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Abstract
In recent years it has become popular to study dynamic problems in a sensitivity setting: Instead
of allowing for an arbitrary sequence of updates, the sensitivity model only allows to apply batch
updates of small size to the original input data. The sensitivity model is particularly appealing
since recent strong conditional lower bounds ruled out fast algorithms for many dynamic problems,
such as shortest paths, reachability, or subgraph connectivity.

In this paper we prove conditional lower bounds for these and additional problems in a sensi-
tivity setting. For example, we show that under the Boolean Matrix Multiplication (BMM) con-
jecture combinatorial algorithms cannot compute the (4/3−ε)-approximate diameter of an undi-
rected unweighted dense graph with truly subcubic preprocessing time and truly subquadratic
update/query time. This result is surprising since in the static setting it is not clear whether
a reduction from BMM to diameter is possible. We further show under the BMM conjecture
that many problems, such as reachability or approximate shortest paths, cannot be solved faster
than by recomputation from scratch even after only one or two edge insertions. We extend our
reduction from BMM to Diameter to give a reduction from All Pairs Shortest Paths to Diameter
under one deletion in weighted graphs. This is intriguing, as in the static setting it is a big
open problem whether Diameter is as hard as APSP. We further get a nearly tight lower bound
for shortest paths after two edge deletions based on the APSP conjecture. We give more lower
bounds under the Strong Exponential Time Hypothesis. Many of our lower bounds also hold for
static oracle data structures where no sensitivity is required. Finally, we give the first algorithm
for the (1 + ε)-approximate radius, diameter, and eccentricity problems in directed or undirected
unweighted graphs in case of single edges failures. The algorithm has a truly subcubic running
time for graphs with a truly subquadratic number of edges; it is tight w.r.t. the conditional lower
bounds we obtain.
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1 Introduction

A dynamic algorithm is an algorithm that is able to handle changes in the input data: It
is given an input instance x and is required to maintain certain properties of x while x
undergoes (possibly very many) updates. For example, an algorithm might maintain a graph,
which undergoes edge insertions and deletions, and a query is supposed to the return the
diameter of the graph after the updates. Often dynamic algorithms are also referred to as
data structures. During the last few years strong conditional lower bounds for many dynamic
problems were derived (see, e.g., [36, 3, 27, 4, 21, 1, 32]), which rule out better algorithms
than simple recomputation from scratch after each update or before each query.

Partially due to this, in recent years it has become popular to study dynamic problems
in a more restricted setting that only allows for a bounded number of changes to the input
instance (see, for example, [37, 23, 10, 19], and the references in Table 4). These algorithms
are usually referred to as sensitivity1 data structures. The hope is to obtain algorithms in
the sensitivity setting which are faster than the conditional lower bounds for the general
setting.

More formally, a data structure with sensitivity d for a problem P has the following
properties: It obtains an instance p of P and is allowed polynomial preprocessing time on p.
After the preprocessing, the data structure must provide the following operations:

(Batch) Update: Up to d changes are performed to the initial problem instance p, e.g.,
d edges are added to or removed from p.

Query: The user queries a specific property about the instance of the problem after the
last update, e.g., the shortest path between two nodes avoiding the edges deleted in the last
update.

The parameter d bounding the batch update size is referred to as the sensitivity of the
data structure. Note that every batch update is performed on the original problem instance.

Thus, in contrast to “classic” dynamic algorithms (without sensitivity), a query only
reflects the changes made to p by the last batch update and not by previous batch updates.
As the size of a batch update is constrained to at most d, each query is executed on a graph
that differs from p by at most d edges. After a batch update an arbitrary number of queries
may be performed.

Some data structures (usually called oracles) combine a query and an update into a single
operation, i.e., the combined operation obtains an input tuple (Q,U), where Q is a query
and U is an update. A special case are static oracles, which have U = ∅. The conditional
lower bounds we derive in this paper also hold in this setting, since oracles with an efficient
combined operation can be used to solve sensitivity problems.

While some existing sensitivity data structures can preprocess the answers to all possible
updates and queries during their preprocessing time, this is not possible in general (due to
constraints in the preprocessing time and the fact that the number of possible updates/queries
grows exponentially in the parameter d). Hence, we still consider a sensitivity data structure
a dynamic (instead of static) algorithm.

1 Sometimes sensitivity data structures are also called “fault-tolerant” or “emergency planning” algorithms.
See Appendix A.2 for a discussion of terminology.

http://dx.doi.org/10.4230/LIPIcs...
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The Hypotheses.

We state the hypotheses on which we base the conditional lower bounds in this paper. By now
they are all considered standard in proving fine-grained reduction-based lower bounds. For a
more detailed description of the hypotheses, see, e.g., Abboud and Williams [3], Henzinger et
al. [27], and the references therein. As usual we work in the word-RAM model of computation
with word length of O(logn) bits. The hypotheses below concern the complexity of the
Boolean Matrix Multiplication (BMM), Satisfiability of Boolean Formulas in Conjunctive
Normal Form (CNF-SAT), All Pairs Shortest Paths (APSP), Triangle Detection and Online
Boolean Matrix Vector Multiplication (OMv) problems. Other popular hypotheses from
prior work consider other famous problems such as 3SUM and other sparsity regimes such as
triangle detection in very sparse graphs (see, e.g. [3]).

I Conjecture 1 (Impagliazzo, Paturi and Zane [29, 30]). The Strong Exponential Time
Hypothesis (SETH) states that for each ε > 0, there exists a k ∈ N, such that k-SAT cannot
be solved in time O(2n(1−ε) poly(n)).

I Conjecture 2. The Boolean Matrix Multiplication (BMM) conjecture states that for all
ε > 0, there exists no combinatorial algorithm that computes the product of two n×n matrices
in expected time O(n3−ε).

Note that BMM can be solved in truly subcubic using fast matrix multiplication (FMM):
the current fastest algorithms run in O(n2.373) time [41, 25]. However, algorithms using
FMM are not considered to be combinatorial. Formally, the term combinatorial algorithm
is not well-defined and it is common to rule out the use of FMM or other “Strassen-like”
methods in the design of such algorithms as most of them are not considered practical. True
combinatorial algorithms are not only considered practical but also easily extendable. For
instance, prior work on combinatorial BMM algorithms has almost always led to an algorithm
for APSP with similar running time (e.g. [5] and [17]).

One of the simplest graph problems is that of detecting whether the graph contains a
triangle, i.e., three nodes with all three edges between them. Itai and Rodeh [31] showed that
any algorithm for BMM can solve Triangle detection in the same time. Conversely, Vassilevska
Williams and Williams [42] showed that any truly subcubic combinatorial algorithm for
Triangle Detection can be converted into a truly subcubic combinatorial algorithm for BMM.
Hence, the BMM conjecture implies there is no truly subcubic combinatorial algorithm for
Triangle Detection. We use this fact and the resulting Triangle Conjecture that there is no
truly subcubic algorithm for Triangle Detection in our reductions based on BMM.

The following is a popular conjecture about the APSP problem.

I Conjecture 3. The APSP conjecture states that given a graph G with n vertices, m edges,
and edge weights in {1, . . . , nc} for some constant c, the All Pairs Shortest Paths problem
(APSP) cannot be solved in O(n3−ε) expected time for any ε > 0.

Similar to the relationship between BMM and Triangle Detection, [42] showed that there
is a triangle problem in weighted graphs, Negative Triangle, that is equivalent under subcubic
reductions to APSP. We use that problem in our reductions.

Our final conjecture concerns the online version of Boolean matrix vector product.

I Conjecture 4 (Henzinger et al. [27]). Let B be a Boolean matrix of size n × n. In the
Online Matrix-vector (OMv) problem, n binary vectors v1, . . . , vn of size n appear online
and an algorithm solving the problem must output the vector Bvi before the next vector vi+1
arrives.
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The OMv conjecture states that for all ε > 0 and after any polynomial time preprocessing
of B, it takes Ω(n3−ε) time to solve the OMv problem with error probability at most 1/3.

Most of the conjectures are stated w.r.t. expected time, i.e., the conjectures rule out
randomized algorithms. In case of dynamic algorithms using randomness, it is common to
argue if an oblivious or a non-oblivious adversary is allowed. Previous literature on conditional
lower bounds for dynamic algorithms did not explicitly state what kind of adversaries are
allowed for their lower bounds. We give a quick discussion of this topic in Appendix A.3.

Our Results.

In this paper we develop a better understanding of the possibilities and limitations of the
sensitivity setting by providing conditional lower bounds for sensitivity problems. We show
that under plausible assumptions for many dynamic graph problems even the update of only
one or two edges cannot be solved faster than by re-computation from scratch. See Table 2
and Table 3 in the Appendix for a list of all our conditional lower bounds for sensitivity data
structures, and our lower bounds for static oracles respectively. Table 1 gives explanations of
the problems. The abbreviations used in the tables are explained in its captions. We next
discuss our main results.

New reductions.

We give several new reductions for data structures with small sensitivity.
(1) We give a novel reduction from triangle detection and BMM to maintaining an

approximation of the diameter of the graph and eccentricities of all vertices, under a single
edge failure. This is particularly surprising because in the static case it is unknown how
to reduce BMM to diameter computation. Using the BMM conjecture this results in lower
bounds of n3−o(1) on the preprocessing time or of n2−o(1) update or query time for (4/3− ε)-
approximate decremental diameter and eccentricity in unweighted graphs with sensitivity 1,
i.e., when a single edge is deleted. Those results are tight w.r.t. the algorithm we present in
Section 5.

(2) A particular strength of BMM-based reductions is that they can very often be con-
verted into APSP-based lower bounds for weighted variants of the problems. APSP-based
lower bounds, in turn, no longer require the “combinatorial”-condition on the algorithms,
making the lower bounds stronger. We show how our BMM-based lower bounds for approx-
imate diameter with sensitivity 1 can be converted into an APSP-based lower bound for
diameter with sensitivity 1 in weighted graphs. In particular, we show that unless APSP has
a truly subcubic algorithm, any data structure that can support diameter queries for a single
edge deletion must either have essentially cubic preprocessing time, or essentially quadratic
query time. This lower bound is tight w.r.t. to a trivial algorithm using the data structure
of [10]. The APSP to 1-sensitive Diameter lower bound is significant also because it is a
big open problem whether in the static case Diameter and APSP are actually subcubically
equivalent (see e.g. [2]).

(3) We consider the problem of maintaining the distance between two fixed nodes s and
t in an undirected weighted graph under edge failures. The case of a single edge failure can
be solved in m edge, n node graphs with essentially optimal O(mα(n)) preprocessing time
and O(1) query time with an algorithm of Nardelli et al. [33]. The case of two edge failures
has been open for some time. We give compelling reasons for this by showing that under
the APSP conjecture, maintaining the s-t distance in an unweighted graph under two edge
failures requires either n3−o(1) preprocessing time or n2−o(1) query time. Notice that with no
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preprocessing time, just by using Dijkstra’s algorithm at query time, one can obtain O(n2)
query time. Similarly, one can achieve Õ(n3) preprocessing time and O(1) query time by
applying the single edge failure algorithm of [33] n times at preprocessing, once for G \ {e}
for every e on the shortest st path. Thus our lower bound shows that under the APSP
conjecture, the naive recomputation time is essentially optimal.

(4) We show lower bounds with sensitivity d for deletions-only and insertions-only
(2− ε)-approximate single source and (5/3− ε)-approximate st-shortest paths in undirected
unweighted graphs, as well as for weighted bipartite matching problems under the OMv
conjecture. The lower bounds show that with polynomial in n preprocessing either the
update time must be super-polynomial in d or the query time must be d1−o(1).

New upper bounds.

We complement our lower bounds with an algorithm showing that some of our lower bounds
are tight: In particular, we present a deterministic combinatorial algorithm that can compute
a (1 + ε)-approximation (for any ε > 0) for the eccentricity of any given vertex, the radius
and the diameter of a directed or undirected unweighted graph after single edge failures. The
preprocessing time of the data structure is Õ(mn+ n1.5

√
Dm/ε), where D is the diameter

of the graph and m and n are the number of edges and vertices; the query time is constant.
Since D ≤ n, the data structure can be preprocessed in time Õ(n2

√
m/ε). In particular, for

sparse graphs with m = Õ(n), it takes time Õ(n2.5ε−
1
2 ) to build the data structure. Our

lower bounds from BMM state that even getting a (4/3 − ε)-approximation for diameter
or eccentricity after a single edge deletion requires either n3−o(1) preprocessing time, or
n2−o(1) query or update time. Hence, our algorithm’s preprocessing time is tight (under the
conjecture) since it has constant time queries.

Conditional Lower Bounds based on modifications of prior reductions.

Some reductions in prior work [42, 3] only perform very few updates before a query is
performed or they can be modified to do so. After the query, the updates are “undone” by
rolling back to the initial instance of the input problem. Hence, some of their reductions also
hold in a sensitivity setting. Specifically we achieve the following results in this way:

(1) Based on the BMM conjecture we show that for reachability problems with st-queries
already two edge insertions require n3−o(1) preprocessing time or n2−o(1) update or query
time; for ss-queries we obtain the same bounds even for a single edge insertion. This lower
bound is matched by an algorithm that recomputes at each step.

(2) We present strong conditional lower bounds for static oracle data structures. We show
that under the BMM conjecture, oracle data structures that answer about the reachability
between any two queried vertices cannot have truly subcubic preprocessing time and truly
subquadratic query time. This implies that combinatorial algorithms either essentially need
to compute the transitive closure matrix of the graph during the preprocessing time or
essentially need to traverse the graph at each query. We show the same lower bounds for
static oracles that solve the (5/3− ε)-approximate ap-shortest paths problem in undirected
unweighted graphs. This shows that we essentially cannot do better than solving APSP in
the preprocessing or computing the distance in each query.

(3) The subcubic equivalence between the replacement paths problem and APSP [42]
immediately leads to a conditional lower bound for s-t distance queries with sensitivity 1
in directed, weighted graphs. Our lower bound for s-t distance queries with sensitivity 2 in
undirected graphs is inspired by this reduction. The lower bound for sensitivity 1 is matched
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by the algorithm of Bernstein and Karger [10].
Similarly, a reduction from BMM to replacement paths in directed unweighted graphs

from [42] shows that the O(m
√
n) time algorithm of Roditty and Zwick [38] is optimal among

all combinatorial algorithms, for every choice of m as a function of n. It also immediately
implies that under the BMM conjecture, combinatorial s-t distance 1-sensitivity oracles
in unweighted graphs require either mn0.5−o(1) preprocessing time or m/n0.5+o(1) query
time, for every choice of m as a function of n; this is tight due to Roditty and Zwick’s
algorithm. (The combinatorial restriction is important here as there is a faster Õ(n2.373) time
non-combinatorial algorithm for replacement paths [40] and hence for distance sensitivity
oracles in directed unweighted graphs.)

(4) We additionally provide new lower bounds under SETH: We show that assuming
SETH the #SSR problem cannot be solved with truly subquadratic update and query times
when any constant number of edge insertions is allowed; this matches the lower bound
for the general dynamic setting. For the ST -reachability problem and the computation of
(4/3− ε)-approximate diameter we show that under SETH truly sublinear update and query
times are not possible even when only a constant number of edge insertions are supported.
The sensitivity of the reductions is a constant K(ε, t) that is determined by the preprocessing
time O(nt) we allow and some properties of the sparsification lemma [30]. Notice that while
the constant K(ε, t) depends on the preprocessing time and the constant in the sparsification
lemma, it does not depend on any property of the SAT instance in the reduction. See
Section 4 for a thorough discussion of the parameter K(ε, t). The lower bound for #SSR
shows that we cannot do better than recomputation after each update.

(5) Using a reduction from OMv we show lower bounds with sensitivity d for deletions-
only or insertions-only st-reachability, strong connectivity in directed graphs. The lower
bounds show that with polynomial in n preprocessing either the update time must be
super-polynomial d or the query time must be Ω(d1−ε).

Related Work.

In the last few years many conditional lower bounds were derived for dynamic algorithms.
Abboud and Williams [3] gave such lower bounds under several different conjectures. New
lower bounds were given by Henzinger et al. [27], who introduced the OMv conjecture, and
by Abboud, Williams and Yu [4], who stated combined conjectures that hold as long as
either the 3SUM conjecture or SETH or the APSP conjecture is correct. Dahlgaard [21]
gave novel lower bounds for partially dynamic algorithms. Abboud and Dahlgaard [1] showed
the first hardness results for dynamic algorithms on planar graphs and Kopelowitz, Pettie
and Porat [32] gave stronger lower bounds from the 3SUM conjecture. However, none of the
lower bounds mentioned in the above papers explicitly handled the sensitivity setting.

During the last decade there have been many new algorithms designed for the sensitivity
setting. In Section A.5 we give a short discussion summarizing many existing algorithms.

2 Lower Bounds From Boolean Matrix Multiplication

The following theorem summarizes the lower bounds we derived from the BMM conjecture.

I Theorem 5. Assuming the BMM conjecture, combinatorial algorithms cannot solve the
following problems with preprocessing time O(n3−ε), and update and query times O(n2−ε)
for any ε > 0:
1. incremental st-reachability with sensitivity 2,
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2. incremental ss-reachability with sensitivity 1,
3. static ap-reachability,
4. (7/5− ε)-approximate st shortest paths in undirected unweighted graphs with sensitivity 2,
5. (3/2− ε)-approximate ss shortest paths in undirected unweighted graphs with sensitivity

1,
6. static (5/3− ε)-approximate ap shortest paths
7. decremental (4/3− ε)-approx. diameter in undirected unweighted graphs with sensitivity

1,
8. decremental (4/3− ε)-approx. eccentricity in undirected unweighted graphs with sensitivity

1.
Additionally, under the BMM conjecture, decremental st-shortest paths with sensitivity 1
in directed unweighted graphs with n vertices and m ≥ n edges require either m1−o(1)√n
preprocessing time or m1−o(1)/

√
n query time for every function m of n.

A strength of the reductions from BMM is that they can usually be extended to provide
APSP-based reductions for weighted problems without the restriction to combinatorial
algorithms; we do this in Section 3. While we state our results in the theorem only for
combinatorial algorithms under the BMM conjecture, we would like to point out that they
also hold for any kind of algorithm under a popular version of the triangle detection conjecture
for sparse graphs that states that finding a triangle in an m-edge graph requires m1+δ−o(1)

time for some δ > 0. Our lower bounds then rule out algorithms with a preprocessing time
of O(m1+δ−ε) and update and query times O(m2δ−ε) for any ε > 0.

Many of the bullets of the theorem follow from prior work via a few observations, which
we discuss in Appendix A.6. Our results on decremental diameter and eccentricity, however,
are completely novel. In fact, it was completely unclear before this work whether such results
are possible. Impagliazzo et al. [16] define a strengthening of SETH under which there can be
no deterministic fine-grained reduction from problems such as APSP and BMM to problems
such as orthogonal vectors or diameter in sparse graphs. It is not clear whether a reduction
from BMM to diameter in dense graphs is possible, as the same “quantifier issues” that
arise in the sparse graph case arise in the dense graph case as well: Diameter is an ∃∀-type
problem (i.e., do there exist two nodes such that all paths between them are long?), and
BMM is equivalent to Triangle detection which is an ∃-type problem (i.e., do there exist
three nodes that form a clique?).

Decremental Diameter.

We give the reduction from BMM to decremental diameter in undirected unweighted graphs
with sensitivity 1. Note that the lower bound also holds for eccentricity oracles: Instead of
querying the diameter n times, we can query the eccentricity of a variable vertex n times.

Let G = (V,E) be an undirected unweighted graph for Triangle Detection. We construct
a graph G′ as follows.

We create four copies of V denoted by V1, V2, V3, V4, and for i = 1, 2, 3, we add edges
between nodes ui ∈ Vi and vi+1 ∈ Vi+1 if (u, v) ∈ E. We create vertices av and bv for each
v ∈ V , and denote the set of all av by A and the set of all bv by B. We connect the vertices
in A to a clique and also those of B. For each v ∈ V , we add an edge (v1, av) and an edge
(av, bv). A node bv is connected to all vertices in V4. We further introduce two additional
vertices c, d, which are connected by an edge. We add edges between c and all nodes in V2
and V3, and between d and all nodes in V3 and V4. The node c has an edge to each vertex in
A and the node d has an edge to each vertex in B. Notice that the resulting graph has O(n)
vertices and O(n2) edges. We visualized the graph in Figure 2 in the appendix.



XX:8 Conditional Hardness for Sensitivity Problems

Note that even without the edges from B × V4, no pair of nodes has distance larger than
3, except for pairs of nodes from V1 × V4. If a node v participates in a triangle in G, then in
G′ there is a path of length 3 from v1 to v4 without an edge from B × V4. Otherwise, there
is no such path, i.e., the diameter increases to 4 after the deletion of (bv, v4).

We perform one stage per vertex v ∈ V : Consider the copy v4 ∈ V4 of v. We remove the
edge (bv, v4) and query the diameter of the graph. We claim that G has a triangle iff one of
the queries returns diameter 3.

I Lemma 6. For each vertex v in G, the diameter of G′ \ {(bv, v4)} is larger than 3 if and
only if v does not participate in a triangle in G.

Proof. Assume that G has a triangle (v, u, w) ∈ V 3 and consider the stage for v. Notice
that only the shortest paths change that used edge (bv, v4); this is not the case for any z 6= v,
because the path z1 → az → bz → z4 is not affected by the edge deletion. We only need to
consider the path v1 → av → bv → v4. Since G has a triangle (v, u, w), there exists the path
v1 → u2 → w3 → v4 of length 3 as desired. Hence, the diameter is 3.

Assume the query in the stage for vertex v ∈ V returned diameter 3. Since we deleted
the edge (bv, v4), there is no path of length 3 from v1 to v4 via A and B. Hence, the new
shortest path from v1 to v4 must have the form v1 → u2 → w3 → v4. By construction of the
graph, this implies that G has a triangle (v, u, w). J

Altogether we perform n queries and n updates. Thus under the BMM conjecture any
combinatorial algorithm requires n3−o(1) preprocessing time or n2−o(1) update or query time.

3 Sensitivity Lower Bounds from the APSP Conjecture

In this section we present new lower bounds based on the APSP conjecture. These lower
bounds hold for arbitrary, not necessarily combinatorial, algorithms. We present our results
in the following theorem and give the proofs in Appendix A.7.

I Theorem 7. Assuming the APSP conjecture, no algorithms can solve the following problems
with preprocessing time O(n3−ε), and update and query times O(n2−ε) for any ε > 0:
1. Decremental st-shortest paths in directed weighted graphs with sensitivity 1,
2. decremental st-shortest paths in undirected weighted with sensitivity 2,
3. decremental diameter in undirected weighted graphs with sensitivity 1.

Decremental st-shortest paths in directed weighted graphs with sensitivity 1.

In 2010, Vassilevska Williams and Williams [42] showed that the so called Replacement
Paths (RP) problem is subcubically equivalent to APSP. RP is defined as follows: given
a directed weighted graph G and two nodes s and t, compute for every edge e in G, the
distance between s and t in G \ {e}. Note that only the deletion of the at most n− 1 edges
on the shortest path from s to t affect the distance from s to t. This has an immediate
implication for 1-sensitivity oracles for st-shortest paths: The APSP conjecture would be
violated by any 1-sensitivity oracle that uses O(n3−ε) preprocessing time and can answer
distance queries between two fixed nodes s and t with one edge deletion in time O(n2−ε) for
any ε > 0.
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Decremental st-shortest paths in undirected weighted with sensitivity 2.

With this we are able to show that on undirected weighted graphs finding a shortest path
between fixed s and t with 2 edge deletions cannot be done with truly sub-cubic preprocessing
time and truly subquadratic query time assuming the APSP conjecture. This is surprising
because in the case of a single edge failure Nardelli et al. [33] show that shortest paths can be
solved with an essentially optimal O(mα(n)) preprocessing time and O(1) query time. Thus,
assuming the APSP conjecture we show a separation between 1 sensitivity and 2 sensitivity.
Additionally, with sensitivity 2 and no preprocessing time O(n2) update time is achievable,
and with Õ(n3) preprocessing time using Nardelli et al. we can get an O(1) query time.
Thus, we show these approaches are essentially tight assuming the APSP conjecture. The
full reduction is in Appendix 3.

Decremental diameter in undirected weighted graphs with sensitivity 1.

A nice property of BMM-based reductions is that they can very often be converted to
APSP-based reductions to weighted versions of problems. Here we convert our BMM-based
reduction for decremental 1-sensitive Diameter to a reduction from APSP into decremental
1-sensitive diameter in undirected weighted graphs. Note that, as in the BMM case we can
get the same lower bounds for eccentricity.

4 SETH Lower Bounds with Constant Sensitivity

In this section, we prove conditional lower bounds with constant sensitivity from SETH.
Before we give the reductions, we first argue about what their sensitivities are.

I Theorem 8. Let ε > 0, t ∈ N. The SETH implies that there exists no algorithm with
preprocessing time O(nt), update time u(n) and query time q(n), such that max{u(n), q(n)} =
O(n1−ε) for the following problems:
1. Incremental #SSR with constant sensitivity K(ε, t),
2. (4/3− ε)-approximate incremental diameter with constant sensitivity K(ε, t),
3. incremental ST-Reach with constant sensitivity K(ε, t).

We prove the theorem in Appendix A.8. The parameter K(ε, t) is explained in the following
paragraph*.

The Sensitivity of the Reductions.

The conditional lower bounds we prove from SETH hold even for constant sensitivity; however,
the derivation of these constants is somewhat unnatural. Nonetheless, we stress that our lower
bounds hold for constant sensitivity and in particular for every algorithm with sensitivity
ω(1).

To derive the sensitivity of our reductions, we use a similar approach as Proposition 1 in
[3], but we need a few more details. We start by revisiting the sparsification lemma.

I Lemma 9 (Sparsification Lemma, [30]). For ε > 0 and k ∈ N, there exists a constant
C = C(ε, k), such that any k-SAT formula F with ñ variables can be expressed as F =

∨l
i=1 Fi,

where l = O(2εñ) and each Fi is a k-SAT formula with at most Cñ clauses. This disjunction
can be computed in time O(2εñ poly(ñ)).
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We set C(ε) to the smallest C(ε, k), over all k such that k-SAT cannot be solved faster
than in O∗(2(1−ε)ñ) time2; formally, C(ε) = min{C(ε′, k) : ε′ < ε and k ∈ N with k-SAT 6∈
O∗(2(1−ε′)ñ)}. Note that C(ε) is well-defined if we assume that SETH is true (see also
Proposition 1 in [3]). Finally, for any ε > 0 and t ∈ N, we set K(ε, t) = C(ε) · t/(1 − ε),
which gives the sensitivity of our reductions.

In our reductions, t ∈ N is the exponent of the allowed preprocessing time and ε > 0
denotes the improvement in the exponent of the running time over the 2n-time algorithm.
We note that K(ε, t) gives a tradeoff: For small t (i.e., less preprocessing time), the lower
bounds hold for smaller sensitivities; a smaller choice of ε yields larger sensitivities.

In the reductions we will write K to denote K(ε, t) and c to denote C(ε, k) whenever it
is clear from the context.

The Reductions.

Our reductions are conceptually similar to the ones in [3], but the graph instances we
construct are based on a novel idea to minimize the size of the batch updates we need to
perform. Here we describe the construction of the graphs we use in the reductions and refer
to Appendix A.8 for full proofs.

We give two graphs, Hδ and Dδ, for δ ∈ (0, 1). For the construction, let F be a SAT
formula over a set V of ñ variables and c · ñ clauses. Let U ⊂ V be a subset of δñ variables.

Construction of Hδ: For each partial assignment to the variables in U we introduce a
node. The set of these nodes is denoted by Ū . For each clause of F we introduce a node and
denote the set of these nodes by C. We add an edge between a partial assignment ū ∈ Ū
and a clause c ∈ C if ū does not satisfy c. Observe that Hδ has O(2δñ) vertices and O∗(2δñ)
edges.

Construction of Dδ: We partition the set of clauses C into K = c/δ groups of size δñ
each and denote these groups by G1, . . . , GK . For all groups Gi, we introduce a vertex into
the graph for each non-empty subset g of Gi. The edges to and from the nodes of Dδ will be
introduced during reductions. Observe that for each group we introduce O(2δñ) vertices and
Dδ has O(K · 2δñ) vertices in total.

Our reductions have small sensitivity since we will only need to insert a single edge from
Hδ to each group of clauses in Dδ. Hence, we only need to insert K = O(1) edges in order
to connect Hδ and Dδ at each stage in the reduction. However, we will need to argue how
we can efficiently pick the correct sets in Dδ.

5 Diameter Upper Bound

In this section, we present deterministic algorithms, which can compute a (1+ε)-approximation
for the eccentricity, the radius and the diameter of directed and undirected unweighted graphs
after single edge deletions. All of these algorithms run in time truly subcubic time for graphs
with a truly subquadratic number of edges.

Bernstein and Karger [10] give an algorithm for the related problem of all-pairs shortest
paths in a directed weighted graph G = (V,E) in case of single edge deletions. Their oracle
data structure requires Õ(mn) preprocessing time. Given a triplet (u, v, e) ∈ V 2 × E, the
oracle can output the distance from u to v in G \ e in O(1) time.

2 The O∗(·) notation hides poly(ñ) factors.
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For the diameter problem with single edge deletions, note that only deletions of the edges
in the shortest paths trees can have an effect on the diameter. Using this property, a trivial
algorithm to compute the exact diameter after the deletion of a single edge works as follows:
Build the oracle data structure of Bernstein and Karger [10]. For each vertex v, consider
its shortest paths tree Tv. Delete each tree-edge once and query the distance from v to u
in G \ e for all vertices u in the subtree of the deleted tree-edge. By keeping track of the
maximum distances, the diameter of G after a single edge deletion is computed exactly. As
there are n− 1 edges in Tv, we spend O(n2) time for each vertex. Thus, the trivial algorithm
requires O(n3) time.

In this section, we improve upon this result as follows.

I Theorem 10. Let G = (V,E) be a directed or undirected unweighted graph with n vertices
and m edges, let ε > 0, and let D be the diameter of G. There exists a data structure that
given a single edge e ∈ E returns for G \ e in constant time (1) the diameter, (2) the radius,
and (3) the eccentricity of any vertex v ∈ V within an approximation ratio of 1 + ε. It takes
Õ(n1.5

√
Dm/ε+mn) preprocessing time to build this data structure.

The rest of this section is devoted to the proof of the theorem. We give the proof of the
theorem for directed graphs and point out the same proof also works for undirected graphs.
We first describe how we can answer queries for the eccentricity of a fixed vertex v ∈ V
after a single edge deletion. After this, we explain how to extend this algorithm to solve the
diameter and the radius problems after single edge deletions, and analyse the correctness
and running time of the algorithm.

The data structure preprocesses the answers to all queries. Then queries can be answered
via table lookup in O(1) time.

Preliminaries.

Let G = (V,E) be a directed unweighted graph. For two vertices u, u′ ∈ V we denote the
distance of u and u′ in G by dG(u, u′). For an edge e ∈ E and vertices u, u′ ∈ V , we denote
the distance in the graph G \ e by dG\e(u, u′). Given a tree T with root v and a tree-edge
e ∈ T , we denote the subtree of T that is created when e is removed from T and that does
not contain v by Te. We let de be the height of Te. A node u in T has level i, if dG(v, u) = i.

Let F ∈ N be some suitably chosen parameter (see the last paragraph* of this section).
Then given a tree T with root v, we call a tree-edge e high, if both of its endpoints have level
less than F from v; we call all other edges low. We denote the set of all high edges by T<,
i.e., T< = {e = (w,w′) ∈ T : dG(v, w) < F, dG(v, w′) < F}; the set of all low edges is given
by T>.

The Algorithm.

Our data structure preprocesses the answers to all queries, and then queries can be answered
via table lookup in O(1) time. The preprocessing has three steps: First, in the initialization
phase, we compute several subsets of vertices that are required in the next steps. Second, we
compute the eccentricity of v after the deletion of a high edge exactly. We compute it exactly,
since after the deletion of a tree-edge high up in the shortest path tree Tv of v, the nodes
close to v in Tv might “fall down” a lot. This possibly affects all vertices in the corresponding
subtrees and, hence, we need to be careful which changes occur after deleting a high edge.
On the other side, the relative distance of nodes which are “far away” from v in G before
any edge deletion cannot increase too much. Thus, we simply estimate their new distances
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in the third step. More precisely, in the third step we compute a (1 + ε)-approximation of
the eccentricity of v after the deletion of a low edge.

Step 1: Initialization. We build the data structure of Bernstein and Karger [10], in mn
time which for each triplet (u, v, e) can answer queries of the form dG\e(u, v) in O(1) time.

We compute the shortest path tree T = Tv of v in time O(nm) and denote its depth
by dv. By traversing T bottom-up, we compute the height de of the subtree Te for each
tree-edge e; this takes time O(n). We further construct the sets T< and T> of high and low
tree-edges, respectively.

Fix ε > 0. We construct a set Sv ⊂ V as follows: First add v to Sv. Then add each
u ∈ V which has the following two properties: (1) u is at level iεF for some integer3 i > 0
and (2) there exists a node u′ in the subtree of u in Tv, such that u′ has distance εF/2 in
Tv from u. Note that we can add the root, but every other node we add can be charged to
the εF/2 parent nodes that come before it. Thus, we can have at most 1 + 2n

εF nodes in Sv.
Note that for every z ∈ V there exists a y ∈ Sv, s.t. y is an ancestor of z in Tv and there
exists a path from y to z in Tv of length at most εF .

Using a second bottom-up traversal of T , for each tree-edge e ∈ T , we compute the set
Se = Te ∩ Sv, i.e., the intersection of the vertices in Te and those in Sv. This can be done in
O(n) time by, instead of storing Se explicitly for each edge e = (w,w′), storing a reference
to the set containing the closest children of w′ which are in Sv; then Se can be constructed
in O(|Se|) time by recursively following the references.

For each non-tree-edge e, we store dv as the value for the eccentricity of v when e is
deleted.

Step 2: Handling high edges. For each level j = 1, . . . , F − 1, we proceed as follows. We
consider each tree-edge e = (w,w′) ∈ T< with d(v, w) < d(v, w′) = j, there are at most n of
these. We build a graph Ge containing all nodes of Te together with a additional directed
path P of length de+4 with startpoint r. The nodes in P are new vertices added to Ge. Each
edge on P has weight 1, except the single edge incident to r, which has weight dG(v, w′)− 1.
Additionally to the path, the graph contains as edges: (1) all edges from E, which have both
endpoints in Te, and (2) for each e = (z, z′) which has its startpoint z 6∈ Te and its endpoint
z′ ∈ Te, an edge (z′′, z′), where z′′ is the node on P with distance dG(v, z) from r.

Observe that Ge has the property that all distances after the deletion of e are maintained
exactly: By construction, the shortest path from r to u ∈ Te in Ge has exactly length
dG\e(v, u) (we prove this formally in Lemma 11).

After building Ge, we compute its depth starting from node r and store this value for
edge e.

Step 3: Handling low edges. For each tree-edge e = (w,w′) ∈ T>, we do the following: Let
S = Se ∪ {w′}. As answer for a deleted edge e, we store max{dv, (1 + ε) maxy∈S dG\e(v, y)}.
To determine dG\e(v, y), we use the data structure of [10].

Extension to (1+ε)-approximate Diameter and Radius. We repeat the previously described
procedure for all v ∈ V (but we build the data structure for Bernstein and Karger only once).
To compute the diameter, we keep track of the maximum value we encounter for each deleted
edge e. To compute the radius, we keep track of the minimum value we encounter for each
deleted edge e.

3 For readability we leave out the floors, however, we are considering the integer levels biεF c.
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Correctness.

Observe that it is enough to show correctness for a fixed v ∈ V . We first prove the correctness
of the algorithm after removing high edges.

I Lemma 11. After the deletion of a high edge e ∈ T<, we compute the eccentricity of v
exactly.

Proof. Consider any vertex u ∈ Te and consider the shortest path p from v to u in G \ e.
We can assume that p has exactly one edge (z, z′), s.t. z 6∈ Te and z′ ∈ Te: Assume that

there is a path p′ with two edges (x, x′) and (y, y′), s.t. x, y 6∈ Te, x′, y′ ∈ Te and y appears
later on p′ than x. Since y 6∈ Te, there exists a path from v to y that does not use any vertex
from Te and that is of the same length as the subpath of p′ from v to y in T , because T is a
shortest-path tree with root v. Hence, we can choose a path to y without entering Te.

Let z, z′ be as before. Then dG\e(v, u) = dG\e(v, z) + 1 + dG(z′, u). By construction of
Ge, there exists a vertex on P in Ge with distance dG\e(v, z) from r and which has an edge
to z′. All paths which only traverse vertices from Te are unaffected by the deletion of e.
Hence, in Ge there exists a path of length dG\e(u, v).

Also, there is no shorter path in Ge from r to u, because this would imply a shorter path
in G \ e by construction. J

Next we prove the correctness of the algorithm after the removal of low edges. Consider
a tree-edge e = (w,w′) ∈ T> with F ≥ d(v, w′) > d(v, w). Let S = Se ∪ {w′}.

I Lemma 12. For each node z ∈ Te, there exists a vertex y ∈ S s.t. dG\e(y, z) ≤ εF .

Proof. Since w′ ∈ S, the claim is true for all nodes z ∈ Te with d(w′, z) ≤ εF . By
construction of Sv, any (directed) tree path of length εF contains a node of Sv. For any
node z ∈ Te with d(w′, z) > εF , there exists an ancestor u of z in Te with d(u, z) ≤ εF . The
path from u to z is a directed tree path and, thus, must contain a node in Sv. Thus, for each
node in Te there is a path of length at most εF from some node in Sv. J

I Lemma 13. Consider two vertices y, z ∈ Te and assume there exists a path from y to z in
G \ e. Then dG\e(y, z) ≤ X implies dG\e(v, z) ≤ dG\e(v, y) +X.

Proof. Concatenate the shortest paths from v to y in G \ e and from y to z in G \E, which
both avoid e. This path cannot be shorter than the shortest path from v to z in G \ e. J

We define the maximum height achieved by the vertices of Te in G \ e by

n(v, e) = max
z∈Te

dG\e(v, z).

Notice that the eccentricity of v in G \ e is given by max{dv, n(v, e)}. Hence, by giving a
(1 + ε)-approximation of n(v, e), we obtain a (1 + ε)-approximation for the eccentricity of v
in G \ e. In the remainder of this subsection, we show this guarantee on the approximation
ratio of n(v, e).

I Lemma 14. n(v, e) ≤ (1 + ε) maxy∈S dG\e(v, y).
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Proof. Let z′ be any vertex in Te such that dG\e(v, z′) = n(v, e). By Lemma 12 there exists
a vertex y′ ∈ S with dG\e(y′, z′) ≤ εF . Then by Lemma 13,

n(v, e) = dG\e(z′, v)
≤ dG\e(v, y′) + εF

≤ max
y∈S

dG\e(v, y) + εdG(v, w′)

≤ (1 + ε) max
y∈S

dG\e(v, y),

where in the second last step we used F ≤ dG(v, w′) and in the last step we used that
w′ ∈ S. J

I Lemma 15. (1 + ε) maxy∈S dG\e(v, y) ≤ (1 + ε)n(v, e).

Proof. This follows from the definition of n(v, e), since S is a subset of the vertices in Te. J

Running Time Analysis.

Let us first consider the time spent on step 1, preprocessing. We build the data structure of
Bernstein and Karger [10] in time Õ(mn). For each node v, computing the shortest path
tree of v takes time Õ(m) and we spend time O(n) computing the heights of the subtrees of
T and computing the sets T<, T>, Sv. The sets Se can as well be computed in O(n) time by
storing them only implicitly.

Now let us consider the time spent on step 2, the high edges. For the high edges e at
level j ≤ F , observe that the trees Te are mutually disjoint. Hence, for a fixed level j, in
time Õ(m) we can compute the depths of all graphs Ge with e at level j. Since we have to
do this for each level less than F , the total time for this step is Õ(Fm).

Finally, let us consider the time spent on step 3, the low edges. For all low edges at level
j > F , we query all nodes of Sv with height more than j. These are O( n

εF ) many such nodes.
Thus, the total time we spend for all edges in T is O(dv · nεF ).

To compute the diameter, we have to execute the above steps once for each v ∈ V , but
we only need to build the data structure of Bernstein and Karger once. Hence, the total
time is Õ(mn+ Fmn+ ndv · nεF ). Denote the diameter of G by D. Then setting F =

√
Dn
εm

yields a total running time of Õ(n1.5
√
Dm/ε+mn). Since D ≤ n, this is Õ(n2

√
m/ε).
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A Appendix

A.1 Definitions of the Problems

We give definitions of the problems we consider in this paper in Table 1.

A.2 A Note on Terminology

The terminology used in the literature for dynamic data structures in the spirit of Section 1 is
not consistent. The phrases which are used contain “fault-tolerant algorithms”, “algorithms
with sensitivity”, “algorithms for emergency planning” and “algorithms for failure prone
graphs”.

In the community of spanners and computational graph theory, it is common to speak
about “fault-tolerant subgraphs”. In this area, this term is used consistently.

In the dynamic graph algorithms community, multiple phrases have been used to describe
algorithms for the model proposed in Section 1. First, the field was introduced by [37] as
algorithms for “emergency planning”. Later, the terminologies “sensitivity” and “failure prone
graphs” were used (e.g., [19, 18, 23, 24]). When the number of failures in the graph was fixed
(e.g. 1 or 2), then often this was stated explicitly (without further mentioning sensitivity or
failure prone graphs). However, it appears that in the dynamic graph algorithms community
the phrase “sensitivity” is the most widely used one.
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Problem
Maintain Update Query

Reachability
Directed graph Edge insertions/deletions Given two vertices u, v,

can v be reached from u?
#SSR

Directed graph and a fixed Edge insertions/deletions How many vertices can be
source vertex s. reached from s?

Strong Connectivity (SC)
Directed graph Edge insertions/deletions Is the graph strongly connected?

2 Strong Components (SC2)
Directed graph Edge insertions/deletions Are there more than 2 SCCs?

2 vs k Strong Components (AppxSCC)
Directed graph Edge insertions/deletions Is the number of SCCs 2

or more than k?
Maximum SCC Size (MaxSCC)

Directed graph Edge insertions/deletions What is the size of the
largest SCC?

Subgraph Connectivity
Fixed undirected graph, Turn on/off vertex Given two vertices u, v,
with some vertices on and are u and v connected by a path

some off. only traversing vertices that are on?
α-approximate Shortest Paths

Directed or undirected Edge insertions/deletions Given two vertices u, v,
(possibly weighted) graph return an α-approximation of the

length of the shortest path from u to v.
α-approximate Eccentricity

Undirected graph Edge insertions/deletions Given a vertex u,
return an α-approximation of the

eccentricity of v.
α-approximate Radius

Undirected graph Edge insertions/deletions Return an α-approximation of the
radius of the graph.

α-approximate Diameter
Undirected graph Edge insertions/deletions Return an α-approximation of the

diameter of the graph.
Bipartite Perfect Matching (BPMatch)

Undirected bipartite graph Edge insertions/deletions Does the graph have a
perfect matching?

Bipartite Maximum Weight Matching (BWMatch)
Undirected bipartite graph Edge insertions/deletions Return the weight of the
with integer edge weights maximum weight perfect matching.
Table 1 The problems we consider in this paper.
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A.3 A Note on Adversaries
Some of the conditional lower bounds we obtain are for randomized algorithms. Previous
literature [3, 27, 32] also gave conditional lower bounds for randomized dynamic algorithms;
however, it was not discussed under which kind of adversary the obtained lower bounds
hold. This depends on the conjecture from which the lower bound was obtained. We observe
that in reductions from the static triangle problem, the only randomness is over the input
distribution of the static problem. Hence, for lower bounds from the triangle conjecture,
we can assume an oblivious adversary. Furthermore, we assume the OMv conjecture in its
strongest possible form, i.e. for oblivious adversaries. (In [27] the authors did not explicitly
state which kind of adversary they assume for their conjecture.) Thus, all conditional lower
bounds we obtain for randomized algorithms hold for oblivious adversaries. Note that a
lower bound which holds for oblivious adversaries must always hold for non-oblivious ones.

We would like to point out another subtlety of our lower bounds: In reductions from the
triangle detection conjecture, the running time of the algorithm is assumed to be a random
variable, but the algorithm must always answer correctly. However, in reductions from OMv
the running time of the algorithm is determinstic, but the probability of obtaining a correct
answer must be at least 2/3.

A.4 Our Lower Bounds
In Table 2 we summarize summarize our lower bounds for sensitivity data structures. Table 3
states our lower bounds for static oracle data structures.

A.5 Existing Sensitivity Data Structures
In Table 4 we summarize existing sensitivity data structures.

In the table, we also list algorithms for “fault-tolerant subgraphs” although they are
not algorithms for the sensitivity setting in the classical sense. However, the fault-tolerant
subgraphs are often much smaller than the input graphs and by traversing the fault-tolerant
subgraph during queries, one can obtain better query times than by running the static
algorithm on the original graph. Unfortunately, the construction time of these subgraphs
is often very expensive, though still polynomial; the goal of these papers is to optimize the
trade-offs between the size of the subgraphs and the approximation ratios achieved for the
specific problem.

It is striking that (to the best of our knowledge) most of the existing algorithmic work
was obtained for the case of decremental algorithms with a limited number of failures. While
this is natural for the construction of fault-tolerant subgraphs, this is somewhat surprising
from an algorithmic point of view. Our lower bounds might give an explanation of this
phenomenon as they indicate that for many problems there is a natural bottleneck when it
comes to the insertion of edges.
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Problem Inc/Dec
Query Lower Bounds

Sens. Conj. Cite
Type p(m,n) u(m,n) q(m,n)

Reachability Inc ss n3−ε n2−ε n2−ε 1 BMM Theorem 5
Reach., SC, BPMatch st n3−ε n2−ε n2−ε 2 [3]

(3/2− ε)-sh. paths Inc ss n3−ε n2−ε n2−ε 1 BMM Theorem 5
(und. unw.)

(7/5− ε)-sh. paths st n3−ε n2−ε n2−ε 2 BMM Theorem 5
(und. unw.)

#SSR Inc ss nt m1−ε m1−ε K(ε, t) SETH Lemma 18
reachability, Inc ST nt n1−ε n1−ε K(ε, t) SETH Lemmas 20 and 19

(4/3− ε)-diameter - poly(n) n2−ε n2−ε ω(logn) SETH [3]
for sparse graphs -
SC2, AppxSCC, Inc - poly(n) m1−ε m1−ε ω(logn) SETH [3]
and MaxSCC -
subgraph conn. Inc st poly(n) poly(d) d1−ε d OMv Theorem 21

( =⇒ reachability,
BPMatch, SC) n2−ε n1−ε d1−ε d 3SUM [32]

(2− ε)-sh. paths Inc ss poly(n) poly(d) d1−ε d OMv Theorem 21
(5/3− ε)-sh. paths Inc st poly(n) poly(d) d1−ε d OMv Theorem 21
( =⇒ BWMatch)

diameter
(4/3− ε), und. unw. Dec - n3−ε n2−ε n2−ε 1 BMM Theorem 5

dir. & und. w. Dec - n3−ε n2−ε n2−ε 1 APSP Section 3
(4/3− ε)-ecc. Dec - n3−ε n2−ε n2−ε 1 BMM Theorem 5
weighted-ecc. Dec - n3−ε n2−ε n2−ε 1 APSP Lemma 17
shortest paths

dir. w. Dec st n3−ε n2−ε n2−ε 1 APSP [42]
und. w. Dec st n3−ε n2−ε n2−ε 2 APSP Section 3

reachability Dec st n3−ε n2−ε n2−ε Ω(logn) BMM [3]
( =⇒ SC, BPMatch) BMM [3]

shortest paths Dec st n3−ε n2−ε n2−ε Ω(logn) BMM Theorem 5
(undir. unw.)
subgraph conn. Dec st poly(n) poly(d) d1−ε d OMv Theorem 21

( =⇒ reachability,
BPMatch, SC) n2−ε n1−ε d1−ε d 3SUM [32]

(2− ε)-sh. paths Dec ss poly(n) poly(d) d1−ε d OMv Theorem 21
(5/3− ε)-sh. paths Dec st poly(n) poly(d) d1−ε d OMv Theorem 21
( =⇒ BWMatch)
Table 2 The conditional lower bounds we obtained for non-zero sensitivity. Problems for which

there exists a tight upper bound are marked bold. Regarding the sensitivities, the lower bounds
hold for any data structure that supports at least the sensitivity given in the table; d is a parameter
that can be picked arbitrarily, and K(ε, t) is a constant depending on properties of SAT and the
allowed preprocessing time (see Section 4). Lower bounds for constant sensitivities hold in particular
for any dynamic algorithm which allows for any larger fixed constant sensitivity or sensitivity ω(1).
For the query type we use the following abbreviations: st – fixed source and sink, ss – single source,
ap – all pairs, ST – a fixed set of sources and a fixed set of sinks. The rest of the abbreviations are
as follows: sh. paths means shortest paths, conn. means connectivity, SC means strongly connected
components, SC2 means whether the number of strongly connected components is more than 2,
Reach. means Reachability, BPMatch is bipartite matching, BWMatch is bipartite maximum weight
matching, ecc. is eccentricity, dir. means directed, und. means undirected, w. means weighted, unw.
means unweighted, Conj. means Conjecture.
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Problem
Inc/Dec/ Query Lower Bounds

Conj. Cite
Static Type p(m,n) u(m,n) q(m,n)

Reach. static ap n3−ε - n2−ε BMM Theorem 5
(5/3− ε)-sh. paths static ap n3−ε - n2−ε BMM Theorem 5

Repl. paths static st n3−ε - n2−ε APSP Section A.7
(1 edge fault)

(dir. w.)
Table 3 The conditional lower bounds we obtained for static oracle data structures, i.e., data

structures with zero sensitivity. Problems for which there exists a tight upper bound are marked
bold. The query type “ap” denotes all pairs queries, Repl. means replacement, the rest of the
abbreviations are as in Table 1.
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Problem Approx.
Upper Bounds Sensi-

Ref. Remark
Space p(m,n) u(m,n) q(m,n) tivity

Dec ap-Connectivity n poly(n) d 1 d [37]
Dec ap-SubgraphConn d1−2/cmn1/c d1−2/cmn1/c d4+2c d d [23] Any c ∈ N can be picked;

space simplified.
dm mn d3 d d [24] Deterministic.
m mn d2 d d [24] Randomized.

Inc ap-SubgraphConn n2 n3 d2 d d [28]
Fully Dynamic ap-SubgraphConn n2m n3m d4 d2 d [28] Uses [24] as a blackbox.

Dec ss-Reachability n m 1 n 1 [6] Subgraph.
(implies SCC, dominator tree) n n 1 1 [9] Oracle. Planar graph.

n poly(n) 1 2 [20] Allows for vertex failures.
2dn 2dmn 1 2dn d [7] Subgraph. Reasonable for

d = o(log(m/n)).
Dec ss-SP

undirected unweighted 3 n m 1 1 [8] Oracle.
1 + ε n/ε3 1 1 [8] Oracle.
exact n5/3 poly(n) 1 n5/3 2 [34] More robust BFS tree.

directed unweighted exact n2 nω 1 1 1 [26] Algorithm and oracle.
undirected weighted 1 + ε m+ n/ε mn 1/ε 1 [13] Oracle.

2 m mn 1 1 [13] Oracle.
2O + 1 dn dm d2 d [14] Oracle.

Table 4 Upper Bounds. We omit polylog factors in the stated running times and spaces usages. We use the following abbreviations: “ap” means “all
pairs”, “ss” means “single source”, “st” denotes problems with a fixed source and a fixed sink. Oracles combine update and query into a single operation.
For algorithms with an additive approximation guarantee, we included the optimal result O; all other approximation algorithms achieve multiplicative
approximation guarantees. See table 5 for APSP upper bounds.
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Problem Approx.
Upper Bounds Sensi-

Ref. Remark
Space p(m,n) u(m,n) q(m,n) tivity

Dec APSP
unweighted undirected O + 2 n5/3 poly(n) 1 n5/3 1 [11] Additive spanner.

O + 4 n3/2 poly(n) 1 n3/2 1 [11] Additive spanner.
O + 10 n7/5 poly(n) 1 n7/5 1 [11] Additive spanner.
O + 14 n4/3 poly(n) 1 n4/3 1 [11] Additive spanner.

(2k − 1)(1 + ε) kn1+(kε4)−1
k 1 [8] Oracle. Any k > 1 and ε > 0.

3 n poly(n) 1 n 1 [35] Spanner.
3(d + 1)O + (d + 1) log n dn poly(n) 1 dn d [35] Spanner.

non-negative weights, undirected 1 + ε n/ε2 poly(n) 1 n/ε2 1 [12] Spanner. Vertex and
edge deletions.

weighted, undirected (8k + 2)(d+ 1) dkn1+1/k poly(n) d d [19] Oracle. Any k ∈ N.
1 + ε dn2(log n/ε)d dn5 log(n/ε)d d5 d [18] Oracle.

weighted, directed exact Mn2.88 n0.7 1 [26] Oracle. Weights: {−M, . . . ,M}.
Simplified running times.

exact n2 mn 1 1 [10] Oracle.
exact n2 poly(n) 1 2 [22] Oracle.
O + d dn4/3 poly(n) 1 n4/3 d [15] Additive spanner.

Table 5 Upper Bounds for APSP. We omit polylog factors in the stated running times and spaces usages. For algorithms with an additive approximation
guarantee, we included the optimal result O; all other approximation algorithms achieve multiplicative approximation guarantees.
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A.6 Triangle Detection Proofs
We provide full details of the reachability and shortest paths sensitivity results from Theo-
rem 5.

Reachability

Let G = (V,E) be an undirected unweighted graph for Triangle Detection. We create four
copies of V denoted by V1, V2, V3, V4, and for i = 1, 2, 3, we add edges between nodes ui ∈ Vi
and vi+1 ∈ Vi+1 if (u, v) ∈ E.

For a fixed source s ∈ V and sink t ∈ V , Abboud and Williams [3] give the following
reduction: For each vertex v ∈ V , they insert the edges (s, v1) and (v4, t), and query if there
exists a path from s to t. They show that there exists a triangle in G iff one of the queries is
answered positively. We observe that this reduction requires n batch updates of size 2 and n
queries. Hence, it holds for sensitivity 2.

Now keep s fixed, but remove the sink t, and allow single-source reachability queries4.
We perform a stage for each v ∈ V , in which we add the single edge (s, v1) and query if there
exists a path from s to v4. By the same reasoning as before, there exists a triangle in G iff
one of the queries returns true. The reduction requires n updates of size 1 and n queries.
Thus, it has sensitivity 1.

Finally, we remove the source node s and ask all-pairs reachability queries5. We perform
a stage for each v ∈ V , which queries if there exists a path from v1 to v4. There exists a
triangle in G iff one if the queries returns true. This reduction has sensitivity 0, i.e., it uses
no updates, and n queries. Hence, we have derived a very simple conditional lower bound for
static reachability oracles.

These reductions prove the first three results of Theorem 5.

Shortest Paths

The above reduction for st-reachability can be easily altered to work for (7/5−ε)-approximate
st-shortest paths in undirected unweighted graphs (for any ε > 0) with the same running
time lower bounds: Just observe that the graphs in the reduction are bipartite. Thus, either
there is a path from s to t of length 5 and there is a triangle in the original graph, or the
shortest path between s and t has length at least 7. Thus distinguishing between length 7
and 5 solves the triangle problem.

To obtain a lower bound for (3/2 − ε)-approximate ss-shortest paths, we take the
construction for ss-reachability and again observe that the graph is bipartite so that if there
is no path of length 4 between s and a node v ∈ V , then the shortest path between them
must have length at least 6.

With the same bipartiteness observation, we obtain a conditional lower bound for (5/3−ε)-
approximate static ap-shortest paths. In a stage for node v ∈ V , we query the shortest path
from v1 to v4. The query returns 3 if there exists a triangle in the original graph containing
the vertex v and ≥ 5 otherwise. Thus, distinguishing between 3 and ≥ 5 suffices to solve the
problem.

Finally, let us discuss how we obtain a lower bound for incremental shortest paths with
sensitivity 1 in directed graphs. Vassilevska Williams and Williams [42] reduce BMM to the

4 Given v ∈ V , a query returns true iff there exists a path from s to v.
5 Given two nodes u, v ∈ V , a query returns true iff there exists a path from u to v.
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replacement paths problem in directed unweighted graphs: given a directed graph G on m
edges and n nodes and two nodes s and t, compute for every e ∈ E, the distance between s
and t in G \ {e}. [42] shows that if a combinatorial algorithm can solve the latter problem in
O(mn1/2−ε) time for any ε > 0 (for any choice of m as a function of n), then BMM has a
truly subcubic combinatorial algorithm. This showed that the O(m

√
n) time algorithm of

Roditty and Zwick [39] is tight.
Here we observe that the [42] reduction immediately implies a 1-sensitivity oracle lower

bound, as any 1-sensitivity oracle for st distances must be able to answer the replacement
paths problem by querying the less than n nodes on the shortest s-t path: either the
preprocessing time is at least mn0.5−o(1) or the query time is at least m/n0.5+o(1). For dense
graphs this gives a lower bound of either n2.5−o(1) preprocessing or n1.5−o(1) query time. The
lower bound is again tight via Roditty and Zwick’s algorithm [39] for replacement paths.

A.7 All Pairs Shortest Paths Proofs
We prove the statements of Theorem 7 in Lemma 16 and Lemma 17.

I Lemma 16. Assuming the APSP conjecture, decremental st-shortest paths in undirected
weighted graphs with sensitivity 2 cannot be solved with preprocessing time O(n3−ε), and
update and query times O(n2−ε) for any ε > 0.

Proof. We use a reduction similar to the reduction from APSP to RP from [42], but to deal
with the undirected edges we add more weights and we add additional nodes to the graph.
As in [42], we start by taking an instance of APSP and turning it into a tripartite graph for
the negative triangle detection problem6; denote resulting graph H ′.

If H ′ has no negative edge weights, we are done (there are no negative triangles). If H ′
has negative edge weights, let M = min{w(e)|e ∈ EH′} and add −M + 1 to all edges (thus
making all edges have positive weights). Now we want to detect if there is a triangle with
(positive) weight less than −3M + 3. Denote the new graph by H and denote the three
tripartite groups A, B and C; each set A, B and C has n nodes.

We construct a graph G in which n shortest paths queries with two edge deletions
determine if there exist any triangles with weight less than −3M + 3 in H. Let W =
4 max{w(e)|e ∈ EH} and observe that W is larger than the maximum possible difference in
the weight of two triangles. We will use this weight to enforce that we must take certain
paths.

We add two vertices s and t to G. We add a path P ′ of length n to s, where each edge
on the path has weight 0; the first node after s on P ′ is denoted c′1, the next node on P ′ is
denoted c′2, and the i’th node on P ′ is denoted c′i. Next, we add a path P ′′ of length n to t,
where each edge on the path has weight 0; the first node after t on P ′′ is denoted c′′n, second
node on P ′′ is denoted c′′n−1 and the ith node away from t on P ′′ is denoted c′′n−i+1. We
add the nodes in A, B and C from H to G and keep all edges from A×B and from B × C,
however, we delete all edges from A× C. We increase the weight of all edges from A to B
and of all edges from B to C by 6nW . We add edges between all nodes in A and all nodes
on the path P ′; specifically, for all ai ∈ A and for all j ∈ [1, n], we add an edge (ai, c′j) of
weight (7n− j)W +w((ai, cj)). We further add edges from C to the path P ′′; specifically, we
add an edge from ci ∈ C to c′′i of weight (6n+ i)W . The resulting graph is given in Figure 1.

6 In the negative triangle detection problem we are given an edge-weighted graph G = (V,E) with possibly
negative edge-weights from Z, and we must determine if G contains a triangle consisting of vertices
u, v, x such that w(u, v) + w(v, x) + w(x, u) < 0.
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Figure 1 The graph G.

Note that all edges in the graph G either have weight 0 or their weight is from the
range [6nW, 7nW +W/4]. All edges of weight 0 are on the paths P ′ and P ′′; all paths from
s to t must contain at least one edge from P ′ to A, one from A to B, one from B to C
and finally one edge from C to P ′′. Each of the non-path-edges has weight from the range
[6nW, 7nW +W/4] and we must take at least four of them in total. If we backtrack (and go
from A back to P ′ or from B back to A, etc) then we must take at least six non-zero edges;
hence, it is never optimal to backtrack since (7nW +W/4)4 < 66̇nW .

We explain which n queries answer the negative triangle question in H. For each
i = 1, . . . , n, we delete the edge (c′i, c′i+1) from path P ′ and the edge (c′′i , c′′i−1) from path P ′′,
and we query the shortest path from s to t. Note that with these edges deleted to take only
four “heavy” edges, one must leave from a c′j where j ≤ i and enter a c′′k where k ≥ i. The
length from s to c′j and from c′′k to t is zero. So a shortest path from s to t has length

(7n− j)W + w(ap, cj) + w(ap, bq) + 6nW + w(bq, ck) + 6nW + (6n+ k)W.

Note that because W is large and we want to minimize the length of the shortest path, we
want to maximize j and minimize k. Due to the deleted edges, the maximum plausible value
of j is i and the minimum plausible value of k is i. In that case, the path length is

(7n− i)W + w(ap, ci) + w(ap, bq) + 6nW + w(bq, ci) + 6nW + (6n+ i)W.

This simplifies to 25nW +w(ap, ci)+w(ap, bq)+w(bq, ci). If the length of the shortest st-path
is less than 25nW − 3M + 3, then there exists a negative triangle in the graph H ′ containing
ci. Otherwise, there is no such triangle. J

I Lemma 17. Assuming the APSP conjecture, decremental diameter in undirected weighted
graphs with sensitivity 1 cannot be solved with preprocessing time O(n3−ε), and update and
query times O(n2−ε) for any ε > 0.

Proof. As in [42] we start by taking an instance of APSP and turning it into a weighted
tripartite graph for the negative triangle detection problem; denote the resulting graph for
the negative triangle detection problem H ′.
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Let M be a positive integer such that all edges in H ′ have weights between −M and M .
We increase all edge weights in H by 5M (thus making all edges have weight at least 4M).
We denote this new graph H and call the three tripartite groups X, Y and Z. Note that X,
Y and Z each have n nodes. Now we want to detect if there is a triangle with weight less
than 15M in H.

We construct the graph G depicted in Figure 2 as follows. We create sets V1 and V4
containing copies of the nodes in X, the set V2 containing copies of the nodes from Y , and
the set V3 containing copies of the nodes from Z. We additionally create two groups of
vertices, A and B, containing copies of X. Finally, we add two vertices c and d to G. For
convenience, we denote the different copies of xi ∈ X as follows: The copy in V1 as x1

i , the
copy in V4 as x4

i , the copy in A as xAi , and the copy in B as xBi .

V1 V2 V3 V4

c d

A B

Figure 2 The graph G′.

We introduce edges between V1 and V2 if the corresponding nodes in X and Y have an
edge; the edges between V2 and V3 are determined by the edges between Y and Z; the edges
between V3 and V4 are determined by the corresponding edges between nodes of X and Z.
All edges we added to the graph have the same weight as their corresponding copies in H.
Note that there are no edges between V1 and V3, nor between V1 and V4, nor between V2
and V4.

For all i = 1, . . . , n, we add edges of weight 4M between x1
i and xAi , and between xAi and

xBi . Additionally, for all i = 1, . . . , n and all j = 1, . . . , n, we add an edge between xBi and
x4
j of weight 4M . For all v ∈ V2 ∪ V3 ∪ A, we add an edge of weight 4M between c and v,

and for all v ∈ V3 ∪ V4 ∪B, we add an edge of weight 4M between d and v. We add edges
with weight 4M to connect all vertices in A into a clique, and we do the same for B. Finally,
we add an edge of weight 4M between c and d.

Note that all edges in this graph have weights between 4M and 6M . Further note that
in G all pairs of nodes have a path of length at most 12M between them.

Our n queries are picked as follows: For all i = 1, . . . , n, we delete the edge between
xBi and x4

i and query the diameter. Observe that the only path lengths that could become
greater than 12M are between the nodes in V1 and the node x4

i . However, for all x1
j where

j 6= i, the path x1
j → xAj → xBj → x4

i still has all of its edges, and there exists a path of
length 12M for these vertices.

Thus the only pair of vertices for the path length might increase is x1
i to x4

i . One must
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use at most three edges to obatain a path of length at most 15M (since any path with four
hops has length at least 16M because every edge in G has weight at least 4M). Hence, any
path of length less than 15M between x1

i and x4
i must go from x1

i to V2 to V3 to x4
i . Thus, if

a path of length less than 15M exists between x1
i and x4

i after the edge deletion between xBi
and x4

i , then there is a negative triangle in H ′ containing node xi.
Thus, we can detect if any negative triangle exists in the tripartite graph H ′ by asking

these n queries, determining for all xi ∈ X if a negative triangle containing xi exists. J

Note that if for all i = 1, . . . , n we delete edge (xBi , x4
i ), then the eccentricity of x1

i is less
than 15M if and only if the diameter of the graph is less than 15M . Thus, this serves as
lower bound for eccentricity as well.

A.8 SETH Proofs
I Lemma 18. Let ε > 0, t ∈ N. SETH implies that there exists no algorithm for incremental
#SSR with sensitivity K(ε, t), which has preprocessing time O(nt), update time u(n) and
query time q(n), such that max{u(n), q(n)} = O(n1−ε).

Proof. Set δ = (1− ε)/t. Assume that the k-CNFSAT formula F has c · ñ clauses for some
constant c. Partition the clauses into K = c/δ groups of size δñ and denote these groups by
G1, . . . , GK . Further let U be a subset of the ñ variables of F of size δñ, and let Ū denote
the set of all partial assignments to the variables in the U .

We construct a graph G as the union of Dδ and Hδ. It consists of Ū and the set C of
clauses. We direct the edges in Hδ from C to Ū , and add a directed edge from a node d ∈ Dδ

to c ∈ C iff c ∈ d. We further add a single node s to the graph. The resulting graph has
n = O(2δñ) nodes and O(2δññ) edges.

We proceed in stages with one stage for each partial assignment to the variables in V \U .
At a stage for a partial assignment φ to the variables in V \ U , we proceed as follows: For
each group Gi ⊂ C, we add an edge from s to the largest non-empty subset di of Gi which
only contains clauses that are not satisfied by φ, i.e., to the set di = {c ∈ Gi : φ 6� c}; if di is
empty, then we do not introduce an edge. Let D′ be the set of nodes di that received an
edge from s and let d(s) = |D′|. Note that d(s) ≤ K, since we introduce at most one edge for
each of the K groups. Further, let B denote the number of clauses in C reachable from the
sets di ∈ D′, i.e., B =

∑K
i=1 |di|. We query if the number of nodes reachable from s is less

than d(s) +B + 2δñ. If the answer to the query is true, then we return that F is satisfiable,
otherwise, we proceed to the next partial assignment to the variables in V \ U .

We prove the correctness of the reduction: Assume that F is satisfiable. Then there exist
partial assignments φ and φ′ to the variables in V \ U and U , such that φ · φ′ satisfies F .
Hence, for each subset of clauses d ⊂ C we have that each clause c ∈ d is satisfied by φ or by
φ′. Thus, the node u ∈ Ū corresponding to φ′ cannot be reachable from s and there must
be less than d(s) + B + 2δñ nodes reachable from s. Now assume that at a stage for the
partial assignment φ the result to the query is true, i.e., less than d(s) +B + 2δñ nodes are
reachable from s; namely d(s) at distance 1, B at distance 2, and less than 2δñ at distance
3. In this case, there must be a node u ∈ Ū which is not reachable from s: In Dδ there are
exactly d(s) nodes reachable and in C there are exactly B nodes reachable by construction
of the graph and definition of d(s) and B. This implies that for the partial assignment φ′
corresponding to u, each clause c ∈ C must be satisfied by φ or φ′. Hence, F is satisfiable.

Note that determining the sets di ∈ D′ can be done in time O(δñ2) per group Gi as
for each clause we can check in time O(ñ) whether it is satisfied by φ. Thus the set D′
and the value B can be computed in total time O(cn) and the total time for all stages is
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O(21−δñ(ñ2 +Ku(n) +Kq(n)). If both u(n) and q(n) are O(n1−ε) = O(2δñ(1−ε)), then SAT
can be solved in time O∗(2ñ(1−εδ)). J

I Lemma 19. Let ε > 0, t ∈ N. SETH implies that there exists no (4/3− ε)-approximation
algorithm for incremental diameter with sensitivity K(ε, t), which has preprocessing time
O(nt), update time u(n) and query time q(n), such that max{u(n), q(n)} = O(n1−ε).

Proof. Set δ = (1− ε)/t. During the proof we will assume that the k-CNFSAT formula F
has c · ñ clauses for some constant c. We partition these clauses into K = c/δ groups of size
δñ and denote these groups by G1, . . . , GK .

We construct a graph as follows: For U ⊂ V of size δñ we create the graph Hδ with the
set of all partial assignments to the variables in U denoted by Ū and the set of clauses C.
We also add the graph Dδ containing all the subsets of the groups Gi. Furthermore, we
introduce four additional nodes x, y, z and t. Observe that the graph has O(2δñ) vertices.

We add an edge from x to each node in Ū . We connect y to all nodes in C and to all
nodes in Dδ. We add further edges between a clause c and a set g ∈ Dδ if c ∈ g. We also add
the following edges to E: {x, y}, {y, z} and {z, t}. Hence, we have O(2δññ) edges in total.

If during the construction of the graph we encounter that a clause is satisfied by all partial
assignments in Ū , then we remove this clause. Also, if there exists a partial assignment from
Ū which satisfies all clauses, we return that the formula is satisfiable. Thus, we can assume
that each node in Ū must have an edge to a node in C and vice versa.

We proceed in stages with one stage for each partial assignment to the variables in V \U .
Denote the partial assignment of the current stage by φ. For each Gi, we add an edge
between t and the subset of Gi that contains all clauses of Gi which are not satisfied by φ,
i.e., we add an edge between t and {c ∈ Gi : φ 6� c} for all i = 1, . . . ,K. Hence, in each stage
we have O(K) = O(1) updates. We query the diameter of the resulting graph. The diameter
is 3, if the formula F is not satisfiable, and it is 4, otherwise. After that we remove the edges
that were added in the update.

We prove the correctness of our construction: Observe that via x and y all nodes from
Ū ∪ C ∪G have a distance of at most 3. From z we can reach all vertices of G and C via y
within two steps and all nodes of Ū within three steps via y and x. From t we can reach
all nodes of {x, y, z} ∪ C ∪ G within three steps using the path t → z → y → v, where
v ∈ C ∪Dδ ∪ {x}. Hence, all nodes in {x, y, z, t} ∪ C ∪ G have a maximum distance of 3.
From ū ∈ Ū we can reach t in four steps with the path ū→ x→ y → z → t.

Assume that for ū there exists a path ū → c → g → t, then by construction ū 6� c and
φ 6� c, since c ∈ g. Hence, F is not satisfied by ū · φ. Thus, if the diameter is 3, then F

is not satisfiable. On the other hand, if F is not satisfiable, then for each pair of partial
assignments ū and φ, there must be a clause c which both partial assignments do not satisfy.
Hence, there must be a path of the form ū→ c→ g → φ for some g with c ∈ g and g has an
edge to t. Thus, if F is not satisfiable, then the graph has diameter 3.

The sets di can be computed as in the previous proof. J

I Lemma 20. Let ε > 0, t ∈ N. SETH implies that there exists no algorithm for incremental
ST-Reach with sensitivity K(ε, t), which has preprocessing time O(nt), update time u(n) and
query time q(n), such that max{u(n), q(n)} = O(n1−ε).

Proof. We reuse the graph from the proof of Lemma 19. We update it by removing the
vertices x, y, z. We further set S = Ū and T = {t}.

We proceed in stages with one stage for each partial assignment to the variables in V \U .
Denote the partial assignment of the current stage by φ. For each Gi, we add an edge
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between t and the subset of Gi that contains all clauses of Gi which are not satisfied by φ,
i.e. we add an edge between t and {c ∈ Gi : φ 6� c} for all i = 1, . . . ,K. Hence, in each stage
we have O(K) = O(1) updates. We query for ST-Reachability. If the answer is true, then F
is not satisfiable, otherwise, it is.

We prove the correctness of our construction: If F is not satisfiable, then for each pair of
partial assignments ū and φ, there must be a clause c which both partial assignments do not
satisfy. Hence, there must be a path of the form ū→ c→ g → φ for some g with c ∈ g and g
has an edge to t. Thus, if F is not satisfiable, then all nodes in S will be able to reach t. On
the other hand, assume that for ū there exists a path ū→ c→ g → t, then by construction
ū 6� c and φ 6� c, since c ∈ g. Hence, F is not satisfied by ū · φ. Thus, if all nodes from S can
reach t, then F is not satisfiable.

The sets di can be computed as in the first proof of the section. J

A.9 Conditional Lower Bounds For Variable Sensitivity
In this section we prove conditional lower bounds for algorithms where the sensitivity is not
fixed, but given a parameter d. Before we give our results, we shortly argue why this setting
is relevant.

First, several results were obtained in the setting with sensitivity d. Some of these results
are by Patrascu and Thorup [37] for decremental reachability, by Duan and Pettie [23, 24]
and by Henzinger and Neumann [28] for subgraph connectivity and by Chechik et al. [19, 18]
for decremental all pairs shortest paths. Our lower bounds show that the results in [23, 24]
and the incremental algorithm in [28] are tight.

Second, when d is not fixed and we can prove a meaningful lower bound, this will help us
understand whether updates or queries are more sensitive to changes of the problem instance.

Third, when d is fixed to a constant, the problems might become easier in the sense that
constant or polylogarithmic update and query times can be achieved. For example, for APSP
with single edge failures one can achieve query and update times O(1) (see [10]); for APSP
with two edge failures one can achieve query and update times O(logn) (see [22]). In these
cases we cannot prove any non-trivial conditional lower bounds for them. However, with an
additional parameter d we can derive conditional lower bounds which are polynomial in the
parameter d.

Our results are summarized in the following theorem.

I Theorem 21. Under the OMv conjecture for any ε > 0, there exists no algorithm with
preprocessing time poly(n), update time poly(d) and query time Ω(d1−ε) for the following
problems:
1. Decremental/incremental st-SubConn in undirected graphs with sensitivity d
2. decremental/incremental st-reach in directed graphs with sensitivity d,
3. decremental/incremental BP-Match in undirected bipartite graphs with sensitivity d, and
4. decremental/incremental SC in directed graphs with sensitivity d.
5. (2− ε)-approximate ss-shortest paths with sensitivity d in undirected unweighted graphs,
6. (5/3− ε)-approximate st-shortest paths with sensitivity d in undirected unweighted graphs,
7. BW-Matching with sensitivity d.

Conditional Lower Bounds for Directed Graphs.

We observe that some existing reductions can be used to obtain conditional lower bounds for
sensitivity problems. In this section, we summarize the results that can be obtained this way.
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We call a reduction from a dynamic problem A to another dynamic problem B sensitivity-
preserving if in the reduction a single update in problem A propagates to problem B as at
most one update. We observe that the reductions in [3] from st-subgraph-connectivity to
st-reachability (Lemma 6.1) and from st-reachability to BP-Match (Lemma 6.2) and SC
(Lemma 6.4) are sensitivity-preserving. Henzinger et al. [27] give conditional lower bounds
for the st-subgraph-connectivity problem with sensitivity d. The previous observations about
sensitivity preserving reductions imply that we get the same lower bounds for st-reach,
BP-Match and SC with sensitivity d. This implies the first four points of Theorem 21.

The construction of the lower bound in [27] required d = mδ for some δ ∈ (0, 1/2]. This
appears somewhat artifical, since in practice one would rather expect situations with much
smaller values for d, e.g., d = O(1) or d = poly log(n). However, the lower bound is still
interesting because it applies to all algorithms that allow setting d = mδ. For example, the
sensitive subgraph connectivty algorithms of Duan and Pettie [23, 24] is tight w.r.t. to the
above lower bound.

Conditional Lower Bounds for Undirected Graphs.

In this subsection, we prove the last three points of Theorem 21. We give a reduction from
the γ-uMv-problem, which was introduced by Henzinger et al. [27]. The γ-uMv-problem
is as follows: Let γ > 0. An algorithm for the γ-uMv problem is given an n1 × n2 binary
matrix M with n1 = bnγ2c, that can be preprocessed. Then two vectors u and v appear and
the algorithm must output the result of the Boolean vector-matrix-vector-product utMv.

Henzinger et al. [27, Corollary 2.8] show that under the OMv conjecture for all ε > 0, no
algorithm exists for the γ-uMv-problem that has preprocessing time poly(n1, n2), computation
time O(n1−ε

1 n2 + n1n
1−ε
2 ), and error probability at most 1/3. We give a reduction from the

γ-uMv-problem to (2− ε)-approximate ss-shortest-paths with sensitivity d in the following
lemma. This lemma and the proof of Corollary 3.12 in [27] imply the result in Theorem 21
for ss-shortest-paths.

I Lemma 22. Let δ ∈ (0, 1/2]. Given an algorithm A for incremental/decremental (2− ε)-
ss-shortest paths with sensitivity d, one can solve ( δ

1−δ )-uMv with parameters n1 and n2
by running the preprocessing step of A on a graph with O(m) edges and O(m1−δ) vertices,
then making a single batch update of size O(d) and O(m1−δ) queries, where m is such that
m1−δ = n1 and d = mδ = n2.

Proof. We prove the lower bound for the incremental problem.
LetM be a n1×n2 binary matrix for ( δ

1−δ )-uMv. We construct a bipartite graph GM from
the matrix M : Set GM = ((L ∪R), E), where L = {l1, . . . , ln1}, R = {r1, . . . , rn2} and the
edges are given by E = {(li, rj) : Mij = 1}. We add an additional vertex s to GM and attach
a path of length 3 to s, the vertex on the path with distance 3 from s has edges to all vertices
in L. Observe that GM has O(n1n2) = O(m) edges and n1 +n2 = Θ(mδ +m1−δ) = Θ(m1−δ)
vertices.

When the vectors u and v arrive, we add an edge (s, rj) for each vj = 1 in a single batch
of O(d) updates. After that for each ui = 1, we query the shortest path from s to li. In
total, we perform O(m1−δ) queries and only use a single batch update consisting of O(d)
insertions. We claim that one of the queries returns less than 4 iff utMv = 1.

First assume that utMv = 1. Then there exist indices i, j such that ui = Mij = vj = 1.
Hence, there must be a path li → rj → s of length 2 in GM and since li = 1 we ask the query
for li. Hence, any (2− ε)-approximation algorithm must return less than 4 in the query for
li. Now assume that a query for vertex li returns less than 4. Since any path from a vertex
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in L to s must have length 2k for some k ∈ N, there exists a path li → rj → s. Since query
for li, we have ui = 1. Due to the edge li → rj , Mij = 1, and due to edge rj → s, vj = 1.
Thus, uiMijvj = 1 and utMv = 1.

The proof for the decremental problem works by initially adding all edges from s to R to
the graph and then removing edges corresponding to the 0-entries of v. J

To obtain the result of Theorem 21 for st-shortest-paths, observe that the above reduction
can be changed to work for this problem: We add additional vertices s, t to the original
bipartite graph and connect s and t by a path of length 5 (i.e., introducing 3 additional
vertices). Then a similar proof to the above shows that any algorithm for st-reachability
that can distinguish between a shortest path of length at most 3 or at least 5 can be used to
decide if utMv = 1. The result for BW-Match follows from the reduction in [3].

B No (globally) fixed constant sensitivity with polynomial
preprocessing time

In this section, we will first discuss how SETH reductions depend on their sensitivity. In
particular, we will see that even though some of our previous reductions had constant
sensitivities, these constants are not bounded globally. Afterwards we will prove that if we
allow for polynomial preprocessing time, then there cannot be a globally fixed upper bound
on the sensitivities.

B.1 A note on SETH reductions
Let us recall that the sensitivities of the reductions in Section 4 had the form K = c/δ,
where cn was the number of clauses in the k-CNFSAT formula and δ < 1 was a parameter
indicating the size of our initial graph. We will first discuss the dependency of K on δ and
after that on c.

Firstly, let us discuss how the SETH reductions depend on the parameter δ. Let F be
a k-CNFSAT formula with n variables and O(n) clauses. Notice that if the input graph
that we construct in the reduction had size N = O(2n/2), then the preprocessing time of
an algorithm refuting SETH would have to be O(N2−ε). In order to allow for arbitrary
polynomial preprocessing times of the algorithm, the reductions in [3] (and also the ones
from the section before) were parameterized such that the initial graphs have size O(2δn)
(disregarding poly(n) factors). Then for an algorithm with preprocessing time O(N t) we can
pick δ < 1/t and hence the preprocessing takes time O(2δnt) = O(2(1−γ)n) for some γ > 0.
Thus, despite the “large” preprocessing time we could still refute the SETH. However, the
sensitivities K = c/δ are not bounded if we consider δ as a parameter, i.e. K →∞ as δ → 0.
If we consider δ as the inverse of the power of the preprocessing time O(N t), i.e. δ = 1/t,
then this can be interpreted as “large preprocessing time” corresponds to “large sensitivity”
(since δ → 0 iff t→∞).

Now one might want to fix δ (and thus bound the preprocessing time) in order to get
(globally) fixed constant sensitivities. Unfortunately, this approach is also not feasible; in the
SETH reductions for proving an algorithm that solves k-CNFSAT in time 2(1−ε)n, there is
another parameter c which denotes the number of clauses of the k-CNFSAT instance after
the application of the sparsification lemma by Impagliazzo, Paturi and Zane [30]. Looking at
the proof of the lemma one can see that c = c(k, ε) and that c→∞ as k →∞, as well as
c→∞ as ε→ 0. Hence, if we use the sparsification lemma and fix δ, then we still cannot
refute the SETH.
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B.2 Upper bound in case of polynomial preprocessing
The former reasoning heavily relies on the constructions in our proofs and does not rule the
possibility of a reduction with (globally) fixed constant sensitivity from SETH. However,
the following theorem and the corollary after it will show that if we allow for polynomial
preprocessing time, then there cannot be a polynomial time upper bound on update and
query time under any conjecture.

I Theorem 23. Let P be a fully dynamic graph problem7 with sensitivity K on a graph
G = (V,E) with n vertices and m edges where edges are added and removed. Assume that
for the static version of P there exists an algorithm running in time poly(n).

Then there exists an algorithm with p(n) = nt for some t = t(K), u(n) = O(K) and
q(n) = log(n). The algorithm uses space O(nt).

Proof. The basic idea of the algorithm is to preprocess the results of all possible queries
that might be encountered during P . Since we have only sensitivity K, we will only have
polynomially many graphs during the running time of the algorithm. We can save all of
these results in a balanced tree of height O(logn) and during a query we just traverse the
tree in logarithmic time.

Denote the initial input graph by G0.
Since we know that after each update has size at most K and after the update we roll

back to the initial graph, we can count how many graphs can be created while running P .
Particularly, notice that a graph G1 = (V,E1) can be created while running P if and only if
S = E04E1 has |S| ≤ K.8 Then in total the number of graphs which P will have to answer
queries on can be bounded by computing how many such sets S exist:

K∑
i=0

(
n2

i

)
≤ K max

i=0,...,K

(
n2

i

)
= K poly(n) = nt,

for some t (where in the second step we used that K is constant).
Now consider the naïve algorithm which just preprocesses all trees and stores the results:

We enumerate all nt possible trees and run the static algorithm on them. This can be done
in time O(poly(n)). We store the results of the static algorithm in a balanced binary tree
with O(nt) leaves which is of height O(logn). The traversal of the tree can be done, e.g., in
the following way: We fix some order ≺ on V × V ; this implicitly gives an order ≺ on the
set {S ⊆ V × V }. For a graph G1 we compute S = E14E0 and traverse according to S.

During updates the algorithm maintains an array of size K which contains the edges that
are to be removed or added ordered by ≺. This can be done in time O(K) = O(1).

During a query the algorithm will traverse the binary tree from the preprocessing according
to ≺ and the updates that were saved during the updates. This takes time O(logn).

Hence, we have found algorithm with p(n) = poly(n) and u(n) = O(1) and q(n) =
O(logn). J

I Corollary 24. If for a problem with the properties from Theorem 23 there exists a reduction
from conjecture C to P with p(n) = poly(n) and max{u(n), q(n)} = Ω(nγ−ε) for any γ > 0
and all ε ∈ (0, γ). Then C is false.

7 We only argue about dynamic graph problems to simplify our language. The theorem holds for all
dynamic problems with the given properties.

8 A4B denotes the symmetric difference of A and B, i.e. A4B = A \B ∪B \A.
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Proof. We use Theorem 23 to obtain an algorithm which is better than the lower bound
given in the assumption of the corollary. Hence, we obtain a contradiction to C. J

Notice that Corollary 24 implies that in order to obtain meaningful lower bounds for
dynamic problems with a certain sensitivity, we must either bound the preprocessing time of
the algorithm or bound the space usage of the algorithm or allow the sensitivity to become
arbitrarily large.
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