
Enabling Flexibility of Business Processes 

Using Compliance Rules: The Case of Mobiliar 
 

Thanh Tran Thi Kim, ISIS Papyrus Europe AG, thanh.tran@isis-papyrus.com 

Erhard Weiss, ISIS Papyrus Europe AG, erhard.weiss@isis-papyrus.com 

Christoph Ruhsam, ISIS Papyrus Europe AG, christoph.ruhsam@isis-papyrus.com 

Christoph Czepa, Research Group Software Architecture, University of Vienna, 

christoph.czepa@univie.ac.at 

Huy Tran, Research Group Software Architecture, University of Vienna, huy.tran@univie.ac.at 

Uwe Zdun, Research Group Software Architecture, University of Vienna, uwe.zdun@univie.ac.at 

 

Abstract 

 

(a) Situation faced: Insurance case work can follow established procedures only 

to a certain degree, as the work depends upon experienced knowledge workers 

who decide the best solutions for their clients. To produce quality documents 

in such a knowledge-intensive environment, business users of Die Mobiliar, 

the oldest private insurance company in Switzerland, were guided by a wizard 

application that enabled them to compose insurance documents from prede-

fined building blocks in a series of pre-defined steps. As these steps were 

hardcoded into the wizard application, the processes could not adapt quickly 

enough to accommodate new insurance products and associated documenta-

tion. Rapidly changing insurance markets produce new types of documents  

daily, so business users must react flexibly to client requests. Although fully 

automated processes can be defined when sufficient process knowledge exists, 

they seriously hinder the innovation and business agility that is critical in in-

surance markets. 

(b) Action taken: To overcome this problem, Die Mobiliar uses the Papyrus 

Communication and Process Platform1 as the basis for its customized “Mobili-

ar Korrespondenz System” (MKS, Mobiliar Correspondence System), with 

full functionality for online interactive business document production [13]. 

Our approach combines automatically executed business compliance rules 

with process redesign to provide the flexibility that is essential for insurance 

processes. The original processes are split into reusable sub-processes, accom-

panied by a set of ad hoc tasks that the business users can activated at runtime 

to meet clients’ emergent requirements. A set of compliance rules guarantees 

that the process conforms to corporate and regulatory standards. 

                                                           
1  http://www.isis-papyrus.com/e15/pages/software/platform-concept.html 



2  

(c) Results achieved: The business compliance rule approach has two primary 

benefits: (i) company management has a process that is well-documented and 

provably compliant, and (ii) the business users can respond flexibly to their 

clients’ needs within the boundaries of defined compliance rules, thus improv-

ing the customer experience. The flexibility achieved by this approach allows 

business users to adapt their insurance processes, an advantage from which the 

whole insurance industry can benefit. The redesigned process with few reusa-

ble core elements, combination with a set of ad hoc tasks, decreases the num-

ber of process templates (wizard processes) that are required to handle unpre-

dictable situations. A smaller template library also reduces maintenance efforts 

for business administrators. 

(d) Lessons learned: Rigid process modeling is not suitable for highly dynamic 

business domains, like the insurance industry, that are moving into the digital 

era. Instead, a hybrid of declarative and imperative modeling is best suited to 

such domains. Our approach provides a maximum of flexibility within man-

dated constraints, enabling businesses to adapt to changing market require-

ments with minimal involvement by IT departments. In order to set expecta-

tions properly, the use of the two modeling types should be transparent to 

business users. The adoption of the new approach happens gradually to cope 

with business considerations like the integration of compliance checking into 

Die Mobiliar’s production system. 

1. Introduction 

The Swiss insurance company Die Mobiliar is the oldest private insurance organi-

zation in Switzerland. As a multiline insurer that offers a full range of insurance and 

pension products and services, Die Mobiliar handles a large number of documents, 

which are exchanged with approximately 1.7 million customers [12]. An insurance 

document issued by Die Mobiliar is not only a piece of paper; it serves as a business 

card, representing the company to its customers. Moreover, Die Mobiliar considers 

well-designed documents that are rich in content as an opportunity to communicate 

and build a strong relationship with its customers. 

Die Mobiliar uses the Papyrus Communication and Process Platform2 as the basis 

for its customized “Mobiliar Korrespondenz System” (MKS), with full functionality 

for online interactive business document production [13]. MKS uses wizard processes 

to assist several thousand business users in handling various types of documents relat-

ed to insurance cases. A wizard contains steps that guide business users through the 

document-generation process. Therefore, the wizard resembles a dedicated imperative 

process modelled in BPMN [1] for guiding users through a sequence of activities. To 

be effective in generating high-quality documents, these processes must be well-

prepared and suitable for such a large and complex work environment. They must 

                                                           
2  http://www.isis-papyrus.com/e15/pages/software/platform-concept.html 



3 

also comply with requirements involving laws, contracts with business partners, gen-

eral standards, best practices, and civil and corporate regulations. A rigid process 

configuration ensures that the process execution remains controlled and satisfies these 

compliance requirements; however, it does not consider the workers’ tacit business 

knowledge, which is usually an underestimated source of compliance with regulations 

[10]. To be able to react quickly to changing business needs, modern business systems 

must be under the control of business departments that depend only minimally on IT 

departments. Process changes and introductions of new applications must be accom-

plished in days or weeks, not months or years. Rigid wizard processes that are prede-

fined in the design process and executed sequentially at runtime cannot meet such 

modern requirements. The rapidly changing insurance markets generate requirements 

for new types of documents daily, obliging business users to react quickly to client 

requests. A case that requires insurance documents to be generated can follow estab-

lished procedures only to a certain extent, as the task usually depends on knowledge 

workers’ finding the best solutions for their clients. In our insurance context, 

knowledge work is performed by insurance clerks, thus we will use the term clerks to 

represent knowledge workers through our paper. This purpose is what Adaptive Case 

Management (ACM) [16] is designed for: customer-oriented work driven by goals 

contained in a case that allows the clerks to choose the appropriate actions from a 

context-sensitive set of ad hoc tasks with needed data and content to fulfill the related 

goal. 

In this paper, we show how to simplify the wizard design and enhance the flexibil-

ity of its execution using a compliance-rule-and-consistency-checking system embed-

ded in an ACM system [17]. Instead of mapping the entire process into predefined 

task sequences, the system offers a selection of up-coming tasks at runtime, which are 

governed by compliance rules defined by business administrators at design time. 

Clerk must adhere to the loosely interrelated task sequences defined by these rules but 

can decide which tasks will be executed based on the workers’ ad hoc assessment of 

the situation. Thus, a case evolves gradually instead of being predefined by business 

administrators who cannot predict all knowledge-intensive scenarios.  

As a consequence, this approach guides both business users at runtime when they 

select from ad hoc task templates and business administrators at design time when 

they define new or amend existing sub-processes. The consistency-checking system 

consists of a model checker [3] that supports process administrators at design time, 

and an on-the-fly compliance checker [4] that observes clerks’ behavior at runtime to 

ensure that both activities comply with company regulations. We restructure the wiz-

ard process and combine it with compliance rules in order to provide optimal flexibil-

ity for business users during process execution. The resulting approach can be applied 

to any knowledge-intensive domain and is not specific to the insurance industry. 



4  

2. Situation faced 

MKS is built on the ACM and Correspondence Solution of the Papyrus platform. 

While the Correspondence Solution handles the design and content of documents, the 

ACM solution’s process modelling and execution capabilities manage the processes 

involved in document generation.  

MKS enables clerks to generate documents interactively based on wizard process 

templates and to retrieve data dynamically from various business systems. The wizard 

is an ACM case that defines processes comprised of interactive user steps to be exe-

cuted by the clerks, as well as service tasks, such as web services, that the system 

executes automatically for data retrieval. A document template that is composed of 

text-building block templates with embedded data, variables, and/or logic is used as 

artifact for steps in the wizard process. Forms, as integrals part of the wizard defini-

tion, request that the clerks enter the document data as variable values, populating the 

document in a step-by-step approach. Fig. 13 shows a typical wizard input form and 

the preview of the corresponding document at a certain stage of the document genera-

tion process. The entered data are imported directly to the document.  

 

Fig. 1. Wizard step with data form (1) and document preview (2). The value “3579” for appli-

cation number is entered in the form on the left side and simultaneously displayed in the docu-

ment preview of the related building block on the right.   

As shown in Fig. 2, the wizard steps executed by clerks at runtime are prepared by 

business administrators as templates and stored in a template library at design time. 

The processes are defined with an editor that has full functionality to edit, visualize, 

and simulate the execution of wizards before they are released into production. Tran-

                                                           
3 This figure and others show original screenshots from Mobiliar’s business appli-

cation. Relevant items in German are translated as needed. 



5 

sitions connect the steps, and each step defines actions that select and add text build-

ing blocks to the document. 

The motivation for this paper is to support unpredictable or unlikely situations that 

could explode the number of process variants. Suppose that a clerk recognizes during 

wizard execution that the customer’s address is incorrect and must be updated in the 

external system that was queried by the service task. In this case, the clerk should be 

able to edit the address right in the wizard form and notify the data’s owner about the 

change. The clerk, who is engaged in a strict wizard process, would benefit from the 

ability to perform ad hoc actions in this situation. In order to support flexibility at 

runtime, we address this challenge by applying consistency-checking methods in 

combination with compliance rules, as discussed in the next section. 

 

Fig. 2. Wizard template composition editor (1) with functionality to edit (2), visualize (3) and 

simulate (4) the execution of a wizard containing steps that are connected by transitions (5) and 

defined with actions (6). 

3. Action taken 

Our approach introduces a generically applicable consistency-checking method to 

enable a more flexible execution of document-creation wizards. The following sub-

sections outline the approach, describe our extension of the wizards with ad hoc tasks, 

and explain how to guarantee these flexible processes’ compliance through a set of 

managed compliance rules. In the original operating principle of MKS, shown in Fig. 

3a, business administrators defined a wizard process template at design time, which 

was instantiated by clerks for execution at runtime. Clerks strictly followed the steps 

predefined in the wizard to create a document, but because the system did not allow 



6  

clerks to adapt the process at runtime, they could not react to unforeseen situations 

with an insurance case. 

The overview of MKS extended by the consistency-checking system is provided in 

Fig. 3b. In this approach, a wizard ACM case template [16] is assembled at design 

time from goals that are achieved through predefined sub-processes and/or individual 

ad hoc tasks. Each sub-process is attached to the goal and combines the necessary 

tasks in a particular sequence. The quality of case templates is ensured by means of 

model-checking [3] before the templates are released. At runtime, the a set of compli-

ance rules assigned to the case checks the execution of case elements—goal instances, 

process instances, task instances, and ad hoc actions—on the fly  [4]. Clerks can fol-

low the steps defined in the templates while performing ad hoc actions to adapt to 

new situations. A goal is reached when all its tasks are completed and the attendant 

data are acquired. Consequently, a document is finished when all goals of a wizard 

are reached. 

 

 

Fig. 3. (a) MKS operating principle and (b) MKS with consistency checking 

Design of compliance-rules-enabled wizards 

Fig. 4a shows the original MKS wizard process, which can be divided into begin-

ning, middle, and end parts of the process. The beginning part of the process retrieves 

the client’s personal data and selects an insurance product. The end part defines the 

document-delivery channel, while the middle part is comprised of the steps that are 

necessary for the specific insurance case. The system’s analysis of the original wizard 

processes led to the simplified model in Fig. 4b. Numerous processes share the same 

beginning and an ending parts, but the middle part of each process is distinct from the 

others, although they might have tasks in common.  



7 

 

Fig. 4. (a) Typical MKS processes and (b) Flexible MKS processes. The tasks in this figure are 

anonymized as squares with capital letters and grouped by oval. Arrows indicate the direction 

of process execution, and dashed lines represent alternative workflows of the middle part.   

 

In our approach, the original wizard processes are transformed into flexible pro-

cesses with a goal-driven structure. The beginning and ending parts are modeled as 

predefined sub-processes that can be reused in various cases. The middle part is split 

into several individual ad hoc tasks. A case that uses the restructured processes is 

driven by two goals: Goal 1, defining the beginning sub-process, and Goal 2, defining 

the ending sub-process. The tasks of the middle part are either related to Goal 1 or 

Goal 2 or could be assigned by the clerks to newly defined goals. If the tasks of the 

middle part must follow a certain execution sequence, they are monitored by associat-

ed compliance rules. In other words, the rules define the boundaries of the middle part 

without rigidly predefining the processes. The consistency-checking system enables 

clerks to maintain compliance by highlighting tasks that do not comply with one or 

more rules. If certain tasks are optional and do not have to follow any specific se-

quence, the business users can add them as needed. Because the same rules are active 

when business administrators define process templates, the rules enforce compliance 

at design time as well. 

Constraint definitions using compliance rules 

In order to govern the middle part of a wizard process, we use state-based and da-

ta-based rules. State-based rules define the sequences of tasks based on their states, 

such as “started,” “finished,” and “running.” For example, a sequence from Task K to 

Task F can be described by the rule, “Task F can be started only after Task K is fin-

ished.” This rule is expressed in the constraint language as 

 Constraint No1 for MobiliarCase{ 



8  

  K.finished leads to F.started } 

In this example the states of tasks K and F are finished and started, respectively. 

The temporal pattern of type precedence is defined by the keywords leads to. 

To define the temporal patterns in our system, we adapt temporal expressions from 

the patterns defined by Dwyer et al. [7]: 

─ Existence: K.finished occurs  

─ Absence: K.finished never occurs 

─ Response: K.finished leads to F.started. In other words, only if K.finished happens, 

can F.started happen.  

─ Precedence: K.finished precedes F.started. In other words, F.started can happen 

only if K.finished has happened. 

Data-based rules enable business users to define task dependencies that are related 

to data conditions. State-based and data-based rules can be combined to express a 

compliance requirement. For example, Task F can be started only when Task K is 

finished and the value of a certain data attribute meets a certain requirement, such as 

the customer’s birth year is greater than or equal to 1981. 

 Constraint No2 for MobiliarCase{ 

  (K.finished and CustomerBirthyear >= 1981) leads to F.started 

  } 

In unforeseen circumstances, the underlying data models might not provide access 

to critical data. In order to support flexibility in such situations without the need for 

explicit data definitions by IT, business users can check conditions manually using 

voting tasks that are guarded by compliance rules. Let us assume a voting task called 

“Inquire additional customer interests” must be concluded before the final pricing 

can be finished: 

 Constraint No3 for MobiliarCase{ 

InquireInterest.approved leads to Pricing.finished 

  } 

Voting tasks like InquireInterest can be employed quickly to adapt to new situa-

tions. The business administrator can create the task template without the support of 

database experts or IT people and can specify with checklists which items must be 

verified with the customer. Alternatively, the business user can define the checklist at 

runtime to adapt even more dynamically to the current situation. Unstructured data is 

popular in real-life systems since data definitions cannot be amended quickly in IT 

systems with bureaucratic change-management cycles. In a car insurance case, for 

example, the result of an investigation into whether the car was damaged intentionally 

or accidentally can be reported by means of a simple voting task decided by a clerk. 

Since MKS is based on the ISIS Papyrus ACM framework, processes and tasks are 

reusable components of the ACM system to be shared with other goals and cases. The 

sequence of the tasks in the sub-processes is modeled with transitions and gateways 

following BPMN standards [1]. The tasks of the middle part are ad hoc tasks selected 



9 

by the clerks at runtime. Each of these tasks can be added to the case when the clerk 

sees the need to do so based on the case’s content or context. The tasks’ order of exe-

cution is not predetermined but is constrained by rules. A User Trained Agent (UTA) 

implemented in the Papyrus ACM system further assists the clerk in new situations by 

suggesting best next actions that were learned earlier from similar situations faced by 

other users [18]. Thus, knowledge acquisition and sharing becomes an integral part of 

the business application, enabled by the business intelligence component, UTA. 

To demonstrate the results achieved in applying our approach, we used the original 

wizard case Acknowledgement of Application (Fig. 5). Before the redesign, an ACM 

wizard case was completely driven by a predefined process that contained all of the 

steps of the wizard. In this insurance case, a clerk created a document that confirmed 

the successful submission of an insurance application. First, the clerk entered some 

identification numbers, such as the insurance ID, customer ID, or case ID, into the 

system. The customer’s data was retrieved by the predefined process through web 

service tasks from various sources based on the entered data. Then the clerk selected 

the matching insurance holder and address and inserted specific information for the 

particular insurance case. A document confirming the acceptance of the insurance 

application was generated and sent to the customer based on the output channel de-

termined by the clerk at the end of the process.  

 

 

Fig. 5. Process model before redesign analyzed into three parts. 



10  

 An ACM wizard case is not driven by predetermined step, but by goals that are 

fulfilled by the clerk. The redesigned wizard process of the Acknowledgement of Ap-

plication case is divided into three parts, as illustrated in Fig. 4. The first and last parts 

require no flexibility and are linked to the goals of predefined processes. The clerk 

can freely add the flexible part’s tasks at runtime, and their sequence is determined, if 

necessary, by the compliance rules introduced in our approach. 

Like any other ACM case, the redesigned Acknowledgement of Application ACM 

case has associated goals, processes, and tasks. The First Core Goal holds the begin-

ning part of the process, which is configured as a sub-process for retrieving insurance 

customer data from the database. The Last Core Goal contains the ending part of the 

wizard process for choosing the channel by which the document will be delivered to 

the customer. The tasks of the middle part are not predefined in the wizard template 

but are added by the business user as necessary at runtime to address the specific cus-

tomer situation. In this specific case, the ad hoc task templates are prepared as manual 

input product and acknowledgement of application. 

The task execution of the middle part is controlled by three compliance rules, de-

fined by business administrators. For example, rule R0 may express that the task 

acknowledgement of application must be present at least one time, while R1 defines 

the dependency of task acknowledgement of application on task manual input product 

when the selection product is manual input, and Rule R2 expresses the dependency of 

task acknowledgement of application on task selection output channel when the selec-

tion product is not manual input. 

Constraint R0 for MobiliarCase{ 

 acknowledgement_of_application.started occurs at least 1x 

} 

Constraint R1 for MobiliarCase{ 

(acknowledgement_of_application.finished and selection_product 

equal to “manual_input”) leads to manual_input_product.started 

} 

 Constraint R2 for MobiliarCase{ 

(acknowledgment_of_application.finished and selection_product not 

equal to “manual_input”) leads to selection_output_channel.started 

} 

The two data-based rules R1 and R2 can be visually simplified by an alternative 

expression using a voting task to check whether the selection product is manualinput. 

The voting task is named check_selection_product_manual_input. 

Constraint R3 for MobiliarCase{ 

(acknowledgment_of_application.finished leads to 

check_selection_product_manual_input.started 

} 

Constraint R4 for MobiliarCase{ 

check_selection_product_manual_input.approved leads to manu-

al_input_product.started 



11 

} 

Constraint R5 for MobiliarCase{ 

check_selection_product_manual_input.denied leads to selec-

tion_output_channel.started 

 } 

Compliance rules are composed in natural language by business administrators us-

ing the Papyrus rule editor, as shown in Fig. 6. To facilitate that activity, the editor 

offers a selection of elements from a list of items using business terminology. Thus, 

the language of business is used to define the rule with auto-completion features as 

the user types.  

 

Fig. 6. Compliance Rule Editor 

At runtime, when a clerk creates a confirmation for a customer who has submitted 

an application, an instance of the acknowledgement of application case is created 

upon the clerk’s selection of that template.  

During processing of the First Core Goal, the clerk is presented with a form to en-

ter the insurance ID, customer ID, or case ID. When all of the first core goal’s prede-

fined tasks are finished, the clerk adds task acknowledgement of application, as sug-

gested by the consistency-checking system, which is used to create a confirmation of 

an application. Fig. 7 demonstrates the use of function Add task with a dialog showing 

a list of task templates that are provided to the clerk for adding an ad hoc task on the 

fly. 



12  

 

Fig. 7. Add an ad hoc task at runtime by the function Add task (1) with a list of task templates 

(2) 

Although the task acknowledgement of application is suggested to the clerk be-

cause Constraint R0 was temporarily violated, the clerk can do other tasks as well. 

However, as soon as an ad hoc task related to the compliance rule constraint is added, 

it will be controlled by the consistency-checking system. The constraint that defines 

the occurrence of tasks is used to ensure the presence of the task that initiates the 

variable middle parts, like the task acknowledgement of application. Therefore, to 

complete a case successfully, the clerk must eventually execute that task. 

When task acknowledgement of application is finished, the constraints R1 and R2 

are investigated by the consistency-checking system. Since task acknowledgement of 

application is finished, and if the selection product is chosen as manual input, the 

consistency-checking system suggests the task manual input product to the clerk. If 

selection product is not chosen as manual input, task selection output channel is sug-

gested to the clerk. Thus, the execution of the ad hoc tasks is controlled by the con-

sistency-checking system so the clerk does not overlook any tasks that would violate 

the case’s compliance with the rules. The user can also consult the experience of other 

users who have been in the same situation by asking the UTA for best next actions. 

When there are no more suggestions, the clerk can continue the steps defined in the 

Last Core Goal. When the goal is reached, a confirmation document for the applica-

tion is generated and the case is closed. 

In summary, compliance rules can control ad hoc tasks added at runtime when 

business compliance requirements demand it. Some of these tasks must be executed in 

a certain order and/or depend on the availability of certain data, which is defined by a 



13 

set of compliance rules. Other tasks that do not require such control can be added at 

the clerk’s discretion, such as when the clerk institutes an add additional information 

task when the document is lacking required information. Therefore, our approach 

enables clerks to add ad hoc tasks—tasks that may not have been foreseen when the 

wizard was initially designed—at runtime under the control of the compliance rule 

system based on the current context. 

4. Results achieved 

The ACM technology used to build the wizard processes supports the definition of 

tasks to be performed by business staff at design time and their selective application 

by knowledge workers at runtime so Die Mobiliar can react quickly to new business 

requirements without involving IT. Instead of defining rigid process models that IT 

must implemented with lengthy change-management and rollout cycles, the processes 

can be defined directly by Die Mobiliar’s business administrators using a process 

editor built on the Papyrus platform. 

MKS’s ability to edit wizard templates at any time enables Die Mobiliar to define 

new document and wizard templates within the boundaries imposed by the predefined 

processes. The process management in ACM is highly flexible, as it supports both 

automatic and ad hoc actions [16]. Although fully automated processes can be defined 

for well-behaved and predictable domains, they hinder the innovation and business 

agility that is critical in insurance markets. The clerks who come face-to-face with 

insurance situations should have the flexibility to adapt the case at runtime.  

The enhanced structure of the ACM wizard gives clerks immediate flexibility 

while staying within the boundaries imposed by compliance rules. Clerks can institute 

goal and task templates manually using the predefined wizard case for adding new 

actions at runtime. A set of compliance rules in a constraint-specification language 

examines the consistency of the tasks performed and verifies process compliance [5].  

Compliance rules are also enforced at design time through model-checking [2, 3, 

4] when business administrators develop sub-process templates. Model-checking 

verifies the structural consistency of the predefined sub-processes. By observing 

compliance rules at design time as well as at runtime, business administrators and 

clerks are prevented from violating compliance requirements, and dynamically as-

sembled sequences of tasks are guaranteed to meet the same structural criteria that are 

applied to predefined wizard processes. Thus, the boundaries defined by the rule sys-

tem ensure the compliance of the overall case execution. This approach confers a 

significant benefit during the change-management and release process by reducing 

tests and error-correction efforts. 

With MKS’s redesigned structure, the goal, process, and task templates can be re-

used in various wizard cases, so the number of predefined process templates in the 

library can be reduced considerably. Based on the subset of wizard process templates 

from Die Mobiliar that we could use for our study, we estimated a 40-90 percent re-

duction, depending on the degree of the core process templates’ standardization and 



14  

their efficient reuse. To that end, goals and related sub-processes that appear in sever-

al wizards can be predefined in the wizard case at design time. The reuse of shared 

items will improve the quality and consistency of related cases and avoid redundan-

cies, which are always a source of inconsistency, especially in large-scale and contin-

uously evolving systems. Clerks can process the variable tasks between the prede-

fined processes at runtime, and ad hoc tasks instituted from task templates can be 

added to adapt to unforeseen situations that require new documents. By defining a 

case partially at design time and completing it with variable and ad hoc tasks at 

runtime, Die Mobiliar can avoid inordinately complex wizard cases. 

5. Lessons learned 

The trade-off between comprehensibility and flexibility in business process model-

ing has been addressed by both academia and industry [6], and declarative and imper-

ative models have been studied to improve the flexibility of process models [8, 9, 11, 

15]. To address this challenge, we introduced a theoretical approach and its successful 

application in the hybrid declarative-imperative modeling and enactment of a business 

process. We learned lessons from this practical application and case study. 

A rapidly changing industry like insurance presents a plethora of unpredictable 

business situations. By attempting to cover all business cases up front, rigid process 

modeling of such markets produces bloated process template libraries that hinder an 

organization’s ability to respond to emergent requirements. The construction and 

maintenance of such systems consume significant effort and resources [14]. 

No specific discovery methodology was applied in this case study; the discovery 

for the process redesign was based on the designers’ experience. The shared portions 

of hundreds of process templates were discovered and manually extracted as sub-

processes. In the resulting approach, the tasks in the variable, transitional part of the 

process—that is, the middle part—, are loosely connected by constraints. Depending 

on the designers, the relationships between two tasks are defined either declaratively 

by constraints or imperatively in a sub-process. The hybrid model can be evolved 

gradually through multiple iterations to improve the enterprise’s productive system.  

The inherent flexibility of declarative models makes them suitable to the goal-

oriented approach of ACM in providing an adaptive and flexible system to deal with 

unpredictable business events. Our case study employs an ACM framework that sup-

ports the application of imperative models to reusable sub-processes and of declara-

tive models to ad hoc actions within a case structure. The duality of modeling is hid-

den from business users, as the associated steps can be instituted automatically, mak-

ing case execution transparent. 

The conversion between imperative and declarative models has been addressed by 

various studies [6, 15], which focus on how to obtain a set of declarative constraints 

from an imperative model or vice versa, or even how to combine them into a hybrid 

model. Our case study is unique in that regard, as it does not consolidate the two 

model types into a hybrid model at design time but incorporates them separately into 



15 

the process instances, which are manipulated by knowledge workers at runtime with-

out explicit modeling. The compliance-checking employed by our approach ensures 

the consistency of the execution by suggesting activities and preventing user mistakes 

within the boundaries described by the applied compliance rules. We kill two birds 

with one stone: compliance rules maintain compliance automatically, and they pro-

vide business users the freedom to decide which tasks will best achieve their business 

goals based on their own experience. 

Lessons were also learned from a practical perspective. Die Mobiliar appreciated 

the benefits of this approach, which enables a customer-oriented business strategy that 

focuses on service quality and the customer’s experience. In the midterm Die Mobili-

ar will look into changing several of its predefined process models into flexibly man-

aged workflows. However, such a change would involve a paradigm change, and its 

adoption will occur gradually, as the company must also address considerations like 

the installation of new business user responsibilities for the integration and mainte-

nance of the consistency-checking solution in the production system.  

Acknowledgement. This work was supported by the FFG project CACAO, no. 

843461 and the Wiener Wissenschafts, Forschungs, and Technologie funds (WWTF), 

Grant No. ICT12-001.  

References 

1. BPMN Specification – Business Process Model and Notation. 

http://www.bpmn.org/. Accessed 14 July 2016 

2. Clarke, E.M.: The Birth of Model Checking. In: Grumberg, O. and Veith, H. 

(eds.) 25 Years of Model Checking: History, Achievements, Perspectives. 

pp. 1–26. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). 

3. Czepa, C., Tran, H., Zdun, U., Rinderle-Ma, S., Tran Thi Kim, T., Weiss, E., 

Ruhsam, C.: Supporting Structural Consistency Checking in Adaptive Case 

Management. In: International Conference on Cooperative Information Sys-

tems (CoopIS) 2015. pp. 311–319 (2015). 

4. Czepa, C., Tran, H., Zdun, U., Tran Thi Kim, T., Weiss, E., Ruhsam, C.: 

Towards a Compliance Support Framework for Adaptive Case Management. 

In: 5th International Workshop on Adaptive Case Management and other 

Non-workflow Approaches to BPM (AdaptiveCM 16), 20th IEEE Interna-

tional Enterprise Computing Workshops (EDOCW 2016) (2016). 

5. Czepa, C., Tran, H., Zdun, U., Tran Thi Kim, T., Weiss, E., Ruhsam, C.: On-

tology-Based Behavioral Constraint Authoring. In: 2nd International Work-

shop on Compliance, Evolution and Security in intra- and Cross-

Organizational Processes (CeSCoP 2016), 20th IEEE International Enter-

prise Computing Workshops (EDOCW 2016) (2016). 

6. De Smedt, J., De Weerdt, J., Vanthienen, J., Poels, G.: Mixed-Paradigm Pro-

cess Modeling with Intertwined State Spaces. Bus. {&} Inf. Syst. Eng. 58, 

19–29 (2016). 

http://www.bpmn.org/


16  

7. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifica-

tions for Finite-state Verification. In: Proceedings of the 21st International 

Conference on Software Engineering. pp. 411–420. ACM, New York, NY, 

USA (1999). 

8. Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., 

Zugal, S.: Declarative versus Imperative Process Modeling Languages: The 

Issue of Understandability. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, 

E., Schmidt, R., Soffer, P., and Ukor, R. (eds.) Enterprise, Business-Process 

and Information Systems Modeling: 10th International Workshop, BPMDS 

2009, and 14th International Conference, EMMSAD 2009, held at CAiSE 

2009, Amsterdam, The Netherlands, June 8-9, 2009. Proceedings. pp. 353–

366. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). 

9. Fahland, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M., Zugal, S.: 

Declarative versus Imperative Process Modeling Languages: The Issue of 

Maintainability. In: Rinderle-Ma, S., Sadiq, S., and Leymann, F. (eds.) Busi-

ness Process Management Workshops: BPM 2009 International Workshops, 

Ulm, Germany, September 7, 2009. Revised Papers. pp. 477–488. Springer 

Berlin Heidelberg, Berlin, Heidelberg (2010). 

10. Governatori, G., Rotolo, A.: Norm Compliance in Business Process Model-

ing. In: Semantic Web Rules - International Symposium, RuleML 2010, 

Washington, DC, USA, October 21-23, 2010. Proceedings. pp. 194–209 

(2010). 

11. Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert, M., Ping-

gera, J., Weber, B.: Understanding Declare models: strategies, pitfalls, em-

pirical results. Softw. Syst. Model. 15, 325–352 (2016).  

12. Mobiliar: Die Mobiliar Versicherungen und Vorsorge. 

https://www.mobi.ch/. Accessed 11 Mar 2016 

13. ISIS Papyrus, ISIS Papyrus solution catalog - Swiss Mobiliar. 

http://www.isis-papyrus.com/e15/pages/solutions-catalog/solutions-catalog-

mobiliar-wizard.html. Accessed 11 Mar 2016. 

14. ISIS Papyrus, ISIS Papyrus Press Release. https://www.isis-

papyrus.com/e15/pages/press/PR20151208-WfMC-Award.html. Accessed 

18 August 2016. 

15. Prescher, J., Di Ciccio, C., Mendling, J.: From Declarative Processes to Im-

perative Models. In: Accorsi, R., Ceravolo, P., and Russo, B. (eds.) Proceed-

ings of the 4th International Symposium on Data-driven Process Discovery 

and Analysis {(SIMPDA} 2014), Milan, Italy, November 19-21, 2014. pp. 

162–173. CEUR-WS.org (2014). 

16. Tran Thi Kim, T., Pucher, M.J., Mendling, J., Ruhsam, C.: Setup and 

maintenance factors of ACM systems. Lect. Notes Comput. Sci. (including 

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 8186 LNCS, 

172–177 (2013). 

17. Tran Thi Kim, T., Weiss, E., Ruhsam, C., Czepa, C., Tran, H., Zdun, U.: 

Embracing Process Compliance and Flexibility through Behavioral Con-

sistency Checking in ACM - A Repair Service Management Case. BPM 



17 

2015 4th Work. ACM Other Non-Workflow Approaches to BPM. 1–12 

(2015). 

18. Tran, T., Ruhsam, C., Pucher, M.J., Kobler, M., Mendling, J. (2014) 

Towards a pattern recognition approach for transferring knowledge in ACM. 

18th IEEE International Enterprise Distributed Object Computing 

Conference Workshops and Demonstrations, EDOCW 2014 134–138. doi: 

10.1109/EDOCW.2014.28 

 

 


