the capabilities of our algorithm.

1.  Introduction
Implicit surfaces are surfaces that are defined by implicit functions. An implicit function  is a map-

ping from an n dimensional space  to the space , described by an expression in which all vari-

ables appear on one side of the equation. This is a very general way of describing a mapping. An n

dimensional implicit surface  is defined by all the points  in  such that the implicit mapping

projects  to 0. More formally, one can describe  by

. (1)
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Often times, one is interested in visualizing isosurfaces (or isocontours for 2D functions) which are

functions of the form for some constant c.

Different classes of implicit surfaces are of importance. Implicit surfaces that are defined by a polyno-

mial are called algebraic surfaces. Since almost all continuous functions can be approximated by poly-

nomials, algebraic surfaces represent a powerful class. Since polynomials have been studied and

understood fairly well, one has a better mathematical handle at algebraic surfaces.

Another special class of implicit surfaces have density functions as their defining functions. Density

functions decrease exponentially with increasing distance to a certain center point. The models where

these functions find usage usually arise in the study of physical phenomena, e.g. atom models. Blinn [4]

was one of the first to try to visualize these surfaces on a computer. They became to be known as

Blinn’s “Blobby Model” or Metaballs.

Yet another model which is gaining importance is the discrete data set. Such data set is commonly gen-

erated by various medical scanners such as MRI and CT. These data sets can also be seen as implicit

functions, where  and v is the scanned value at the location p. We assume that if p is not on a

grid point then some sort of interpolation from neighboring grid points defines v at p.

Rendering implicit surfaces is very difficult and computationaly very expensive. Usually existing algo-

rithms to render implicit surfaces work only for special cases or special sets of functions. In fact, to date

there is no such algorithm that can render arbitrary implicit surfaces accurately and in a stable and

timely manner.

Algorithms for rendering 3D implicit surfaces can be classified into three groups: representation trans-

forms, ray tracing, and surface tracking. The first approach tries to transform the problem from implicit

surfaces to another representation which is easier to display such as polygon meshes [1][5][10][15] or

parametric representations [16]. The second approach to rendering of implicit surfaces is to ray-trace

them. Efficient ray-object intersection algorithms have been devised for algebraic surfaces [11], meta-

balls [4], and a class of functions for which Lipschitz constants can be efficiently computed [12][14].

The third approach to rendering implicit functions is to scan convert or discretize the function. Seder-

f p( ) c=

f p( ) v=
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berg and Zundel [17] introduced such a scan line algorithm for a class of implicit functions that can be

represented by Bernstein polynomials.

When it comes to drawing 2D implicit functions (curves) an attractive approach is to follow the path of

the curve. The algorithm starts at a seed point on the curve. It then looks at the pixels adjacent to the

seed point to see if any of them is the next pixel along the curve. Various algorithms exist which mainly

differ in the method they use to find the next pixel along the curve.

One way to find the next pixel is based on digital difference analysis (DDA). A lot of work has been

done in this field and the most popular algorithm applying this technique are Bresenham's and the mid-

point line and circle drawing algorithms [8]. The rate of change in x and y is computed through fast inte-

gral updates of dx and dy, which are then used as decision variables to determine the next pixel center.

This idea was generalized for algebraic curves by Hobby [13]. One problem of this approach is that the

inherent integer arithmetic can only be exploited for a small set of algebraic functions. Furthermore,

this algorithm is not able to deal properly with self intersecting curves. Hobby assumes that these inter-

section points are given by the user.

A different way to continue a curve would be to evaluate the underlying function at the center of the

neighboring pixels to find the one with the smallest absolute function value. This idea has been imple-

mented by Jordan et. al. [9] and was improved by Chandler [7]. Since there are only eight neighboring

pixels, eight function evaluations are the maximum needed to find the next pixel on the curve. Since we

will very likely be traveling in the same direction we have been traveling when we picked the current

pixel, Chandler tests first the pixel continuing in the same direction, then its neighbors etc. For most

'nicely' behaving functions two to three function evaluations per pixel will be sufficient. To increase

accuracy, Chandler prefers to look for a sign change rather than the smallest absolute value. Therefore,

he evaluates the function not at pixel centers but rather halfway in between pixels. Although the algo-

rithm does not depend on the actual description of the function and therefore is applicable to arbitrary

functions, it is still not able to deal with self intersecting functions. To deal with such points the algo-

rithm requires user intervention. Alternatively, it includes a brute-force Monte Carlo method to visual-

ize the positive and negative regions of the function. Finally, if the curve enters and leaves the pixel in-
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between the same two neighboring sample points, this algorithm will not be able to register a sign

change and therefore fail.

For density functions, Arvo et. al. applied a numerical method known as the predictor-corrector method

[2]. Their main goal is the rendering of iso-curves of medical data sets. In this paper we introduce an

efficient and more robust predictor-corrector method. Our algorithm deals with self intersecting curves

properly and increases the efficiency of the algorithm to less than one function evaluation per pixel on

the average. Finally, unlike existing curve tracking methods, our algorithm can be applied to a large

family of implicit functions including selfintersecting functions with at most two branches at the inter-

section point.

2.  The Predictor-Corrector Method
The predictor-corrector method is a well known numerical algorithm which has its origin in solving

ordinary differential equations and bifurcation theory. Arvo and Novins [2] used a two dimensional

standard method for extracting isocurves in a 2D medical image. Although the predictor-corrector

method offers ways to detect and properly deal with self intersecting curves and curves “very close” to

themselves, Arvo and Novins did not explore these capabilities.

The predictor-corrector method is a numerical continuation method (tracking algorithm). The goal is to

find a point set which represents a discretized approximation of a curve that is defined by some implicit

function as in Equation (1). As the name suggests, the predictor-corrector method consists of two steps.

In the predictor step we take a (more or less sophisticated) guess of a point on the curve, denoted by .

Depending on how much thought and work we put into predicting the point , it will be closer or far-

ther away from an actual point on the curve. Depending on the assumption we make about the curve

and its actual shape, we will not be able to always accurately predict an exact point on the curve. In the

corrector step we use our predicted point  as a starting point for an iterative method that converges to

an actual point on the curve. We denote this new, corrected point, by . We repeat these two steps until

we tracked the whole curve. The resulting discrete point set can then be displayed on a screen.
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There are many different ways to implement the predictor or corrector steps. We use the standard Euler-

Newton method with an adaptive step size and introduce techniques to handle selfintersecting curves.

2.1  The Predictor Step

The focus of the predictor step is to find a point  that is very close or even on the curve, so that the

costs for the corrector step are reduced or even eliminated. If we already know points on the curve, we

can approximate the curve through a polynomial and get a new approximate for this curve through

extrapolation or interpolation.

Finding the very first point on the curve is not always easy. One usually has some understanding of the

kind of function one tries to discretize and can therefore provide an initial seed value to the algorithm. If

this is not possible, one needs to apply a brute force algorithm or some other heuristic to find an initial

seed value. The image space is limited (usually a screen in computer graphics). Therefore one rather

brute-force method would be to impose a grid onto the screen and evaluate the underlying implicit func-

tion at each grid point to choose a closest point (where |f(p)| becomes smallest). Another possibility

would be to look for a sign change of the underlying function between neighboring grid points. We

employ a faster method that is based on a quadtree subdivision algorithm as explained in Section 3.1.

We now present one way to implement the predictor step. One-step methods only employ one point (the

point of the previous iteration) to predict a new point. The standard Euler method is a good example of

a one-step method. However, one can envision the use of Hermites method which employs more than

one point and is therefore called multi-step method. Although multi-step methods are usually more

expensive, they lead to better, higher order approximations, reducing the number of necessary corrector

steps.

Euler’s method starts at a point which is known to be on the curve. Because this is a one-step method,

each point on the curve will lead to exactly one new point on the curve. Since we execute many predic-

tor-corrector iterations to obtain a point set that approximates our curve, it is just obvious to use the

resulting point of the previous iteration as the initial point for the current iteration. We call this initial

point . We also want to have some control over the distance between the new point and

pp
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the initial point. That is, we want  to be located at a certain distance  from  and not at some

unpredictable “end” of the curve.  is called the arc length parameter and it represents a parameteriza-

tion of our curve. The linear approximation of the predicted point results in

, (2)

where  now depends on the arc length and the initial point. Since  is the euclidean dis-

tance between  and , we need to make sure that:

(3)

Equation (3) defines a unit circle around the origin. Combining it with Equation (2) we are describing a

circle of radius  and origin . Next, we have to find the intersection points of that circle with our

curve. We choose one of these points as our new predicted value. Since the origin of this circle lies

already on the curve, we are guaranteed that our circle will intersect our implicit curve, unless the whole

curve is contained within the circle. In that particular case, the choice of the distance  between neigh-

boring points is not appropriate and needs to be changed. If  is in the order of the size of a pixel and

the curve is still contained within such a small circle, the discretization of this curve would just be one

pixel and we are done.

Assuming a closed curve, we will actually get an even number of intersection points. Choosing our step

size (arc length) small enough, we will get exactly two intersection points (see Figure 1). However, in

the case of a self intersecting curve or when a curve comes “close” to itself, we will get more than two

intersection points, even if  is very small. We will explore these special cases in Section 2.2.

The second condition for the new predicted point is, of course, that it should lie on the curve defined by

the underlying implicit function f. That means we require

. (4)

Since we are processing an arbitrary functions f we are not able to use Equation (4) directly to compute

. Instead, we substitute Equation (2) into Equation (4) and through a Taylor series expansion we are
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able to compute an approximation to the actual point on the curve. This approximation serves as the

predicted value .

Let’s have a look at the equations. The substitution results in

. (5)

Now the actual approximation takes place. We expand Equation (5) in a Taylor series and keep only the

linear terms. That results in:

(6)

The initial point was assumed to be on the curve, i.e. . We conclude

(7)

Using Equation (3) and Equation (7), we can actually solve for the unknowns . Using a short-

cut notation for the partial derivatives of , where  is replaced by  (and similarly

for the partial derivative in y) the result can be written as

(8)

which is also proven by Baker and Overman [3]. Here  stands for the sign plus or minus which repre-

sents the direction in which we continue to track the curve. In the case of the seed point we want to

make sure, that we trace both directions. However, in the general case we don’t want to step back into

the direction we were coming from. A simple sign check of the scalar product of the direction, where

we were coming from and our new direction, helps us determining the appropriate .

Although our new predicted value lies on a circle around the initial point, we only find a point near the

curve because of the approximation in Equation (6). If we take a closer look at Equation (7), the one we

actually used as an approximation to Equation (5), we realize that  describes the components
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of the tangent to the curve at the initial point. That leads us to a better geometric understanding of this

process, captured in Figure 1.

2.2  Bifurcation Points

The intersection of the circle equation (originating in Equation (3)) with the implicit curve results usu-

ally in two points. As pointed out earlier, in case of a selfintersecting curve (Figure 2a) or if it just

comes “close” to itself (Figure 2b) we expect at least four intersection points. These special points are

also called bifurcation points. Looking at our formulas in Equation (7) and Equation (3), we are only

able to compute two points, since it is an intersection of a quadratic (Equation (3)) curve with a linear

curve (Equation (7)). In a case of a bifurcation point the linear approximation of the Taylor series as in

Equation (7) will not be enough. In fact, from the implicit function theorem we can conclude, that the

first partial derivatives will be zero for these bifurcation points. Therefore we cannot compute

as derived above. We have to include the second order terms of the Taylor series expansion in Equation

(6) to get the appropriate results.

The more accurate approximation to Equation (5), replacing Equation (6), is now

FIGURE 1. The predictor step. Here  is the step size we want to step along the curve
starting at the initial point . Because Equation (7) is only an approximation, the predicted
value will not necessarily lie on the curve described by f.
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(9)

As already mentioned, the first three terms in the sum vanish, which leads to

(10)

In order to increase the readability of the following formulas, we use the following notation:

(11)

If we consider Equation (10) as a quadratic equation in the quotient q defined by dx/dy, we get the fol-

lowing solution:

(12)

To actually compute dx and dy, we substitute this result in Equation (3), which results in

y

x

y

x

(a) (b)

FIGURE 2. Possible cases of bifurcation points where the circle represents the actual
step size. (a) The curve intersects itself; (b) The curve comes very “close” to itself.
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(13)

where any arbitrary combination of plus and minus from Equation (12) and Equation (13) results in four

different distinct direction vectors . We will store all four directions in a list and follow their

branches one at a time. This is explained in greater detail in Section 3.

We discussed the usual case of two intersection points and studied in detail what happens when these

formulas fail when we encounter bifurcation points. Unfortunately, it could happen that we do not have

four intersection points, but six, eight, or more. That means, that actually more then the two branches,

as shown in Figure 1, meet at the same area. In that case, we realize that the second partial derivatives in

Equation (9) vanishes also, leaving us with no choice other than including even higher order terms in

the approximation of the Taylor series. This implies that we will have to solve higher order polynomials

to produce the expected number of solutions.

2.3  The Corrector Step

Although we have tried hard to predict a new point  on the curve, it is not guaranteed to fall accu-

rately on the curve. We can only hope to find a point that is “very close” to the curve. The goal of the

corrector step is to find a “closest” point on the curve, starting at . Among the many methods for

finding zero points of functions, the Newton method is very stable and fast, and therefore very common.

The Newton method is a numerical iteration method which converges to a zero point of a function f,

starting at a point  that should be fairly close to the zero point already. In our case, the starting point

for the Newton method will be  < the result of the predictor step.

The predictor step produced an initial value  for the iteration method. At

each iteration step we take the new and improved value from the previous iteration and try to improve it

even further, so that we actually end up on the curve itself. The result of the current iteration can be

written as:
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, (14)

where  marks the iteration number.

But how can we determine ? Here we exploit the same idea as we did in Euler’s Method. Of

course, we want that our new point  lies on the curve. So we add the condition that  is

a curve point:

. (15)

The same ideas and manipulations as used for Equation (4) will lead us towards a solution. Substituting

Equation (14) into Equation (15) and using a Taylor series expansion of f will result in:

. (16)

That is, in fact, the formula for Newton’s method for a two dimensional function. Since this is one equa-

tion with two unknowns, we have the freedom and duty to specify another condition, we want our iter-

ate to satisfy. First of all, we want to make sure that our iteration process converges. Other than that, it

would be nice if we could guarantee some sort of constant discretization of our curve. That is, we do not

want the distance between samples to vary too much. Both of these ideas can be realized if we restrict

our convergence to move in a right angle away from our previous iterate. To be more specific, the trian-

gle formed by the points ,  and  should form a right angled triangle. Here,  is the initial

point on the curve < the one we used in the predictor step to compute the point .  and  are the

previous and current iterates. In Figure 1 it was shown that this condition on our new iterate results in a

somewhat circular movement around the initial point . Because of this circular movement, we stay in

a certain proximity to , which increases the chances of convergence.

More formally, we want to add the condition that the vector  is perpendicular to . That is

expressed in the following manner:

(17)
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Equation (16) together with Equation (17) uniquely describe a new, corrected iterate , which con-

cludes the Corrector step. A geometric interpretation of these steps is illustrated in Figure 3.

3.  The Algorithm
The pseudo code for our numerical algorithm is given in Figure 4. The algorithm starts by looking for a

seed point (using a space subdivision method, as described in Section 3.1). The initial point will be

most likely on some arbitrary part of the curve. Therefore, we will usually have two possible directions

we can follow. We record both in a list for later retrieval (Line 3). At a bifurcation point a pixel will

have four branches leaving it. In this case we will also record all possible branch directions in this list

(Line 18). After retrieving a starting point for a new branch (Line 5) we trace the branch until we find

another bifurcation point or until we reach the limits of our display device. In the case of a closed curve

we also need to check when we get back to an already traced branch of the curve. A simple way to do

this is explained in Section 3.5.

y

x

6s

f

pi

pp=p0

pc

FIGURE 3. The corrector step. The Newton iterations and a forced circular movement of
the iterates  converge towards an actual point on the curve .pk 1+ pc

pk+1

pk 1+
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For each new predictor point we need to make sure that the corrector didn’t fail (Line 7 through Line

12). Once we have gained confidence about our corrected point, we check whether we can adjust the

step size (Line 15). We connect the previous point to the current point by a simple line (Line 16). If we

found a new bifurcation point, we need to record it (Line 18) and quit this loop. In any other case we

repeat this procedure and find another point on the same branch.

We now describe in more detail the implementation of some of the more involved segments of the algo-

rithm.

1. find an initial point  on the surface;
2. determine initial step size ;
3. record (p, , bifurlist); /* for both initial direction */
4. repeat
5. get , from bifurlist
6. repeat /* continue current branch */
7. repeat /* find a reliable new point on the curve */
8.  := Predictor( )
9.  := Corrector( )
10. C := approx_curvature( , )
11.  := /2
12. until ( converges AND 1/(2C) < ) OR bifur_test( )
13.  := *2;
14. if 1/(2C) > then
15. increase ;
16. draw_line( , );
17. if bifur_test( ) then
18. record( , , bifurlist)
19.  := ;
20. until ( is in the covered region or outside the screen OR bifur_test( ));
21. until bifurlist is empty

FIGURE 4. pseudo code for the curve tracking algorithm.
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3.1  Finding a Starting Point

If a seed point is not provided by the user, we employ a space subdivision approach. We divide the

image region into four quadrants and compute the function at each corner of the quadrants. If the sign of

the function is the same at all corners, we will apply the same subdivision to all four quadrants in a

breath-first scheme. If we do find a sign change, we continue to subdivide this specific quadrant in a

depth-first scheme up to the pixel- or even subpixel level, depending on how accurate our initial point

should be.

3.2  Implementing the Corrector Step

Since the predicted point is only an approximation of a curve point, the corrector step is employed to

converge to an actual point on the curve. Because of the approximations in our formulas, the Newton

corrector step (explained in Section 2.3) usually needs to be repeated a few times. That is done within

the Corrector procedure in Line 9. But how many times should we repeat the Newton step? Of course,

we have to fight round off errors caused by the discrete computer arithmetic as well. The quality of our

discretized curve greatly depends on our stopping criteria, as well as the successful completion of our

algorithm. Therefore, we need to know when  gets close enough to zero. The problem is that

close means very different things for different functions. If we had more knowledge about the function,

we could employ an absolute error test, like . For a general algorithm, we will have no idea

how small  needs to be to assure spatial proximity. This notion of being close to the curve might also

change at different ranges for the curve.

The method we chose adapts the value of  and utilizes the fact that we draw to a finite grid. Every once

in a while (e.g. every tenth time we call the Corrector procedure) we check the quality of the corrected

point . For this quality check we define a rectangular region centered at  and check for a sign

change of the function f at the corner points. The size of this rectangular region can be a parameter L

specified by the user or simply the current grid size. If there is a sign change in the corner points, we

know that our curve will be at most  away. Therefore, we could relax our stopping criteria and set

 to . On the other hand, if we find that our corrected value isn’t close enough to our

curve, we should strengthen our stopping condition and set  to  and redo the corrector

f pk 1+( )

f pk 1+( ) ¡<

¡

¡

pc pc

L 2⁄

¡ 1.1 f pk 1+( )

¡ 10 2– f pk 1+( )
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step. This finally results in a relative (adaptive) error test, which is certainly superior than an absolute

(static) error test.

3.3  Determining The Step Size

The other crucial and very sensitive parameter of this algorithm is the step size . One big advantage

of our algorithm is the freedom to choose the step size. When the curve shows a small curvature we will

choose a fairly large , allowing the algorithm to step quickly through this “almost linear” part of the

curve. On the other hand, when the curve changes rather quickly, i.e. the curvature of the function is

high, we have to decrease  appropriately. This adaptive mechanism gives us the ability to capture the

nature of our curve in greater detail when necessary.

The mathematical definition of the curvature is

, (18)

where  denotes the angel of the tangent with the x-axis and  denotes the arc length between the

two points. For implicit functions, C can be computed as

(19)

(See [6]). We compute first derivatives anyway for the Newton corrector, but would like to avoid com-

puting second derivatives. Therefore, we use an approximation to the curvature that is based on Equa-

tion (18), where we use the current and previous point on the curve. Since we have the first derivatives

already computed we can precisely compute the tangent angles. The arc length between the two points

is simply approximated with the current step size. To compute the initial step size we could either use

Equation (19) or just use the grid size. Choosing the initial step size for a bifurcation point can be a

problem. If we are stepping too far, we might ‘loose track’ of the current branch. If we are stepping too

close, the corrector might converge to a different, neighboring branch. Therefore we left it up to the user

to choose this initial step size.
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Another indicator of the quality of our step size would be the number of corrector steps we had to take

before we converged to a curve point. In our predictor step we are basically following the tangent of the

curve. If the curve is fairly linear the predicted point  will be almost on the curve, resulting in just

very few corrector steps. If the curve changes its direction rather fast,  will not be the best guess and

we expect more correction steps. Therefore, if we use at most one Newton step to find a point on the

curve, we simply double the step size.

3.4  Detecting Bifurcation Points

Bifurcation points are points where the curve intersects itself. At these points the first derivatives of the

function evaluate to zero. Of course, it will be very unlikely to find the mathematically exact bifurcation

point (in case one exists), because of the numerical nature of the algorithm. Therefore, we need to keep

watching the first derivatives of a function for regions where they are close to zero. We have seen

already how difficult such a test can be (see Section 3.2). Therefore, whenever we find a sign change in

one of the partial derivatives (from the previous to the current point) we have good reason to suspect

that there might be a bifurcation point close by. As a result, we decrease our step size and repeat the last

predictor/corrector step until the step size is smaller than a given size, which can be defined by the user.

If there is still reason to believe that there might be a bifurcation point, we create a rectangular region

around the current point on the curve. Similar to the test we performed in Section 3.2, we test whether

there is a sign change in the partial derivatives fx and fy. If we find a sign change in both partial deriva-

tives we conclude that we detected a bifurcation point. Otherwise, we conclude that we probably found

a turning point of the curve.

3.5  Stopping Criteria

We assume that we deal with a closed curve. Therefore, we need to find out if and when we returned to

a part of a branch we have traced already. If we do not include this exit test (in Line 20), we will trace

the curve over and over again, ending up in an infinite loop.

Because of the nature of a numeric algorithm it is very unlikely to return to the exact same point from

where we started. Therefore, we cannot just test for equality. We also do not want to test the proximity

pp

pp
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of the new point  to every one of the computed values along the curve. That might be possible for the

first few values, when the cost is still low, but certainly not for arbitrary curves, where we have to com-

pute many points to reasonably approximate the curves shape. The other problem is again the meaning

of “very close”. To solve this problem, we maintain a counter that counts the number of times we

attempt to draw a pixel that has been drawn already. When the algorithm computes a point on the curve

that is mapped to a pixel that was not drawn before, we set the counter to zero. Every time we compute

a new point on the curve within a pixel that was previously drawn, we increase a counter by one. If the

counter’s value exceeds some threshold, the algorithm stops pursuing this path.

4.  Results
We applied our algorithm to many different functions with and without bifurcation points and found

that they were drawn correctly in any image resolution of 1282 to 5122. For images of low resolution

(322 and sometimes 642) the user may have to explicitly specify a smaller step size. We have chosen

three very common functions without a bifurcation point (Figure 5) and three interesting functions with

many bifurcation points (Figure 6). Some interesting statistics for each group of functions is summa-

rized in Table 1 and compared to Chandlers algorithm [7]. The test cases where drawn onto a 5122

image. Drawing times, for all examples, was under 0.2 seconds on a Silicon Graphics Crimson

(150Mhz R4400). In the table we also provide the average number of pixels per one predictor step

(showing the adaptive step size), and the average number of correct steps per predictor.

TABLE 1. Performance results comparing our algorithm. The empty cells denote cases where Chan-
dler’s algorithm could not draw the curve.

Figure

 # Function evaluation per
pixel # pixels per

predictor
# pixels per
predictor

 Our Method  Chandler
 5a  1.89  2.68  6.21  2.55
 5b  2.01 2.80  6.79  3.20
 5c  3.27  2.92  3.51  2.49
6a  2.88 <  6.66  5.04
6b  4.18 <  4.05  3.67
6c  4.55 <  2.38  2.30

pc
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In general, the number of function evaluations per pixel for low resolutions is expectably high, since the

curvature of a curve considered within a pixel is larger than if the same curve is subdivided into smaller

parts (i.e. for smaller pixel sizes). Therefore, the step size (in terms of the number of pixels) is smaller

and the algorithm must perform more calculations on a per pixel basis. For high resolutions we have

much fewer function evaluations per pixel than Chandler’s algorithm without loss of quality. This dem-

onstrates the power of the adaptive step size.
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5.  Conclusions
We presented here a numerical algorithm that is able to draw a large family of implicit functions.

Through an adaptive step size design our performance is greatly optimized. We have shown that our

approach outperforms previous tracking algorithms.

Our future research includes the improvement of the accuracy of the predictor step. Since we already

know the derivatives at the previous point and, most of the time, also have this information available for

the point before that, we could use the Hermite interpolation scheme and approximate our curve with a
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polynom of third degree. This higher order approximation of our curve should result in fewer corrector

steps. Since the higher order polynomial is computed only at the predictor step, saving several corrector

steps, we expect a more efficient algorithm. A similar improvement can be made when connecting a

new point on the curve with the previous one. Instead of a line through these point, one could use a

higher order polynomial. Improvements to the accuracy of the corrector procedure are also possible, for

example, by using a better corrector than Newton’s. Finally, we plan to explore the extension of our

methods to 3D voxelization of implicit surfaces.
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Abstract
Implicit curves are widely used in computer graphics because of their powerful fea-

tures for modeling and their ability for general function description. The most pop-

ular rasterization techniques for implicit curves are space subdivision and curve

tracking. In this paper we are introducing an efficient curve tracking algorithm that

is also more robust then existing methods. We employ the Predictor-Corrector

Method on the implicit function to get a very accurate curve approximation in a

short time. Speedup is achieved by adapting the step size to the curvature. In addi-

tion, we provide mechanisms to detect and properly handle bifurcation points,

where the curve intersects itself. Finally, the algorithm allows the user to trade-off

accuracy for speed and vice a versa. We conclude by providing examples that dem-

onstrate the capabilities of our algorithm.

1.  Introduction
Implicit surfaces are surfaces that are defined by implicit functions. An implicit function  is a map-

ping from an n dimensional space  to the space , described by an expression in which all vari-

ables appear on one side of the equation. This is a very general way of describing a mapping. An n

dimensional implicit surface  is defined by all the points  in  such that the implicit mapping

projects  to 0. More formally, one can describe  by

. (1)
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Often times, one is interested in visualizing isosurfaces (or isocontours for 2D functions) which are

functions of the form for some constant c.

Different classes of implicit surfaces are of importance. Implicit surfaces that are defined by a polyno-

mial are called algebraic surfaces. Since almost all continuous functions can be approximated by poly-

nomials, algebraic surfaces represent a powerful class. Since polynomials have been studied and

understood fairly well, one has a better mathematical handle at algebraic surfaces.

Another special class of implicit surfaces have density functions as their defining functions. Density

functions decrease exponentially with increasing distance to a certain center point. The models where

these functions find usage usually arise in the study of physical phenomena, e.g. atom models. Blinn [4]

was one of the first to try to visualize these surfaces on a computer. They became to be known as

Blinn’s “Blobby Model” or Metaballs.

Yet another model which is gaining importance is the discrete data set. Such data set is commonly gen-

erated by various medical scanners such as MRI and CT. These data sets can also be seen as implicit

functions, where  and v is the scanned value at the location p. We assume that if p is not on a

grid point then some sort of interpolation from neighboring grid points defines v at p.

Rendering implicit surfaces is very difficult and computationaly very expensive. Usually existing algo-

rithms to render implicit surfaces work only for special cases or special sets of functions. In fact, to date

there is no such algorithm that can render arbitrary implicit surfaces accurately and in a stable and

timely manner.

Algorithms for rendering 3D implicit surfaces can be classified into three groups: representation trans-

forms, ray tracing, and surface tracking. The first approach tries to transform the problem from implicit

surfaces to another representation which is easier to display such as polygon meshes [1][5][10][15] or

parametric representations [16]. The second approach to rendering of implicit surfaces is to ray-trace

them. Efficient ray-object intersection algorithms have been devised for algebraic surfaces [11], meta-

balls [4], and a class of functions for which Lipschitz constants can be efficiently computed [12][14].

The third approach to rendering implicit functions is to scan convert or discretize the function. Seder-

f p( ) c=

f p( ) v=
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berg and Zundel [17] introduced such a scan line algorithm for a class of implicit functions that can be

represented by Bernstein polynomials.

When it comes to drawing 2D implicit functions (curves) an attractive approach is to follow the path of

the curve. The algorithm starts at a seed point on the curve. It then looks at the pixels adjacent to the

seed point to see if any of them is the next pixel along the curve. Various algorithms exist which mainly

differ in the method they use to find the next pixel along the curve.

One way to find the next pixel is based on digital difference analysis (DDA). A lot of work has been

done in this field and the most popular algorithm applying this technique are Bresenham's and the mid-

point line and circle drawing algorithms [8]. The rate of change in x and y is computed through fast inte-

gral updates of dx and dy, which are then used as decision variables to determine the next pixel center.

This idea was generalized for algebraic curves by Hobby [13]. One problem of this approach is that the

inherent integer arithmetic can only be exploited for a small set of algebraic functions. Furthermore,

this algorithm is not able to deal properly with self intersecting curves. Hobby assumes that these inter-

section points are given by the user.

A different way to continue a curve would be to evaluate the underlying function at the center of the

neighboring pixels to find the one with the smallest absolute function value. This idea has been imple-

mented by Jordan et. al. [9] and was improved by Chandler [7]. Since there are only eight neighboring

pixels, eight function evaluations are the maximum needed to find the next pixel on the curve. Since we

will very likely be traveling in the same direction we have been traveling when we picked the current

pixel, Chandler tests first the pixel continuing in the same direction, then its neighbors etc. For most

'nicely' behaving functions two to three function evaluations per pixel will be sufficient. To increase

accuracy, Chandler prefers to look for a sign change rather than the smallest absolute value. Therefore,

he evaluates the function not at pixel centers but rather halfway in between pixels. Although the algo-

rithm does not depend on the actual description of the function and therefore is applicable to arbitrary

functions, it is still not able to deal with self intersecting functions. To deal with such points the algo-

rithm requires user intervention. Alternatively, it includes a brute-force Monte Carlo method to visual-

ize the positive and negative regions of the function. Finally, if the curve enters and leaves the pixel in-
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between the same two neighboring sample points, this algorithm will not be able to register a sign

change and therefore fail.

For density functions, Arvo et. al. applied a numerical method known as the predictor-corrector method

[2]. Their main goal is the rendering of iso-curves of medical data sets. In this paper we introduce an

efficient and more robust predictor-corrector method. Our algorithm deals with self intersecting curves

properly and increases the efficiency of the algorithm to less than one function evaluation per pixel on

the average. Finally, unlike existing curve tracking methods, our algorithm can be applied to a large

family of implicit functions including selfintersecting functions with at most two branches at the inter-

section point.

2.  The Predictor-Corrector Method
The predictor-corrector method is a well known numerical algorithm which has its origin in solving

ordinary differential equations and bifurcation theory. Arvo and Novins [2] used a two dimensional

standard method for extracting isocurves in a 2D medical image. Although the predictor-corrector

method offers ways to detect and properly deal with self intersecting curves and curves “very close” to

themselves, Arvo and Novins did not explore these capabilities.

The predictor-corrector method is a numerical continuation method (tracking algorithm). The goal is to

find a point set which represents a discretized approximation of a curve that is defined by some implicit

function as in Equation (1). As the name suggests, the predictor-corrector method consists of two steps.

In the predictor step we take a (more or less sophisticated) guess of a point on the curve, denoted by .

Depending on how much thought and work we put into predicting the point , it will be closer or far-

ther away from an actual point on the curve. Depending on the assumption we make about the curve

and its actual shape, we will not be able to always accurately predict an exact point on the curve. In the

corrector step we use our predicted point  as a starting point for an iterative method that converges to

an actual point on the curve. We denote this new, corrected point, by . We repeat these two steps until

we tracked the whole curve. The resulting discrete point set can then be displayed on a screen.
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There are many different ways to implement the predictor or corrector steps. We use the standard Euler-

Newton method with an adaptive step size and introduce techniques to handle selfintersecting curves.

2.1  The Predictor Step

The focus of the predictor step is to find a point  that is very close or even on the curve, so that the

costs for the corrector step are reduced or even eliminated. If we already know points on the curve, we

can approximate the curve through a polynomial and get a new approximate for this curve through

extrapolation or interpolation.

Finding the very first point on the curve is not always easy. One usually has some understanding of the

kind of function one tries to discretize and can therefore provide an initial seed value to the algorithm. If

this is not possible, one needs to apply a brute force algorithm or some other heuristic to find an initial

seed value. The image space is limited (usually a screen in computer graphics). Therefore one rather

brute-force method would be to impose a grid onto the screen and evaluate the underlying implicit func-

tion at each grid point to choose a closest point (where |f(p)| becomes smallest). Another possibility

would be to look for a sign change of the underlying function between neighboring grid points. We

employ a faster method that is based on a quadtree subdivision algorithm as explained in Section 3.1.

We now present one way to implement the predictor step. One-step methods only employ one point (the

point of the previous iteration) to predict a new point. The standard Euler method is a good example of

a one-step method. However, one can envision the use of Hermites method which employs more than

one point and is therefore called multi-step method. Although multi-step methods are usually more

expensive, they lead to better, higher order approximations, reducing the number of necessary corrector

steps.

Euler’s method starts at a point which is known to be on the curve. Because this is a one-step method,

each point on the curve will lead to exactly one new point on the curve. Since we execute many predic-

tor-corrector iterations to obtain a point set that approximates our curve, it is just obvious to use the

resulting point of the previous iteration as the initial point for the current iteration. We call this initial

point . We also want to have some control over the distance between the new point and

pp

pi xi yi,( )=
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the initial point. That is, we want  to be located at a certain distance  from  and not at some

unpredictable “end” of the curve.  is called the arc length parameter and it represents a parameteriza-

tion of our curve. The linear approximation of the predicted point results in

, (2)

where  now depends on the arc length and the initial point. Since  is the euclidean dis-

tance between  and , we need to make sure that:

(3)

Equation (3) defines a unit circle around the origin. Combining it with Equation (2) we are describing a

circle of radius  and origin . Next, we have to find the intersection points of that circle with our

curve. We choose one of these points as our new predicted value. Since the origin of this circle lies

already on the curve, we are guaranteed that our circle will intersect our implicit curve, unless the whole

curve is contained within the circle. In that particular case, the choice of the distance  between neigh-

boring points is not appropriate and needs to be changed. If  is in the order of the size of a pixel and

the curve is still contained within such a small circle, the discretization of this curve would just be one

pixel and we are done.

Assuming a closed curve, we will actually get an even number of intersection points. Choosing our step

size (arc length) small enough, we will get exactly two intersection points (see Figure 1). However, in

the case of a self intersecting curve or when a curve comes “close” to itself, we will get more than two

intersection points, even if  is very small. We will explore these special cases in Section 2.2.

The second condition for the new predicted point is, of course, that it should lie on the curve defined by

the underlying implicit function f. That means we require

. (4)

Since we are processing an arbitrary functions f we are not able to use Equation (4) directly to compute

. Instead, we substitute Equation (2) into Equation (4) and through a Taylor series expansion we are

pp s6 pi

s6
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s6 pi
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able to compute an approximation to the actual point on the curve. This approximation serves as the

predicted value .

Let’s have a look at the equations. The substitution results in

. (5)

Now the actual approximation takes place. We expand Equation (5) in a Taylor series and keep only the

linear terms. That results in:

(6)

The initial point was assumed to be on the curve, i.e. . We conclude

(7)

Using Equation (3) and Equation (7), we can actually solve for the unknowns . Using a short-

cut notation for the partial derivatives of , where  is replaced by  (and similarly

for the partial derivative in y) the result can be written as

(8)

which is also proven by Baker and Overman [3]. Here  stands for the sign plus or minus which repre-

sents the direction in which we continue to track the curve. In the case of the seed point we want to

make sure, that we trace both directions. However, in the general case we don’t want to step back into

the direction we were coming from. A simple sign check of the scalar product of the direction, where

we were coming from and our new direction, helps us determining the appropriate .

Although our new predicted value lies on a circle around the initial point, we only find a point near the

curve because of the approximation in Equation (6). If we take a closer look at Equation (7), the one we

actually used as an approximation to Equation (5), we realize that  describes the components

pp
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of the tangent to the curve at the initial point. That leads us to a better geometric understanding of this

process, captured in Figure 1.

2.2  Bifurcation Points

The intersection of the circle equation (originating in Equation (3)) with the implicit curve results usu-

ally in two points. As pointed out earlier, in case of a selfintersecting curve (Figure 2a) or if it just

comes “close” to itself (Figure 2b) we expect at least four intersection points. These special points are

also called bifurcation points. Looking at our formulas in Equation (7) and Equation (3), we are only

able to compute two points, since it is an intersection of a quadratic (Equation (3)) curve with a linear

curve (Equation (7)). In a case of a bifurcation point the linear approximation of the Taylor series as in

Equation (7) will not be enough. In fact, from the implicit function theorem we can conclude, that the

first partial derivatives will be zero for these bifurcation points. Therefore we cannot compute

as derived above. We have to include the second order terms of the Taylor series expansion in Equation

(6) to get the appropriate results.

The more accurate approximation to Equation (5), replacing Equation (6), is now

FIGURE 1. The predictor step. Here  is the step size we want to step along the curve
starting at the initial point . Because Equation (7) is only an approximation, the predicted
value will not necessarily lie on the curve described by f.
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(9)

As already mentioned, the first three terms in the sum vanish, which leads to

(10)

In order to increase the readability of the following formulas, we use the following notation:

(11)

If we consider Equation (10) as a quadratic equation in the quotient q defined by dx/dy, we get the fol-

lowing solution:

(12)

To actually compute dx and dy, we substitute this result in Equation (3), which results in

y

x

y

x

(a) (b)

FIGURE 2. Possible cases of bifurcation points where the circle represents the actual
step size. (a) The curve intersects itself; (b) The curve comes very “close” to itself.
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(13)

where any arbitrary combination of plus and minus from Equation (12) and Equation (13) results in four

different distinct direction vectors . We will store all four directions in a list and follow their

branches one at a time. This is explained in greater detail in Section 3.

We discussed the usual case of two intersection points and studied in detail what happens when these

formulas fail when we encounter bifurcation points. Unfortunately, it could happen that we do not have

four intersection points, but six, eight, or more. That means, that actually more then the two branches,

as shown in Figure 1, meet at the same area. In that case, we realize that the second partial derivatives in

Equation (9) vanishes also, leaving us with no choice other than including even higher order terms in

the approximation of the Taylor series. This implies that we will have to solve higher order polynomials

to produce the expected number of solutions.

2.3  The Corrector Step

Although we have tried hard to predict a new point  on the curve, it is not guaranteed to fall accu-

rately on the curve. We can only hope to find a point that is “very close” to the curve. The goal of the

corrector step is to find a “closest” point on the curve, starting at . Among the many methods for

finding zero points of functions, the Newton method is very stable and fast, and therefore very common.

The Newton method is a numerical iteration method which converges to a zero point of a function f,

starting at a point  that should be fairly close to the zero point already. In our case, the starting point

for the Newton method will be  < the result of the predictor step.

The predictor step produced an initial value  for the iteration method. At

each iteration step we take the new and improved value from the previous iteration and try to improve it

even further, so that we actually end up on the curve itself. The result of the current iteration can be

written as:

xd
yd¤ ¦
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, (14)

where  marks the iteration number.

But how can we determine ? Here we exploit the same idea as we did in Euler’s Method. Of

course, we want that our new point  lies on the curve. So we add the condition that  is

a curve point:

. (15)

The same ideas and manipulations as used for Equation (4) will lead us towards a solution. Substituting

Equation (14) into Equation (15) and using a Taylor series expansion of f will result in:

. (16)

That is, in fact, the formula for Newton’s method for a two dimensional function. Since this is one equa-

tion with two unknowns, we have the freedom and duty to specify another condition, we want our iter-

ate to satisfy. First of all, we want to make sure that our iteration process converges. Other than that, it

would be nice if we could guarantee some sort of constant discretization of our curve. That is, we do not

want the distance between samples to vary too much. Both of these ideas can be realized if we restrict

our convergence to move in a right angle away from our previous iterate. To be more specific, the trian-

gle formed by the points ,  and  should form a right angled triangle. Here,  is the initial

point on the curve < the one we used in the predictor step to compute the point .  and  are the

previous and current iterates. In Figure 1 it was shown that this condition on our new iterate results in a

somewhat circular movement around the initial point . Because of this circular movement, we stay in

a certain proximity to , which increases the chances of convergence.

More formally, we want to add the condition that the vector  is perpendicular to . That is

expressed in the following manner:

(17)
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Equation (16) together with Equation (17) uniquely describe a new, corrected iterate , which con-

cludes the Corrector step. A geometric interpretation of these steps is illustrated in Figure 3.

3.  The Algorithm
The pseudo code for our numerical algorithm is given in Figure 4. The algorithm starts by looking for a

seed point (using a space subdivision method, as described in Section 3.1). The initial point will be

most likely on some arbitrary part of the curve. Therefore, we will usually have two possible directions

we can follow. We record both in a list for later retrieval (Line 3). At a bifurcation point a pixel will

have four branches leaving it. In this case we will also record all possible branch directions in this list

(Line 18). After retrieving a starting point for a new branch (Line 5) we trace the branch until we find

another bifurcation point or until we reach the limits of our display device. In the case of a closed curve

we also need to check when we get back to an already traced branch of the curve. A simple way to do

this is explained in Section 3.5.

y

x

6s

f

pi

pp=p0

pc

FIGURE 3. The corrector step. The Newton iterations and a forced circular movement of
the iterates  converge towards an actual point on the curve .pk 1+ pc
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For each new predictor point we need to make sure that the corrector didn’t fail (Line 7 through Line

12). Once we have gained confidence about our corrected point, we check whether we can adjust the

step size (Line 15). We connect the previous point to the current point by a simple line (Line 16). If we

found a new bifurcation point, we need to record it (Line 18) and quit this loop. In any other case we

repeat this procedure and find another point on the same branch.

We now describe in more detail the implementation of some of the more involved segments of the algo-

rithm.

1. find an initial point  on the surface;
2. determine initial step size ;
3. record (p, , bifurlist); /* for both initial direction */
4. repeat
5. get , from bifurlist
6. repeat /* continue current branch */
7. repeat /* find a reliable new point on the curve */
8.  := Predictor( )
9.  := Corrector( )
10. C := approx_curvature( , )
11.  := /2
12. until ( converges AND 1/(2C) < ) OR bifur_test( )
13.  := *2;
14. if 1/(2C) > then
15. increase ;
16. draw_line( , );
17. if bifur_test( ) then
18. record( , , bifurlist)
19.  := ;
20. until ( is in the covered region or outside the screen OR bifur_test( ));
21. until bifurlist is empty

FIGURE 4. pseudo code for the curve tracking algorithm.
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3.1  Finding a Starting Point

If a seed point is not provided by the user, we employ a space subdivision approach. We divide the

image region into four quadrants and compute the function at each corner of the quadrants. If the sign of

the function is the same at all corners, we will apply the same subdivision to all four quadrants in a

breath-first scheme. If we do find a sign change, we continue to subdivide this specific quadrant in a

depth-first scheme up to the pixel- or even subpixel level, depending on how accurate our initial point

should be.

3.2  Implementing the Corrector Step

Since the predicted point is only an approximation of a curve point, the corrector step is employed to

converge to an actual point on the curve. Because of the approximations in our formulas, the Newton

corrector step (explained in Section 2.3) usually needs to be repeated a few times. That is done within

the Corrector procedure in Line 9. But how many times should we repeat the Newton step? Of course,

we have to fight round off errors caused by the discrete computer arithmetic as well. The quality of our

discretized curve greatly depends on our stopping criteria, as well as the successful completion of our

algorithm. Therefore, we need to know when  gets close enough to zero. The problem is that

close means very different things for different functions. If we had more knowledge about the function,

we could employ an absolute error test, like . For a general algorithm, we will have no idea

how small  needs to be to assure spatial proximity. This notion of being close to the curve might also

change at different ranges for the curve.

The method we chose adapts the value of  and utilizes the fact that we draw to a finite grid. Every once

in a while (e.g. every tenth time we call the Corrector procedure) we check the quality of the corrected

point . For this quality check we define a rectangular region centered at  and check for a sign

change of the function f at the corner points. The size of this rectangular region can be a parameter L

specified by the user or simply the current grid size. If there is a sign change in the corner points, we

know that our curve will be at most  away. Therefore, we could relax our stopping criteria and set

 to . On the other hand, if we find that our corrected value isn’t close enough to our

curve, we should strengthen our stopping condition and set  to  and redo the corrector

f pk 1+( )

f pk 1+( ) ¡<

¡

¡

pc pc

L 2⁄

¡ 1.1 f pk 1+( )
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step. This finally results in a relative (adaptive) error test, which is certainly superior than an absolute

(static) error test.

3.3  Determining The Step Size

The other crucial and very sensitive parameter of this algorithm is the step size . One big advantage

of our algorithm is the freedom to choose the step size. When the curve shows a small curvature we will

choose a fairly large , allowing the algorithm to step quickly through this “almost linear” part of the

curve. On the other hand, when the curve changes rather quickly, i.e. the curvature of the function is

high, we have to decrease  appropriately. This adaptive mechanism gives us the ability to capture the

nature of our curve in greater detail when necessary.

The mathematical definition of the curvature is

, (18)

where  denotes the angel of the tangent with the x-axis and  denotes the arc length between the

two points. For implicit functions, C can be computed as

(19)

(See [6]). We compute first derivatives anyway for the Newton corrector, but would like to avoid com-

puting second derivatives. Therefore, we use an approximation to the curvature that is based on Equa-

tion (18), where we use the current and previous point on the curve. Since we have the first derivatives

already computed we can precisely compute the tangent angles. The arc length between the two points

is simply approximated with the current step size. To compute the initial step size we could either use

Equation (19) or just use the grid size. Choosing the initial step size for a bifurcation point can be a

problem. If we are stepping too far, we might ‘loose track’ of the current branch. If we are stepping too

close, the corrector might converge to a different, neighboring branch. Therefore we left it up to the user

to choose this initial step size.
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Another indicator of the quality of our step size would be the number of corrector steps we had to take

before we converged to a curve point. In our predictor step we are basically following the tangent of the

curve. If the curve is fairly linear the predicted point  will be almost on the curve, resulting in just

very few corrector steps. If the curve changes its direction rather fast,  will not be the best guess and

we expect more correction steps. Therefore, if we use at most one Newton step to find a point on the

curve, we simply double the step size.

3.4  Detecting Bifurcation Points

Bifurcation points are points where the curve intersects itself. At these points the first derivatives of the

function evaluate to zero. Of course, it will be very unlikely to find the mathematically exact bifurcation

point (in case one exists), because of the numerical nature of the algorithm. Therefore, we need to keep

watching the first derivatives of a function for regions where they are close to zero. We have seen

already how difficult such a test can be (see Section 3.2). Therefore, whenever we find a sign change in

one of the partial derivatives (from the previous to the current point) we have good reason to suspect

that there might be a bifurcation point close by. As a result, we decrease our step size and repeat the last

predictor/corrector step until the step size is smaller than a given size, which can be defined by the user.

If there is still reason to believe that there might be a bifurcation point, we create a rectangular region

around the current point on the curve. Similar to the test we performed in Section 3.2, we test whether

there is a sign change in the partial derivatives fx and fy. If we find a sign change in both partial deriva-

tives we conclude that we detected a bifurcation point. Otherwise, we conclude that we probably found

a turning point of the curve.

3.5  Stopping Criteria

We assume that we deal with a closed curve. Therefore, we need to find out if and when we returned to

a part of a branch we have traced already. If we do not include this exit test (in Line 20), we will trace

the curve over and over again, ending up in an infinite loop.

Because of the nature of a numeric algorithm it is very unlikely to return to the exact same point from

where we started. Therefore, we cannot just test for equality. We also do not want to test the proximity

pp

pp
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of the new point  to every one of the computed values along the curve. That might be possible for the

first few values, when the cost is still low, but certainly not for arbitrary curves, where we have to com-

pute many points to reasonably approximate the curves shape. The other problem is again the meaning

of “very close”. To solve this problem, we maintain a counter that counts the number of times we

attempt to draw a pixel that has been drawn already. When the algorithm computes a point on the curve

that is mapped to a pixel that was not drawn before, we set the counter to zero. Every time we compute

a new point on the curve within a pixel that was previously drawn, we increase a counter by one. If the

counter’s value exceeds some threshold, the algorithm stops pursuing this path.

4.  Results
We applied our algorithm to many different functions with and without bifurcation points and found

that they were drawn correctly in any image resolution of 1282 to 5122. For images of low resolution

(322 and sometimes 642) the user may have to explicitly specify a smaller step size. We have chosen

three very common functions without a bifurcation point (Figure 5) and three interesting functions with

many bifurcation points (Figure 6). Some interesting statistics for each group of functions is summa-

rized in Table 1 and compared to Chandlers algorithm [7]. The test cases where drawn onto a 5122

image. Drawing times, for all examples, was under 0.2 seconds on a Silicon Graphics Crimson

(150Mhz R4400). In the table we also provide the average number of pixels per one predictor step

(showing the adaptive step size), and the average number of correct steps per predictor.

TABLE 1. Performance results comparing our algorithm. The empty cells denote cases where Chan-
dler’s algorithm could not draw the curve.

Figure

 # Function evaluation per
pixel # pixels per

predictor
# pixels per
predictor

 Our Method  Chandler
 5a  1.89  2.68  6.21  2.55
 5b  2.01 2.80  6.79  3.20
 5c  3.27  2.92  3.51  2.49
6a  2.88 <  6.66  5.04
6b  4.18 <  4.05  3.67
6c  4.55 <  2.38  2.30

pc
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In general, the number of function evaluations per pixel for low resolutions is expectably high, since the

curvature of a curve considered within a pixel is larger than if the same curve is subdivided into smaller

parts (i.e. for smaller pixel sizes). Therefore, the step size (in terms of the number of pixels) is smaller

and the algorithm must perform more calculations on a per pixel basis. For high resolutions we have

much fewer function evaluations per pixel than Chandler’s algorithm without loss of quality. This dem-

onstrates the power of the adaptive step size.
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5.  Conclusions
We presented here a numerical algorithm that is able to draw a large family of implicit functions.

Through an adaptive step size design our performance is greatly optimized. We have shown that our

approach outperforms previous tracking algorithms.

Our future research includes the improvement of the accuracy of the predictor step. Since we already

know the derivatives at the previous point and, most of the time, also have this information available for

the point before that, we could use the Hermite interpolation scheme and approximate our curve with a
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polynom of third degree. This higher order approximation of our curve should result in fewer corrector

steps. Since the higher order polynomial is computed only at the predictor step, saving several corrector

steps, we expect a more efficient algorithm. A similar improvement can be made when connecting a

new point on the curve with the previous one. Instead of a line through these point, one could use a

higher order polynomial. Improvements to the accuracy of the corrector procedure are also possible, for

example, by using a better corrector than Newton’s. Finally, we plan to explore the extension of our

methods to 3D voxelization of implicit surfaces.
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