
www.omilab.org 

 

 

 

 

 

Modeling Digital Enterprise Ecosystems with ArchiMate: A 
Mobility Provision Case Study 

 
Benedikt Pittl and Dominik Bork 

 

Accepted for: 

5th International Conference on Serviceology, July 12 - 14, 2017, 

Vienna, Austria 

 



Modeling Digital Enterprise Ecosystems with
ArchiMate: A Mobility Provision Case Study

Benedikt Pittl and Dominik Bork

Research Group Knowledge Engineering
Faculty of Computer Science
University of Vienna, Austria

{firstname.lastname}@univie.ac.at

Abstract. Currently there is a shift from product centered enterprises
to product-service centered enterprises which rely on a network of cus-
tomers, suppliers and partners called enterprise ecosystems. This trend
also affects the underlying IT architecture which has to integrate and
provide software components (e.g. services) as well as hardware compo-
nents (e.g. sensors) leading to a digital enterprise ecosystem. This digital
ecosystem is complex so that modeling approaches which aim on sim-
plifying complexity are eligible for their design and management. In the
paper at hand, we show that existing enterprise modeling approaches
are inappropriate for modeling digital enterprise ecosystems comprehen-
sively. By using a case-based analysis we sketch extension points for a
digital enterprise ecosystem modeling method based on ArchiMate.

Keywords: Domain-Specific Modeling, Enterprise Ecosystem, Enter-
prise Modeling

1 Introduction

Currently, there is a shift from a product oriented to a product-service oriented
economy [10]. Thereby enterprises face challenges in creating new value streams,
business models, and IT architectures. Hilti’s Tools on Demand business model
as well as new enterprises trading services such as Uber or Airbnb are results of
this trend. According to [32], the service trend leads to enterprises which rely
on a tight network of stakeholders such as customers, suppliers and cooperation
partners. This network is referred to as enterprise ecosystem. A vital part of
such ecosystems is the tight integration of the underlying IT infrastructure (e.g.
servers, cloud services, third party applications). To reflect this distinguishing
character, the term digital enterprise ecosystem is used. This paper elaborates
the importance of models for designing digital enterprise ecosystems which en-
compass the integration and provisioning of software components as well as
hardware components. The design as well as the coordination of such ecosys-
tems is complex and can be considered as a key challenge of enterprises in the
future. Modeling approaches, with the aim on simplifying complex systems, are
an appropriate instrument for describing them.



2 Pittl, Bork

Enterprise modeling approaches integrate multiple perspectives or views to
derive a coherent and comprehensive description (cf. [6]). See for example 4EM [33],
ArichMate [18], Semantic Object Model [12], or Integrated Enterprise Balanc-
ing [15]. All these enterprise modeling approaches where designed with the aim on
generality: any enterprise can be described with them. However, the description
of digital enterprise ecosystems with enterprise modeling approaches is unfeasi-
ble. This is because they currently lack in expressiveness when describing digital
enterprise ecosystems. Existing enterprise modeling approaches need to evolve in
order to comprehend current developments. In this paper, the ArchiMate mod-
eling approaches serves as a starting point to identify current weaknesses and
propose extensions for modeling digital enterprise ecosystems.

Our research endeavour is to create domain-specific conceptual modeling
methods for digital enterprise ecosystems. Thereby we use the term conceptual
model as defined in [29], which describes them as models used for communi-
cation and understanding by human beings. In the paper at hand, we analyze
the appropriateness of ArchiMate to express the specifics of digital enterprise
ecosystems and propose first ideas of how an extension of ArchiMate could be
achieved to meet the aforementioned requirements.

The remainder of the paper is structured as follows: Section 2 describes foun-
dations of modeling methods in context of the service-product trend and some
related work. A mobility provision case study is described in section 3. Along
this case study we develop requirements as well as a sketch of a domain-specific
language for digital enterprise ecosystems. The paper is closed with a conclusion
in section 4.

2 Foundations

2.1 Conceptual Modeling Methods

The authors of [20] define a modeling method as consisting of a modeling lan-
guage, modeling procedure, and modeling algorithms. An overview of a modeling
method is depicted in Figure 1. The modeling language consists of syntax, seman-
tics, and notation. The modeling algorithms are algorithms which are executed
on the modeling language. They range from generic algorithms (e.g. shortest
path algorithms) to specialized algorithms (e.g. process and capacity simula-
tions). The modeling procedure describes concrete steps which the modeler has
to follow in order to create valid models.

According to this definition of a modeling method, most of the popular mod-
eling approaches like BPMN or UML can be considered as modeling languages
as they do neither define a modeling procedure nor modeling algorithms.

Fig. 1: Core components of modeling methods (excerpt from [20])



Modeling Digital Enterprise Ecosystems 3

While enterprises and their environments require agility, modeling approaches
seem to remain nearly unchanged. Prominent modeling methods like BPMN and
ArchiMate are heavily used in science and industry, even if their update cycles
are rather long: The update from BPMN 1.2 to the current version 2 took about
two years1, while ArichMate 3.0 was released three years after its predecessor
ArichMate 2.12. Similarly, the latest UML specification was released approxi-
mately four years after the previous specification3. The stability of these so-
called general purpose modeling languages is based on a rather high abstraction
level implying limited semantic specificity. For example, an activity in BPMN
can be used for describing processes using different levels of abstraction in almost
all domains. Contrary to general purpose modeling languages, domain-specific
modeling languages have a high expressiveness in a certain domain. Due to
their strong domain focus such languages are usually not standardized and their
awareness is low.

2.2 Related Work

The related work analysis is structured into two parts: the first part summa-
rizes literature relevant for enterprise ecosystems while the second part summa-
rizes existing enterprise modeling approaches which might be promising starting
points for modeling digital enterprise ecosystems.

In [30], the authors elaborate the importance of currently emerging ecosys-
tems which leads to a tight integration of different stakeholders. This integration
requires a harmonization of software systems. Therefore, different approaches
are summarized in [3]. Further enterprise integration aspects, beyond software
system integration aspects, have been investigated in [32]. The author of [22] an-
alyzes how the model quality framework Semiotic Quality Framework (SEQAL)
can be used for evaluating models in the domain of digital ecosystems.

A generic reference architecture for modeling enterprises was described in [25],
where the author introduces a business rule-, an activity-, a resource-, a business
process- as well as an organisational view. All the enterprise modeling methods
which we describe in the following have a comparable structure. The Multi-
Perspective Enterprise Modeling (MEMO) method, introduced in [14] tool sup-
port described in [4], has a strategy, a organisational as well as an information
system perspective whereby each perspective is organized along the four aspects
structure, process, resources, goals. The 4EM modeling method [33] has the vi-
sion of a holistic description of enterprises. It encompasses a process model, a
goal model, a rule model, a concept model, an actors and resource model as
well as a technical component model. There are also research initiatives using
the Unified Modeling Language (UML) for modeling enterprises [27]. The Open
Group Architecture Framework (TOGAF) is a framework which aims on cap-
turing enterprise architectures [16]. Thereby, TOGAF distinguishes between a

1 http://www.omg.org/spec/BPMN/
2 http://opengroup.org/standards/ea
3 http://www.omg.org/spec/UML/



4 Pittl, Bork

business architecture, an application architecture, a data architecture as well as
a technical architecture.

ArchiMate is a modeling method which distinguishes between a business
layer, an application layer as well as a technology layer [18]. The business layer
is about to describe business processes, the application layer describes software
applications, and the technology layer allows to describe hardware as well as
software infrastructures. It is designed for modeling enterprise architectures.

ArchiMate served as extension point for a couple of other modeling methods
such as [11, 1]. In [15], the authors designed a modeling method for Integrated
Enterprise Balancing with the aim of generating a common data structure. The
Integrated Enterprise Modeling method was introduced in [28], it has a strong
focus on processes of manufacturing enterprises.

All of theses modeling approaches focus on an isolated description of enter-
prises. What is missing is an approach for modeling digital enterprise ecosystem-
specific concepts in a comprehensive and integrated manner.

3 Case Study: Digital Enterprise Ecosystem for Mobility
Provision in the Automotive Industry

The trend towards product-services is a result of the digital transformation. For
a better analysis of the effects, we follow the classification of [23], which describes
that an enterprise architecture consist of a business architecture, an information
systems architecture and a technology architecture as shown in Figure 2a. The
information systems architecture forms together with the technology architecture
the IT architecture.

Product-service centered enterprises have to redesign their business architec-
ture, requiring also a redesign of the underlying IT architecture. Thus, in the
information systems architecture layer, enterprises face challenges in integrating
and provisioning of software components. Further, flexible application architec-
tures are required which allow modifications immediately after changes occur in
the environment. The technological architecture is increasingly distributed due
to the usage of clouds as well as of other hardware components such as sensors.
Their integration and coordination becomes a key challenge in the future.

The described enterprise architecture does not only allow a top-down ap-
proach where changes of the business model are propagated down to the IT
architecture level. Disruptive technologies like the IoT [2] which belong to the
IT architecture layer may force enterprises to modify their business architecture

(a) Enterprise architecture and IT architec-
ture

(b) Simplified scenario for renting a
car at Car2Go

Fig. 2: Overview over enterprise architecture and mobility provision scenario



Modeling Digital Enterprise Ecosystems 5

which represents a bottom-up approach [26]. The digital photography is an ex-
ample of such a disruptive technology where corporations like Kodak failed to
adapt their business models.

In the case study we describe the digital enterprise ecosystem for a car-
rental scenario on a very high level of abstraction using the example of Car2Go
(www.car2go.com). The scenario of renting a car is visualized in Figure 2b:

1. Register. New costumers have to enter their personal data including pay-
ment relevant information.

2. Download App. Customers have to download the Car2Go app to access
all Car2Go services.

3. Search for Car. Customers have to find an available car in proximity to
their current location. Therefore the app can be used as a route planer to
find the next car.

4. Start Rental. The rental process of a car is triggered after the consumer
found a car, opened it, and started it with the app.

5. End Rental. The rental ends when the customer leaves the car. Therby the
customer is charge based on the chosen pricing model.

For executing such a scenario, services and devices are required belonging to
the digital enterprise ecosystem as summarized in Table 1: The registration step
requires a web application while the app store is required so that consumers can
download the app. The search of cars requires communication with geographical
services as well as with a car sensor. For initiating the rental process a communi-
cation to car sensors e.g. for unlocking the car as well as for tracking the car trip
is necessary. The end rental process step requires an integration with payment
services. Overall, parts of the data are stored on an external cloud.

3.1 Modeling the Mobility Provision Scenario with existing
Approaches

Modeling of digital enterprise ecosystems such as described in the scenario is
not trivial: For the overall process we could use BPMN which fails to model
the technical aspects. Process modeling with enterprise modeling methods like
4EM are approximately on the same level of abstraction as the BPMN. Hence,
they face similar problems. Contrary, the technical modeling languages grouped
into the UML might be more appropriate for modeling the technical aspects
even if the semantics of the resulting models is limited. However, the UML is
inappropriate for modeling the business aspects.

ArchiMate with its business layer, application layer and technology layer
seems to be an appropriate modeling method for describing such digital ecosys-
tems. However, ArchiMate is a standard modeling language working with ab-
stract concepts [24]. The modeling class representing sensors in the car, which
is required in the previously described scenario, can only be represented with
ArchiMate’s device modeling class. The (informal) semantics of the device class
is described in the standard [31]: A device models a physical computational re-
source, upon which artifacts may be deployed for execution. It is obvious that



6 Pittl, Bork

modeling sensors with the device class is generally possible, however, the ex-
pressiveness of such modeling constructs is limited. Even prefixing the names of
modeling elements of the type device with ’sensor ’ leads only to limited expres-
siveness improvements for humans while the expressiveness for machines remains
unchanged.

Step Service Sensors
1 Register WebApp-Cloud -
2 Download App WebApp-Cloud -
3 Search for Car Geo-Service Car GPS Sensor
4 Start Rental Tracking-Service Car Lock Sensor
5 End Rental Payment-Service Car Lock Sensor

Table 1: Summary of the scenario with its required services and sensors

An excerpt of a model for this scenario created with ArchiMate is depicted
in Figure 3. The process model (shown on the top of the figure) seems to be
appropriate for our purpose. The application model (shown in the center of
the figure) is on a very abstract level of detail: We used ArchiMate’s application
component class for modeling the Car2Go Registration Site, the AppStore as well
as the Car2Go App. The car information system which belongs to ArchiMate’s
technical layer is depicted on the lower left corner: Here, we used the device
class for modeling the sensors. Further, we used the generic technology interface
modeling class to elaborate that there are well defined interfaces for accessing
the sensors. On the lower right corner, we modeled an excerpt of the server-
side system which is used by the Car2Go App. The Car2Go server system uses
an external Data Cloud which was modeled by using the generic node class.
The Car2Go server accesses the cloud. Thereby we connected the cloud with
the server system via the network model element which we named Car2Go App
Server System. The server offers a tracking service which is accessed by the app.
The tracking service is modeled by using a generic technical service class.

The described example elaborates that we have to improvise for modeling
such a simple scenario using ArchiMate. ArchiMates limitations in modeling
precisely use cases is a well known fact [24]. Looking at the model without
showing the name labels reveals that semantics of the model itself is very low
due to the high level of abstraction of the ArchiMate modeling language. The
names of the model elements such as ’External Data Cloud’ contain the majority
of the semantics. Simply placing information into the name labels works only for
a limited amount of information. For example the name label of the ’External
Data Cloud’ is insufficient to describe the service level agreement which the
Car2Go system has with the external cloud. Therefore, further classes or class
attributes are necessary.

3.2 Requirements for Modeling a Digital Enterprise Ecosystem
with ArchiMate

For an adequate modeling of the product-service scenario additional domain-
specific concepts have to be introduced to ArchiMate. For the scenario model,
classes such as ’Lock Sensor’ and ’GPS Sensor’ are necessary which have inter



Modeling Digital Enterprise Ecosystems 7

Fig. 3: Excerpt of the scenario model created with ArchiMate

alia the attributes ’communication protocol’, ’status’ as well as ’interface’. The
expressiveness of the ArchiMate interface class is limited. Due to the high level
of abstraction it is not clear if the interface is a hardware interface or a software
interface. For the purpose of our scenario, it would be necessary to describe in-
terfaces in more detail, e.g. by introducing a modeling class for expressing REST
interfaces. ArchiMate is continuously extended by introducing new elements -
in the current version 3.0, 56 different elements are existing4. However, due to
ArchiMates broad domain it is unfeasible to reach a semantic richness compared
to particularly designed domain-specific languages.

A major drawback of ArchiMate is that it does not foresee attributes of
modeling classes (except the name). So it is not possible to distinguish between
external and internal nodes to e.g. model the external cloud. From ArchiMate’s
point of view the ignorance of attributes is clear: attributes describe details of
classes. However, ArchiMate’s classes are generic which simply do not have any
details. Hence, all kinds of class-related information which would be appropriate
to be a class attribute have to be expressed as a separate modeling classes.

An exemplary list of domain-specific classes and attributes required for mod-
eling our scenario is shown in Table 2. This table is not a prime solution which
allows to model the described scenario adequately. Instead it should elaborate
that further modeling classes are necessary to model the scenario adequately.
For creating these additional modeling classes ArchiMate’s profiling and speci-
fication extension mechanisms can be used [31].

For fully leveraging the expressive power of ArichMate, a formal description
of how the model elements of different layers e.g. the application and technical
layer can be connected is necessary [5]. This is for example necessary to describe
that a certain sensor is used for an application which is executed for running

4 https://masteringarchimate.com/2016/06/26/archimate-3-0-the-good-the-bad-and-
the-ugly/ for a discussion



8 Pittl, Bork

a certain process step. Currently, the standard is very vague regarding such
inter-model connections. It describes for example that the interface model class
which belongs to the technology layer [...] can be accessed by other nodes or by
application components from the Application Layer.

Layer Class Attributes

Technology Layer Lock Sensor
Name, Communication protocol, Status,
Interface

Technology Layer GPS Sensor
Name, Communication protocol,
Precision, Interface

Technology Layer WebService Interface
Name, WebService type, Parameter,
Functional description

Technology Layer Cloud component Name, Service type

Application Layer Application Component
Name, Application type,
External/Internal component

Table 2: Additional/extended model classes including attributes

3.3 Design of a Domain-Specific Modeling Language

In this section an excerpt of a modeling language for the description of the use
case shown on the lower left corner of Figure 3 is introduced. The model elements,
its notation as well as its semantics are described in Table 3. In total the domain-
specific language contains three classes and one connector. For each of these
elements we described the semantics informally using natural language (following
the formalization framework as proposed by [5]). Additionally, we added the
corresponding ArchiMate modeling element - which we used for modeling the
use case in Figure 3 - as well as its semantics to the table. We took the semantic
description of the ArchiMate elements from the standard [31].

Concept ArchiMate Element Domain-Specific Element

Lock Sensor

A device is a physical IT resource upon
which system software and artifacts may
be stored or deployed for execution.

A lock sensor is a physical device in a
car for locking an unlocking it. It might
offer digital interfaces for controlling it.

GPS Sensor

A device is a physical IT resource upon
which system software and artifacts may
be stored or deployed for execution.

A GPS sensor is a physical device which
tracks the position. It might offer digital
interfaces for accessing the current
position.

Interface

A technology interface represents a
point of access where technology services
offered by a node can be accessed.

An interface represents a technical
interface (REST or SOAP) through
which other applications can
communicate, guide or control the
system which offers the interface.

OffersInter-
face

A path represents a link between two or
more nodes, through which these nodes
can exchange data or material.

The offersInterfaces connector is used by
sensors to describe that they offer an
interface.

Table 3: Comparison of the elements of the domain-specific language with the
corresponding elements in ArchiMate



Modeling Digital Enterprise Ecosystems 9

To emphasize that the domain-specific modeling language is not only the
introduction of a user-defined notation, we created an example which is depicted
in Figure 4. It shows the model layer as well as the metamodel layer from the
classical metamodeling stack (see e.g. [17] for more information). In the paper
at hand we analyzed ArchiMate and the domain-specific language. Excerpts
of their metamodels are shown on layer 2, the metamodel layer. On layer 1
there are two identical models which we created for a better readability of the
figure. With both metamodels we are able to create the model elements used
in the two models. From a syntactical point of view the introduced domain-
specific modeling language is similar to the excerpt created with ArchiMate.
The most obvious syntactical difference is that the domain-specific modeling
language distinguishes between two sensor classes - in ArchiMate we used the
device class for representing both sensors. Furthermore, as shown in Table 2 we
enriched e.g. the interface class with attributes.

While the syntax of the two languages is similar, a comparison of the semantic
description of the domain specific language and ArchiMate - see Table 3 - reveals
that their semantics is different. In the right model (referenced with 1 in Figure 4)
the sensors are represented by instances of the device class and the interfaces were
created by instancing the technology interface class. Thereby, the instances like
the GPS Sensor and the Lock Sensor inherit the semantics of the class Device.
The semantics gained through this kind of inheritance is known as the type
semantics [17]. As already described, the semantics of the classes in ArchiMate is
limited and consequently, the inherited semantics of the corresponding instances
is limited, too. Contrary, by using domain-specific languages the type semantics
is richer. This semantic richness comes at the price of limited applicability for
other domains. For example, the appliance of the previously introduced lock
sensor class is limited to cars.

We will further develop the introduced language within the Open Models
Initiative Laboratory (OMiLAB). OMiLAB is a research initiative for concep-
tualization, development, and deployment of modeling methods and the models
designed with them5. OMiLAB hosts already projects in domains such as se-
mantic alignment of models [13], multi-view modeling [7] and industry related
domain-specific modeling [8]. For more information about the OMiLAB please
see [19]. An overview of existing open modeling tools realized within the OMi-
LAB is given in [21].

4 Conclusion and Further Research

The trend towards a product-service driven economy leads to ecosystems where
enterprises are tightly connected with other stakeholders and service providers.
These connections lead to complex IT infrastructures that need to be integrated
and managed in a digital enterprise ecosystem. Existing enterprise modeling
methods have the problem that their expressiveness is limited. In this paper

5 http://www.omilab.org/psm/about



10 Pittl, Bork

Fig. 4: Excerpt of the scenario model created with ArchiMate

we elaborate this problem by developing a scenario in the mobility provision
domain. Based on the Car2Go scenario, we proposed domain-specific extensions
for ArchiMate in order to increase its expressiveness and adequacy. In our future
work we will develop a comprehensive digital enterprise ecosystem modeling
method within the Open Models Initiatve Laboratory (OMiLAB, www.omilab.
org). moreover, we plan to design and develop an open modeling tool to support
design and management of complex digital enterprise ecosystems. In this regard,
we plan to investigate how we can use the created models as a diagrammatic
source for knowledge engineering (cf. [9]).

Acknowledgement

Part of this research has been funded through the South Africa / Austria Joint
Scientific and Technological Cooperation program with the project number
ZA 11/2017.

References

1. Al-Fedaghi, S.: Enterprise architecture: An alternative to archimate con-
ceptualization. In: Silhavy, R., Silhavy, P., Prokopova, Z., Senkerik, R.,
Kominkova Oplatkova, Z. (eds.) Software Engineering Trends and Techniques in
Intelligent Systems: Proceedings of the 6th Computer Science On-line Conference
2017 (CSOC2017), Vol 3, pp. 68–77. Springer International Publishing, Cham
(2017)

2. Asghar, M.H., Negi, A., Mohammadzadeh, N.: Principle application and vision in
internet of things (iot). In: Computing, Communication & Automation (ICCCA),
2015 International Conference on. pp. 427–431. IEEE (2015)

3. Barbosa, O., Alves, C.: A systematic mapping study on software ecosystems. In:
Proceedings of the Third International Workshop on Software Ecosystems, Brus-
sels, Belgium, June 7th, 2011. pp. 15–26 (2011)

4. Bock, A., Frank, U.: Multi-perspective enterprise modeling - conceptual foundation
and implementation with adoxx. In: Karagiannis, D., Mayr, H.C., Mylopoulos, J.
(eds.) Domain-Specific Conceptual Modeling, Concepts, Methods and Tools, pp.
241–267. Springer (2016)



Modeling Digital Enterprise Ecosystems 11

5. Bork, D., Fill, H.G.: Formal aspects of enterprise modeling methods: a comparison
framework. In: System Sciences (HICSS), 2014 47th Hawaii International Confer-
ence on. pp. 3400–3409. IEEE (2014)

6. Bork, D.: A Development Method for the Conceptual Design of Multi-View Model-
ing Tools with an Emphasis on Consistency Requirements. Ph.D. thesis, University
of Bamberg (2015)

7. Bork, D.: Using conceptual modeling for designing multi-view modeling tools. In:
21st Americas Conference on Information Systems, AMCIS 2015, Puerto Rico,
August 13-15, 2015. Association for Information Systems (2015)

8. Buchmann, R.A.: Modeling Product-Service Systems for the Internet of Things:
The ComVantage Method. In: Karagiannis, D., Mayr, H.C., Mylopoulos, J. (eds.)
Domain-Specific Conceptual Modeling, pp. 417–437. Springer (2016)

9. Buchmann, R.A., Karagiannis, D.: Domain-specific diagrammatic modelling: a
source of machine-readable semantics for the internet of things. Cluster Computing
20(1), 895–908 (2017)

10. Chew, E.K.: Service innovation for the digital world. Enterprise Modelling and
Information Systems Architectures 9(1), 70–89 (2015)

11. Engelsman, W., Jonkers, H., Quartel, D.: Archimate R© extension for modeling and
managing motivation, principles, and requirements in togaf R©. White paper, The
Open Group (2011)

12. Ferstl, O.K., Sinz, E.J., Bork, D.: Tool support for the semantic object model. In:
Dimitris Karagiannis, Heinrich C. Mayr, J.M. (ed.) Domain-Specific Conceptual
Modeling, pp. 291–310. Springer (2016)

13. Fill, H.G.: Semantic evaluation of business processes using semfis. In: Dim-
itris Karagiannis, Heinrich C. Mayr, J.M. (ed.) Domain-Specific Conceptual Mod-
eling, pp. 149–170. Springer (2016)

14. Frank, U.: Multi-perspective enterprise modeling (memo) conceptual framework
and modeling languages. In: System Sciences, 2002. HICSS. Proceedings of the
35th Annual Hawaii International Conference on. pp. 1258–1267. IEEE (2002)

15. Gericke, A., Fill, H.G., Karagiannis, D., Winter, R.: Situational method engineering
for governance, risk and compliance information systems. In: Proceedings of the
4th international conference on design science research in information systems and
technology. p. 24. ACM (2009)

16. Haren, V.: TOGAF Version 9.1. Van Haren Publishing (2011)
17. Höfferer, P.: Achieving business process model interoperability using metamodels

and ontologies. In: ECIS. pp. 1620–1631 (2007)
18. Iacob, M.E., Jonkers, H., Lankhorst, M.M., Proper, H.A.: ArchiMate 1.0 Specifi-

cation. Zaltbommel: Van Haren Publishing (2009)
19. Karagiannis, D., Buchmann, R.A., Burzynski, P., Reimer, U., Walch, M.: Funda-

mental conceptual modeling languages in omilab. In: Dimitris Karagiannis, Hein-
rich C. Mayr, J.M. (ed.) Domain-Specific Conceptual Modeling, pp. 3–30. Springer
(2016)

20. Karagiannis, D., Kühn, H.: Metamodelling Platforms. In: Bauknecht, K., Tjoa,
A.M., Quirchmayr, G. (eds.) E-Commerce and Web Technologies, Third Interna-
tional Conference, EC-Web 2002, Aix-en-Provence, France, Proceedings. Lecture
Notes in Computer Science, vol. 2455, p. 182. Springer (2002)

21. Karagiannis, D., Mayr, H.C., Mylopoulos, J. (eds.): Domain-Specific Conceptual
Modeling, Concepts, Methods and Tools. Springer (2016), http://dx.doi.org/

10.1007/978-3-319-39417-6
22. Krogstie, J.: Modeling of digital ecosystems: Challenges and opportunities. In:

Working Conference on Virtual Enterprises. pp. 137–145. Springer (2012)



12 Pittl, Bork

23. Kurbel, K.E.: Developing Information Systems. Springer (2008)
24. Lankhorst, M.: Introduction to enterprise architecture. In: Enterprise Architecture

at Work, pp. 1–10. Springer (2013)
25. Liles, D.H., Presley, A.R.: Enterprise modeling within an enterprise engineering

framework. In: Proceedings of the 28th conference on Winter simulation. pp. 993–
999. IEEE Computer Society (1996)

26. Lyytinen, K., Rose, G.M.: The disruptive nature of information technology inno-
vations: the case of internet computing in systems development organizations. MIS
quarterly pp. 557–596 (2003)

27. Marshall, C.: Enterprise modeling with UML: designing successful software through
business analysis. Addison-Wesley Professional (2000)

28. Mertins, K., Jochem, R.: Integrated enterprise modeling: method and tool. ACM
SIGGROUP Bulletin 18(2), 63–66 (1997)

29. Mylopoulos, J.: Conceptual modelling and Telos. Conceptual Modelling,
Databases, and CASE: an Integrated View of Information System Development,
New York: John Wiley & Sons pp. 49–68 (1992)

30. Nachira, F., Dini, P., Nicolai, A.: A network of digital business ecosystems for
europe: roots, processes and perspectives. European Commission, Bruxelles, Intro-
ductory Paper (2007)

31. OpenGroup: Archimate standard (2016), http://pubs.opengroup.org/

architecture/archimate3-doc/toc.html, accessed: 2017-02-23
32. Panetto, H., Jardim-Goncalves, R., Molina, A.: Enterprise integration and net-

working: theory and practice. Annual Reviews in Control 36(2), 284–290 (2012)
33. Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M.: Enterprise modeling. Tackling

Business Challenges with the 4EM Method. Springer 309 (2014)


