
Patterns for Emerging Application Integration Scenarios: A Survey

Daniel Rittera,b, Norman Maya, Stefanie Rinderle-Mab

a
SAP SE, Germany

b
University of Vienna, Faculty of Computer Science

Abstract

The discipline of enterprise application integration (EAI) enables the decoupled communication between
(business) applications, and thus became a cornerstone of today’s IT architectures. In 2004, the book by
Hohpe and Woolf on Enterprise Integration Patterns (EIP) provided a fundamental collection of messaging
patterns, denoting the building blocks of many EAI system implementations. Since then, multiple new
trends and a broad range of new application scenarios have emerged, e. g., cloud and mobile computing,
multimedia streams. These developments ultimately lead to conceptual changes and challenges such as
larger data volumes (i. e., message sizes), a growing number of messages (i. e., velocity) and communication
partners, and even more diverse message formats (i. e., variety). However, the research since 2004 focused on
isolated EAI solutions, and thus a broader and integrated analysis of solutions and new patterns is missing.
In this survey, we summarize new trends and application scenarios which serve as a frame to structure our
survey of academic research on EIP, existing systems for EAI and also to classify integration patterns from
these sources. We evaluate recently developed integration solutions and patterns in the context of real-world
integration scenarios. Finally, we derive and summarize remaining challenges and open research questions.

Keywords: Cloud integration, device integration, enterprise application integration, enterprise integration
patterns, hybrid integration

1. Introduction

Enterprise Application Integration (EAI) ad-
dresses the requirement to integrate independent
applications which need to communicate with each
other [1, 2]. Hence, some middleware is employed
to abstract from the details of communication and
orchestration of applications. For the purposes of
integration, a set of core Enterprise Integration Pat-
terns (EIP) were documented in [3], which describe
recurring scenarios and solutions to realize EAI us-
ing messaging.
Originally, EAI focused on the integration of ap-

plications within a single organization. However,
as hosting (parts of) applications in the cloud be-
comes increasingly popular, EAI also needs to ad-
dress scenarios where applications that are hosted
in the cloud or on-premise (i. e., within company

Email addresses: daniel.ritter@sap.com (Daniel
Ritter), norman.may@sap.com (Norman May),
stefanie.rinderle-ma@univie.ac.at (Stefanie
Rinderle-Ma)

networks) need to be integrated. We refer to
such scenarios as hybrid applications, following For-
rester [4]. Especially hybrid applications require
a stronger decoupling to integrate on-premise with
cloud applications, and consequently, hybrid appli-
cations prefer to use (asynchronous) message-based
communication patterns, while RPC-style integra-
tion is still quite common for EAI in on-premise
setups. Most of the current research focuses on
RPC-style Service-oriented Architecture (SOA).

1.1. New Challenges for Enterprise Application In-
tegration

In this paper we identify further new IT trends
and application scenarios which emerged after the
seminal book on EIP by Hophe and Woolf [3]. Some
of these changes, e. g., Cloud and Mobile Com-
puting, IoT, Microservices, and API Management,
were even recently acknowledged by the EIP au-
thors [5].

One major source for identifying new trends is
the yearly published “Emerging Technologies Hype

Preprint submitted to Journal of L

A
T

E

X Templates March 13, 2017

Preprint (author version). Published version available at: http://dx.doi.org/10.1016/j.is.2017.03.003© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1: IT trends since 2005 in the context of application integration.

Cycle” report between 2005 and 2017 by Gartner
[6]. We focused on the most relevant trends for ap-
plication integration today, i. e., we excluded trends
like machine learning and analytics in the analysis
presented in this paper. The results are depicted
in Fig. 1. Both our literature review in Sect. 2 and
our system review in Sect. 3 are consistent with
the trends identified by the Gartner reports because
both academic research as well as concrete systems
address these trends.

Broadly speaking, the early years (2005 to
2007) are dominated by Service-oriented Architec-
ture (SOA) and Event-driven Architecture (EDA)
styles. But also related technologies like Microser-
vices are mentioned by Gartner in 2017 [6], and API
Management by Forrester for 2016 to 2018 [7].

The Cloud Computing trend became prominent
in 2007 and subsequently led to trends like Hybrid
Computing, i. e., multi-cloud and on-premise appli-
cations, from 2013 to 2015 and the move from B2B
to cloud-based business networks. Early develop-
ments in the Internet of Things (IoT) became influ-
ential even before 2006 to 2008 even though devices
were not yet a↵ordable and wide spread. However,
with the advent of Mobile Computing in 2010, mo-

bile and IoT devices and applications (since 2012)
started to play a role for application integration.
As countless devices and applications generated an
increasing amount of data, Big Data (from 2011)
became influential and a challenge not only for in-
tegration systems. Finally, humans increasingly or-
ganized themselves in social media with its momen-
tum from 2008 to 2012, which evolves to personal
computing, supported by wearable and mobile de-
vices and applications.

In Figure 2 we associate the trends mentioned
in Fig. 1 with aspects of application integration.
While some of the nodes represent the trends (i. e.,
without application and integration system), the
edges denote required interaction and (transitive)
communication, which also gives hints on existing
as well as new integration scenarios for the di↵erent
combinations. Node spanning trends are denoted
by “dashed-line” nodes.

It is noteworthy that for hybrid application in-
tegration for both on-premise to cloud as well as
cloud to cloud communication becomes relevant,
e. g., for migration of on-premise applications to
the cloud. This raises technical issues like secu-
rity but also robustness in the face of errors or

2

Figure 2: IT trends since 2005 an their relationship to application integration.

unavailable communication partners. Furthermore,
cloud, on-premise and mobile applications generate
communication tra�c of an ever increasing scale
with respect to the amount of data but also the
number of communication partners. In this cloud
setup organizations replace the bilateral RPC-style
communication by asynchronous, message-based in-
teractions which are mediated by integration sys-
tems. When the applications in an EAI scenario
are partly hosted by cloud providers, monitoring
becomes more challenging because the interfaces
available for monitoring may be limited. We also re-
view these and other non-functional aspects in our
literature review in Sect. 2, our system review in
Sect. 3 and in the context of real-world integration
scenarios in Sect. 6.

1.2. Research Method

This survey relies on the design science method-
ology [8] as a rigid method to collect and evaluate
the new trends mentioned above, to summarize re-
search which adds new patterns to the original EIP,
and to evaluate these new patterns in the context
of real world application scenarios. Fig. 3 depicts
the research method applied in this paper, and we
use it to structure this paper.
Our fundamental theory and motivation for this

paper is: The original EIP from 2004 do not com-
pletely cover new trends in 2016 and beyond. From
this we derive hypothesis (H1), i. e., the existing
EIP do not su�ce for all application scenarios after

2004. This hypothesis is tested based on two obser-
vation artifacts, i. e., a systematic literature review
in Sect. 2 and a systematic system review in Sect. 3.
Based on the literature review we analyze whether
new trends and application scenarios can be seen
after 2004 and which solutions are provided. The
system review aims at analyzing available systems
regarding their support for integration. Interpret-
ing the literature and system reviews then leads us
to the tentative hypothesis (H2) that current sys-
tem implementations support patterns beyond EIP
which results in a strong demand for systematic de-
scription. In order to address the detected gaps
we propose new pattern categories and patterns.
In hypothesis (H3) we argue that some trends
are handled in an (yet) immature and ad-hoc fash-
ion, and thus require a structuring in form of pat-
terns. These artifacts are then evaluated based on
a quantitative analysis of several real-world inte-
gration scenarios following the hypothesis (H4)
solutions not in EIP can be found in real-world in-
tegration scenarios for the trends. Finally, resulting
research directions are described.

1.3. Contributions and Paper Outline
In this paper we make the following contribu-

tions:

• A systematic literature review of the trends,
e. g., cloud and hybrid application integration
approaches (7! H1), and an analysis of the
most influential system implementations of this
domain (7! H2).

3

Figure 3: Design science methodology used in this paper.

• An extended pattern template plus an exam-
ple based on descriptions of cross-concern tech-
nical qualities (e. g., (stateful) conversation,
streaming, security) for a comprehensive cov-
erage of new requirements (7! H3).

• The evaluation of the found patterns as part
of integration scenarios in a well-established
cloud integration system in form of a quantita-
tive analysis based on new monitoring patterns
(7! H4).

The paper is structured as follows. In Sect. 2 the
literature review of approaches that are closely re-
lated to application integration and integration pat-
terns is conducted by setting them into context to
the new trends since 2004. Section 3 describes the
system review with focus on non-functional aspects
(NFA) – related to the trends – identified during the
literature review, thus leading to a list of potentially
missing functionality. In Sect. 4, we discuss how to
capture the functionality as patterns, similar to the
original EIP, and discuss two patterns in more de-
tail Sect. 5. Then we analyze and discuss real-world
integration scenarios related to the trends and their
usage of the new patterns in Sect. 6. Section 7 con-
cludes the paper and states open issues which are

not addressed in existing work.

2. Literature Review

In this section we conduct a literature review in
order to answer the hypothesis H1: existing integra-
tion foundations in form of patterns do not su�ce
for all application scenarios as set out in Fig. 3.
The hypothesis raises two questions to be investi-
gated in the literature review, i. e., a) are there any
topics after 2004 not yet covered by the original
EIP? and if yes b) do existing approaches provide
solutions to these topics?.

The literature review is based on the guide-
lines described in [9]. The primary selection
of references was conducted using google scholar
(scholar.google.com) on 2016-10-4. The search
string was

allintitle: integration patterns

excluding patents and citations. As a general
baseline, only papers after 2004 are considered as
the main theory behind this study is that the EIP
from 2004 do not cover trends in 2016. Hence the
time range was set to 2005 – 2016. Overall this
resulted in 525 hits. On these hits, the following
selection criteria were applied:

4

scholar.google.com

• relation to computer science, enterprise appli-
cation integration, service integration, data in-
tegration, system integration

• availability of the document

• published in English

• published (excluding Master theses)

Altogether, 52 papers were selected as rele-
vant (the primary literature list can be found
here: http://cs.univie.ac.at/wst/research/

projects/project/infproj/1085/). These 52
papers were further analyzed whether they con-
tribute as observations to the hypotheses. This
resulted in removing 23 papers from the primary
literature list (for example, papers were excluded
that focus on data integration). Then a vertical
search was conducted in forward and backward di-
rection, resulting in 43 papers, including one pa-
per that was added based on expert knowledge.
After analyzing these papers, 34 were included
in the secondary literature list. Overall, this re-
sults in 63 papers for the secondary literature list
(to be found at http://cs.univie.ac.at/wst/

research/projects/project/infproj/1085/).

2.1. Processing of selected literature – topics and
trends

At first, all papers from the secondary literature
list were analyzed with respect to the topics they
are mentioning. Comparing the harvested topics
with the trends identified in the introduction gives
an answer to question a) are there any topics af-
ter 2004 not yet covered by the EIP?. In this first
step it is su�cient that a topic is mentioned. It was
not necessary that a solution was provided. As the
collected topics are very fine granular and spread
widely, they were first grouped according to the
trends mentioned the introduction.
Figure 4 depicts the distribution of topic men-

tions along the trend over time. It can be seen that
SOA (i. e., RPC-style integration [3]) plays a dom-
inant role, particularly in the years 2005 – 2013.
During this period, some topics such as mashups,
cloud, and EDA were occasionally mentioned. In
the last years, i.e., 2014 – 2016 the picture seems
to change, turning away from the strong focus on
SOA towards topics such as cloud, hybrid, and IoT.
From Fig. 4 it can be concluded that some of the

trends occurred in the literature after 2004 with
a dominant occurrence of SOA. Apparently, since
2014 SOA loses significance, and other trends such

as IoT and cloud seem to gain more attention. From
the dominance of SOA we also conclude that a
more fine-grained analysis of the mentioned topics
is meaningful. Hence, in the following, summaries
for the analyzed approaches are provided, ordered
by the topics and areas they work on. Subsequently,
the list of trends will be complemented with Non
Functional Aspects or requirements (NFA) men-
tioned by literature that constitute further impor-
tant topics for EAI since 2005. Moreover, if ap-
proaches provide solutions with respect to the dif-
ferent topics, the type of solution will be collected.

2.2. Literature summaries

This section summarizes the approaches iden-
tified in the literature search. We organize the
summaries chronologically by following the time-
line from Fig. 1. In the context of EAI, no work
was found on the internet of things, social/personal
computing, microservices, and API management,
which can be seen as successor of the Service-
oriented Architecture trend. In addition to the
trends, for each approach we try to derive addi-
tional NFA as well as the proposed solutions. The
harvested NFA and solutions are summarized at the
end of the section in Tab. 1 and yield the input for
the further analysis.

2.2.1. Service-oriented and Event-driven Architec-
tures

According to the timeline, the first EAI solu-
tions after 2005 were provided by Service-oriented
and Event-driven Architectures representing mostly
RPC-style solutions (i. e., a post shared database
and file sharing integration style, compared to
“messaging” like EIP, according to [3]).

Service-oriented Architecture. Hentrich and Zdun
present patterns that address data integration is-
sues such as incompatible data definitions, incon-
sistent data across the enterprise, data redundancy,
and update anomalies [10]. It is described how
to integrate the application-specific business object
models of various external systems into a consis-
tent process-driven and service-oriented architec-
ture. In summary, the proposed solution combines
SOA with patterns, e. g., refactoring patterns. In
[11], the authors propose a pattern language for de-
sign issues of business process-driven service orches-
trations. The patterns illustrate how these types
of service invocation need to be reflected in process
models in order to integrate processes with services.

5

http://cs.univie.ac.at/wst/research/projects/project/infproj/1085/
http://cs.univie.ac.at/wst/research/projects/project/infproj/1085/
http://cs.univie.ac.at/wst/research/projects/project/infproj/1085/
http://cs.univie.ac.at/wst/research/projects/project/infproj/1085/

Figure 4: Distribution of topics mentioned in literature over time.

Implications regarding the functional architecture
are also captured by the patterns. Specifically, the
patterns reflect solutions for general business re-
quirements that can be found in SOA engagements.
Overall, the paper proposes a solution, more pre-
cisely, a pattern language covering, for example,
Synchronous Service Activity, Fire Event Activity,
and Asynchronous Sub-process Service.

In subsequent work [12] the authors present solu-
tions to Process-driven SOA patterns in the sense
of a process integration architecture featuring pat-
terns at Macro Flow (business process) and Micro
Flow level (transaction or human), as well as Inte-
gration Adapter, Configurable Dispatcher, and In-
tegration Adapter Repository. These patterns cor-
respond to the ones proposed in [10]. Furthermore
long-running business processes are distinguished
from short-running technical processes. Zdun et
al. present a survey of technology-independent
patterns that are relevant for SOA and argue to-
wards formalized pattern-based reference architec-
ture model to describe SOA concepts [13]. Finally,
Zdun describes a federation model to control re-
mote objects and proposes a solution based on pat-
terns, e. g., broker and software patterns [14].

Autili et al. discuss challenges posed by the het-
erogeneity of Future Internet services [15]. Modern
service-oriented applications automatically com-
pose and dynamically coordinate software services
through service choreographies described based on
BPMN 2.0 Choreography Diagrams. The authors
state that currently composition and adaptation
is often a manual task, Hence, they advocate to-
wards the automatic synthesis of choreography-
based systems and describes preliminary steps to-
wards exploiting Enterprise Integration Patterns to
deal with a form of choreography adaptation. Con-
cretely, an adapter generator and prototype using
spring integration is presented. Example patterns
comprise Message Routing Patterns, namely Mes-
sage Filter, Aggregator, Splitter, and Resequencer.
Overall, this work bridges SOA to EAI using EIP
and protocol adapters for services. Moreover, it is
planned to integrate EIP with security patterns and
message transformation as future work.

In Gacitua-Decar and Pahl an ontology-based
approach to capture architecture and process pat-
terns is presented [16]. Ontology techniques for pat-
tern definition, extension and composition are de-
veloped and their applicability in business process-

6

driven application integration is demonstrated.
The proposed solution is an architecture framework
for SOA-based EAI as well as an ontology-based
notion of patterns to link business processes and
service architectures. This could be seen as a for-
malization approach. A SOA service integration
framework with a pattern-based modeling approach
is presented by Heller and Allgaier [17]. It features
controlled extensibility of enterprise systems for un-
foreseen service integration and can be estimated as
similar to related B2B Integration and Enterprise
Application Integration. The framework leverages
structural or behavioral interface mediation tech-
niques. The modeling approach with adaptation
patterns and runtime support is demonstrated with
a UI integration prototype in the automotive do-
main. Overall, this work suggests pattern-based
modeling as solution. Kaneshima and Braga anal-
yse whether EAI can be conducted by web ser-
vices and SOA or DB sharing [18]. Both solutions
are being adopted by organizations, although they
present advantages and disadvantages that should
be analysed. This work documents these problems
and solutions in the form of patterns like access via
Shared Database, direct RPC-style integration via
web services, Intermediate Duplication with access
via DB or web services. Hence, the proposed solu-
tion is based on SOA and patterns.
Umapathy and Purao transform EIP to web ser-

vice implementations using a transformation model
called ceipXML [19]. The proposed solution com-
prises conversation models that may be used to im-
plement interactions among Web services as well as
a methodology that generates the design elements
in the form of conversation policies for Web ser-
vices. Current integration approaches do not sup-
port the end user development requirements for in-
frequent, situational or ad-hoc integration and col-
laboration as stated by Zheng et al. [20]. The
work di↵erentiates between UI, component, busi-
ness logic, resource and data integration. Gierds
et al. define an approach for behavioral adapters
based on domain-specific transformation rules that
reflect the elementary operations that adapters can
perform; synthesize complex adapters that adhere
to these rules [21]. The proposed solution com-
prises a formalization, specification of the elemen-
tary activities to model domain knowledge, separat-
ing data from control, and a reduction from adapter
synthesis to controller synthesis. An adapter is gen-
erated to reconcile mismatches (e. g., incompatible
protocols) in Sequel et al. [22]. The proposed solu-

tion is constituted by a survey of protocol adapter
generation (e.g., semi-automated protocol adapter
generation). Gudivada and Nandigam deal with
EAI using extensible Web services [23]. A solu-
tion is not directly proposed, but rather a practical
implementation. Deng et al. combines SOA and
Web service technology to simplify EAI by study-
ing the service-oriented software analyzing and de-
velopment characteristics [24]. The approach dis-
tinguishes between vertical integration within an
enterprise while B2B emphasize on the horizontal
integration. Again the paper presents a more prac-
tical implementation.

SOA and Mobile Computing. Mauro et al. [25] tar-
get design problems of SOA for mobile devices with
Service Oriented Device Architecture (SODA). For
this SOA design patterns like Enterprise Inven-
tory are analyzed with respect to their applica-
bility to SODA, and new pattern candidates like
Service Virtualization are identified. From these
candidates new (device) patterns including Auto-
Publishing, Dynamical Adapter, Server Adapter,
Integrated Adapter, External Adapter are proposed
as solution.

SOA and Mashups. Liu et al. combine several
common architecture integration patterns, namely
Pipes and Filters, Data Federation, and Model-
View-Controller to compose enterprise mashups
[26]. Moreover, these patterns are customized for
specific mashup needs. In [27] enterprise architec-
ture integration patterns (e. g., Pipes and Filter,
Data Federation, Model-View-Controller) are lever-
aged in order to compose reusable mashup compo-
nents. The authors also present a service oriented
architecture that addresses reusability and integra-
tion needs for building enterprise mashup applica-
tions. The proposed solutions focus on SOA and
mashups, but no solution to EIP and new trends is
provided. The work by Braga et al. addresses issues
of complexity of service compositions with adequate
abstraction to give end users easy-to-use develop-
ment environments [28]. Abstract formalisms must
be equipped with suitable runtime environments
capable of deriving executable service invocation
strategies. The solution tends towards mashups
and modeling as users declaratively compose ser-
vices in a drag-and-drop fashion while low-level im-
plementation details are hidden. However, the solu-
tion could not be clearly identified and is hence not
included in Tab. 1. Finally, Cetin et al. chart a road

7

map for migration of legacy software to pervasive
service-oriented computing [29]. Integration takes
place even at the presentation layer. No solution is
provided for EIP and trends, however, mashups are
used as migration strategy to SOA based for the
Web 2.0 integration challenge.

SOA Security. Qu et al. present six bilateral pat-
terns (Binding, On-demand, Tailor, Composite,
Contract and Migration) and four multilateral pat-
terns (Separated, Shared, Mediated and Enhanced)
as a solution for integrating new services with Grid
security services [30]. For each pattern, the au-
thors discuss its intent, applicability, participants
and consequences. Shah and Patel analyse the
security requirements for global SOA [31]. For
security concerns, dynamic configuration of han-
dlers, sequence, and identification of handlers is
proposed as solution. Fisher et al. provide prac-
tical implementations in Java and .NET for inter-
operable, synchronous, and asynchronous integra-
tion [32]. Hence, the proposed solution consists of
implementation details for SOA, WS security ex-
amples, and best practices such as a secure object
handler adding custom interceptor logic for, e. g.,
adding digital signatures.

SOA and Business Processes. Ouyang et al. for-
malize process control flows into BPEL processes
by an intermediate translation to Petri nets [33].
From the same group, Wang et al. construct and in-
terface adaptation machine that sits between pairs
of services and manipulates the exchanged mes-
sages according to a repository of mapping rules.
For both approaches, the proposed solution is a
formalization. Lohmann et al. analyze the in-
teraction between WS-BPEL processes using Petri
nets [34]. Again the proposed solution is a formal-
ization. With a similar goal, Kumar and Shan aim
at simplifying the pattern compatibility based on a
matrix and rules that enable the simplification of
checking compatibility between two or more pro-
cesses because these prerequisite rules can be ap-
plied to each pattern separately [35]. The proposed
solution is an algorithm and can hence be sub-
sumed as formalization. Mismatch patterns that
capture the possible di↵erences between two ser-
vice (business) protocols to adapt and automat-
ically generate BPEL adapters are presented by
Jiang et al. [36]. They introduce several depen-
dencies such as transformation dependency (incl.
message split), synchronization dependency, choice

dependency (choice among two ore more messages),
and priority dependency. The proposed solution
is the formalization of mismatches. Barros et al.
propose SOA process interaction patterns including
Send, Receive, Send/Receive, and Racing Incoming
Messages [37]. Patterns for synchronization prob-
lems in the area of process-driven architectures,
e. g., Waiting Activity or Timeout Handler, are in-
troduced by Köllmann and Hentrich [38]. Vernadat
looks at architectures and methods to build interop-
erable enterprise systems, advocating a mixed ser-
vice and process orientation and the classification
of integration levels, physical system, application,
business integration, and enumerates SOA concepts
[39]. No specific solution is proposed. Grossmann
et al. derive integration configurations from under-
lying business processes, e. g., activities [40]. Future
work names exception handling as challenge, how-
ever no solutions are provided.

Event-driven Architecture (EDA) and SOA. Taylor
et al. address the SOA - EDA connection as service
network and provide a reference EDA manual [41].
As no solution is provided, the approach is not in-
cluded in Tab. 1. A theoretical framework for mod-
eling events and semantics of event processing is
provided by Patri et al. [42]. The formal approach
enables to model real-world entities and their in-
terrelationships and specifies the process of moving
from data streams to event detection to event-based
goal planning. Moreover, the model links event de-
tection to states, actions, and roles enabling event
notification, filtering, context awareness, and esca-
lation. The proposed solution consists of events and
formalization.

2.2.2. Cloud Computing, Business Networks, and
Hybrid Applications

The successor of grid and cluster computing is
cloud computing that extends B2B to business
networks, and the coexistence of applications on-
premise and in several kinds of cloud platforms as
hybrid applications.

Cloud Computing. Asmus et al. focus on the mi-
gration of enterprise applications to the cloud [43].
Integration is considered a key factor influencing
cloud deployment. Several migration patterns are
described as a basis for enabling enterprise cloud
solutions. The following challenges are named in
the paper: data volume, network latency, iden-
tity and data security management, interoperabil-
ity (i. e., supporting the trends big data, security,

8

and variety as in multimedia). Asmus et al. state
that “integration pattern can be a starting point in
deciding integration options” [43]. The key areas
addressed in the approach include on premise, o↵-
premise private cloud, cloud integration, cloud ser-
vice provider, and external users. The integration
patterns refer to process to process and data inte-
gration. Overall, the proposed solutions are “pat-
terns and processes-based” methods for an initial
evaluation of the risk and e↵ort required to move
new and existing applications to a cloud service.
In Ritter and Rinderle-Ma, a collection of integra-
tion patterns derived from requirements of hybrid
and cloud applications is presented [44], thus pro-
pose a solution for cloud and patterns. The main
challenge described by Merkel et al. is a secure
integration [45]. The approach proceeds in a top-
down manner by deriving integration patterns from
scenarios and in a bottom-up fashion by deriving
patterns from case study requirements. It identifies
the need for security (access control, integrity, con-
fidentiality) as well as security constraints (e. g., EU
Data Protection Directive) and presents an evalu-
ation based on an architecture with major focus
on hybrid and multi-cloud setups. The described
patterns are cross-cloud ESB, usage of ESBs, as
well as security patterns as architecture compo-
nents such as LDAP. The approach only works in
private clouds. Merkel et al. propose future work
on public cloud that involves content encryption,
key management, data splitting, computing with
encryption functions, anonymization, data mask-
ing, and encrypted virtual machines. They men-
tion Cross-Cloud Balancer, Cross-Cloud Data Dis-
tributor, and replication patterns as further future
work. Other challenges mentioned are cross-cloud
monitoring and cloud management. In summary,
the proposed solution are new patterns for SaaS in-
tegration and centralized as well as decentralized
multi-cloud integration.

Business Network. Ritter provides mappings of
EIP integration semantics and patterns to BPMN-
based models as well as an implementation of a
business network scenario example [46, 47]. Both
works do not directly propose a solution to the
trends depicted in Fig. 4, but introduce modeling
as a possible solution in the context of EIP, thus
added as category to Tab. 1.

Hybrid Applications. A major challenge in hybrid
applications is the decision where to host parts of

the application. In this regard, Mansor recom-
mends to bear in mind the patterns in the envi-
sioned process [48]. The work addresses techni-
cal challenges when implementing a hybrid archi-
tecture. The proposed solution refers to architec-
tural patterns. A holistic approach for the devel-
opment of a service-oriented enterprise architecture
with custom and standard software packages is pre-
sented by Buckow et al. [49]. The system architec-
ture to be developed is often based on integration
patterns for the physical integration of systems. No
solution is provided in the context of this work.

2.2.3. Internet of Things and Big data

With a↵ordable and widespread mobile sensors
and devices comes the Internet of Things and to-
gether with the immense amount of data from cloud
and mobile computing comes Big data.

Internet of Things (IoT). Heiss et al. collect
challenges in cyber-physical systems such as com-
munication quality, interoperability, and massive
amounts of data [50]. As interesting requirements
they state “placement” (of integration scenarios),
e. g., cloud or on-device, the demand for global op-
timization, more intelligent devices, networking and
cloud and security including data security and pri-
vacy etc., decoupling of layers vs. direct data ac-
cess for on-top applications. Rather than proposing
a solution, the industrial and business perspectives
on such envisioned platforms are described.

Big data. Ritter and Bross suggest moving-up rela-
tional logic programming for implementing the in-
tegration semantics within a standard integration
system [51]. For this EIP semantics is translated to
relational logic. For declarative and more e�cient
middleware pipeline processing (e. g., parallel exe-
cution, set-operations), the patterns are combined
with Datalog. The expressiveness of the approach
is discussed, and a practical realization by exam-
ple is provided. Although no direct solution to the
trends is provided the approach directs to “data-
aware” integration patterns.

2.2.4. General EAI approaches

From practical EIP implementations to ideas for
new patterns, formalization approaches, enabling
techniques and domain-specific work, this section
rounds o↵ the literature analysis with further EAI
challenges.

9

Practical Aspects. Scheibler and Leymann present
a framework for configuration capabilities of EIP,
specifically for code generation based on a model-
driven architecture [52]. In [53], EIP are imple-
mented in IBM WebSphere. Again no solution for
the trends is provided, but a solution to the EIP
through implementation. Thullner et al. analyse
EIP coverage in open source tools and implement
a sample scenario in Apache Camel and Mule [54].
No solution is provided.

EAI Patterns. [55] presents a pattern language for
conversations between loosely coupled services, i. e.,
patterns are suggested as solution. Gonzales and
Ruggia deal with response time and service satu-
ration issues (more requests than can be handled)
using an adaptive ESB infrastructure [56]. They
propose solutions in the form of strategies, i. e., De-
layer, Defer Requests, Load Balancing, and Cache.

Formalization and Verification. Fahland and
Gierds present a conceptual translation of EIP
into Colored Petri nets, hence providing a formal
model based on a system specification using EIP
[57, 58]. The Petri net based formalizations can
be used to simulate and conduct model checking
of pattern compositions. Though the formalization
can be understood as solution, it does not address
any new trends beyond EIP, thus this approach is
not contained in Tab. 1. A semantic representation
of EIP for automatic management of messaging
resources (e. g., Channels, Filters, Routers) is
presented by Patri et al. [59]. The application
is to connect mobile customers to Smart Power
Grid companies. Data is accessed in form of
alerts from a complex event processing engine
using SPARQL queries. The proposed solution
is a formalization for resource management of
integration patterns. Basu and Bultan focus on
the interaction behavior in asynchronously commu-
nicating systems resulting in decidable verification
for a class of these systems [60]. As the proposed
solution (formalization) is not in the context of
the trends, it is not included in Tab. 1. Mederly et
al. generate a sequence of processing steps needed
to transform input message flow(s) to specified
output message flow(s) [61, 62]. The work takes
into account requirements such as throughput,
availability, service monitoring, message ordering,
and message content and format conversions.
Additionally, it uses a set of conditions, input
and output messages, and a set of configuration

options. Control flow ordering is formalized. The
work is excluded from Tab. 1 because it provides
no solution, but rather creates parts of integration
solutions from the description of what has to be
achieved, not how it should be done.

EAI enabling techniques. The following approaches
address di↵erent enabling technologies. However,
neither are the presented approaches related to
the trends, nor do they propose concrete solutions.
Hence they are not included in Tab. 1. Architec-
tural patterns (e. g., Remote Process Invocation,
Batch Data Synchronization, SOA, Pub/Sub, P2P,
Broker, Pipes and Filters, Canonical Data model,
Dynamic Router) are contributed by Kazman et
al. [63]. This work constitutes a guideline for IT
architects that combines existing patterns. Land
et al. integrate the existing software after restruc-
turing or merger, i. e., address the question of how
to carry out the integration process [64]. Multiple
case studies and recurring patterns for vision pro-
cess and an integration process are provided as well.
Basic concepts of enterprise architectures including
integration and interoperability are summarized by
Chen et al. [65].

Domain-specific Approaches. Cranefield and
Ranathunga integrate agents with a variety of ex-
ternal resources and services using Apache Camel
and the EIP endpoint concept [71]. e-Learning as
a growing and expanding area with huge number
of disparate applications and services is addressed
by Rajam et al. [68]. The approach redefines the
Model-View-Controller pattern. It can be further
enriched to encapsulate certain non-functional and
integration activities such as security, reliability,
scalability, and routing of request. As all these
approaches do not propose a solution directly
connected to EIP and the trends, and hence they
are not included in Tab. 1.

EAI Challenges. A survey to motivate some more
challenges in the area of enterprise application inte-
gration and to link back to the trends is presented
by He and Xu [69]. Further this work examines
the architectures and technologies for integrating
distributed enterprise applications, illustrates their
strengths and weaknesses, and identifies research
trends and opportunities for horizontal and verti-
cal integration. Though no solution is proposed,
the discovered trends are strengthened, for exam-
ple, SOA, personal, mobile, and IoT. The survey

10

Table 1: Solutions for trends and non-functional aspects (parentheses mean partial solution)
Trends Patterns [3] Formalization [5, 66] Modeling [46, 47, 66]
Service-oriented Architecture [10, 11, 12, 13, 14, 15, 16, 18, 32,

37, 38], security [30, 31]
[16], adapters [21, 22, 35, 36, 67],
control flow [33], interact. [34]

[17]

Internet of Things
Event-driven Architecture [42, 59]
Cloud computing [44, 45], (migration [43])
B2B/ Business Network (by example [46, 47])
Social/ Personal Computing
Mobile Computing SOA device patterns [25]
Big Data
Hybrid Computing (migration [43, 48])
API Management (for SOA [15])
Mashups [26, 27], SOA migration [29]

NFA with evidence
Asynch [3] EIP [3], strategies [56] [57, 58]
Security [15, 31, 45, 50, 68, 69] (for SOA [30, 31])
Media [6]
Synch / Streaming [5]
Conversations [5], [6] [55], (for SOA [37]) (for SOA [19, 34])
Error Handling [5, 45] (EIP [3, 70])
Monitoring [45, 61, 62] ([3])

also addresses NFA, e. g., security, which are col-
lected and serve as input for Tab. 1. Another sur-
vey by Panetto et al. discusses trends and NFA in
enterprise integration [66]. Moreover, modeling and
formalization (formal methods such as verification)
are proposed as challenges, but no concrete solution
provided.

2.3. Synthesis and Discussion of Non-functional
Aspects

The second aspect of our analysis of trends are
topics that were named by Gartner [6] and Zimmer-
mann et al. [5] as relevant or that were identified
during the literature review. However, these top-
ics have a more cross-cutting quality (i. e., relevant
for several trends). We call them non-functional as-
pects or requirements (NFA), which we appended to
Tab. 1 together with the references that supported
them as challenges (as evidence). They are set into
context to important aspects, when working with
integration scenarios, namely patterns, formaliza-
tion and modeling. The focus on patterns comes
from the EIP [3] and supported by many related do-
mains, that capture knowledge and best practices
in form of patterns (e. g., SOA, Cloud Computing).
Panetto et al. [66] bring up the formalization (sup-
ported by [5]) and modeling (supported by [46, 47])
as additional relevant topics. We now set these top-
ics into context with the references from the litera-
ture analysis in Tab. 1.
For the EIP, we added asynchronous message

processing as Asynch to cover the solutions in this
space, e. g., by [3, 56]. For the NFA, solutions in
the area of formalizations are proposed by [57, 58]

for the validation of pattern composition and busi-
ness processes. Another NFA is Security, which was
seen as challenge at least by Gartner [6] and in the
literature by [31, 50, 68] (in general), by [69] (per-
formance concerns, real-time integration), and by
[45] (e. g., safe integration, indications that content
encryption, key management and more is missing).
Autili et al. [15] mention the need for security in-
tegration patterns. The solutions for patterns are
limited to SOA with patterns like Secure Service
Consumption or Security Handler Information Ex-
change [30, 31].

According to Gartner, multimedia format han-
dling and processing can be seen as a non-functional
requirement [6]. This includes image, video and
text image formats, which are increasingly pro-
duced through mobile devices and, e. g., interacted
on social media, becoming of increasing interest for
(business) applications.

In the context of the big data challenges of in-
tegration systems (from Gartner; e. g., volume, ve-
locity, stability), (synchronous) streaming protocols
are seen as one possible solution. The authors of [5]
mention that patterns as well protocols are cur-
rently missing in EAI.

With more and more communication partners
that result from the trends in Sect. 1.1, (stateful)
conversational protocols might be required, accord-
ing to [5] and also Gartner (e. g., device meshes).
First ideas have been sketched by [55] with an initial
collection of conversation patterns, which should be
extended [5]. For SOA web service conversation
policies [19] and interaction patterns [37] solutions
were provided. Formalizations have been proposed

11

Table 2: System review - horizontal search
Category hits selected Selection criteria Selected Systems
Commercial 12 7 Gartner and Forrester IPaaS

Quadrants
Dell Boomi [72], IBM Cast Iron [73], Informatica
[74], Jitterbit [75], MS BizTalk [76], SAP Cloud
Integration [77], Oracle [78]

Startup 20 2 cloud/data integration, B2B,
API, #followers

Tray.io [79], Zapier [80]

Open Source 13 2 application integration, data in-
gestion

Apache Flume [81], Apache Nifi [82]

Wikipedia 34 1 enterprise application integra-
tion; non-duplicates

Apache Camel [83]

Added Systems n/a 3 expert knowledge Cloudpipes [84] (startup), Tibco [85], WebMeth-
ods [86] (commercial)

Removed Systems - -

Overall 74 15

in [34] for the SOA domain with focus on the con-
trollability of a process. The proposed solutions for
SOA might be transfered to integration processes
as starting point for more general conversation pat-
terns.
To handle erroneous situations during message

processing, escalate them and make systems more
fault-tolerant, error handling is seen as a major as-
pect [5, 45]. Hohpe et al. [3, 70] do only cover
Dead Letter Channel as solution and sketch some
ideas about the topic. Overall, in the literature, the
topic is neither addressed from a pattern, formaliza-
tion, nor modeling perspective. While [5] mentions
missing patterns and formalization, Merkel et al.
[45] lists Balancing and Distribution, as well as [69]
mentions Fault-tolerance and Message Scheduling
as missing aspects. Similarly, the insight into the
current state of a↵airs, called monitoring, for ser-
vices and cross-cloud are seen as important topics
in [45, 61, 62].
The monitoring of integration processes as well

as cross platform monitoring were only mentioned,
however, no solution was provided. The Control
Bus, a Wire Tap and the Message History patterns
in Hohpe et al. [3] denote partial solutions, which
can be used to build a monitoring solution on inte-
gration process level.

3. System Review

This section reports on the results of a system
review to answer hypotheses H2 the EIP of the
2004 book are all widely used in praxis, and H3 cur-
rent system implementations do support more pat-
terns as set out in Fig. 3. The system review is
based on the guidelines described in [9] for a hori-
zontal search including “well-established” commer-
cial application integration systems, more experi-

mental systems from startups, open source systems
and public knowledge in form of a Wikipedia search.
The selection of systems was conducted on 2016-
10-04, and the results of the horizontal search are
summarized in Tab. 2. The NFA are used to focus
the search in those systems.

First, seven commercial systems were collected
by taking the systems listed in both, the Gart-
ner (Leaders, Visionaries, Challengers) [87] and the
Forrester (Application Integration) IPaaS list [88]
– out of 12 systems, leading to the following sys-
tems: Dell Boomi [72], IBM Cast Iron [73], Infor-
matica [74], Jitterbit Harmony Cloud Integration
[75], Microsoft BizTalk [76], SAP Cloud Integra-
tion [77], and Oracle Cloud Integration [78]. We
scratched MuleSoft due to its similarity to Apache
Camel [83], which we selected as expert addition
from Wikipedia (discussed later).

In addition, two startup systems from the top 20
overall systems were selected due to their number
of followers on angel.co

1, namely Tray.io [79] and
Zapier [80]. While the former is striving to build
an “Integration Marketplace” for enterprise appli-
cations, Zapier is a cloud integration startup.

Out of 13 open source systems of the Github
Hadoop Ecosystem2, we selected Apache Flume [81]
and Nifi [82] as data ingestion systems according
to the selection criteria (cf Tab. 2). We scratched
the application integration systems Talend (also
listed as commercial system), Spring Integration
and MuleESB for their similarity to Apache Camel
as well as Apache Beam, Apache Sqoop and Spring
XD for their similarity to Apache Flume.

1Angel.co, visited 02/2017: https://angel.co/

data-integration
2Hadoop Ecosystem on Github, visited 02/2017: https:

//hadoopecosystemtable.github.io/

12

angel.co
https://angel.co/data-integration
https://angel.co/data-integration
https://hadoopecosystemtable.github.io/
https://hadoopecosystemtable.github.io/

The open source integration system Apache
Camel [83] does not appear in the open source list,
however, it was the only non-duplicate from the
other lists that has to be selected, since it imple-
ments the existing EIP from [70] and is a role model
for many systems like Spring Integration, or Red
Hat’s FuseESB.
The software systems of Tibco [85] and Software

AG [86] are wide-spread and influencial integration
systems for on-premise with a cloud integration of-
fering and are listed among the top for wide integra-
tion and deep integration for traditional on-premise
by Forrester3. Hence we add them as expert se-
lected additions. We add Cloudpipes [84] from the
startup list as cloud integration system.
That leaves us in total with 15 systems with

a good mix of well-established commercial and
startup products, as well as community projects.
Since the main focus lies on commercial systems
that are known to be less well accessible for a
systematic analysis of their features, we focus on
the publicly available material (i. e., without regis-
tration or login) and try to get more information
by possibly underlying open source systems, where
possible.

3.1. Processing of selected systems

3.1.1. EIP Solutions used in System Implementa-
tions

We start our system review with an analysis of all
selected systems with respect to their implementa-
tion of EIP solutions. The EIP describe six pattern
categories, namely, Messaging Channels, Message
Construction, Message Routing, Message Transfor-
mation, Messaging Endpoints and System Manage-
ment. We focused the analysis on the two pattern
categories of message routing and transformation,
since they represent the core aspects of integration
systems. Furthermore we left out composed pat-
terns (e. g., composed message processor, scatter-
gather), when their single parts were already in
the selection. Table 3 (from Boomi to Oracle) and
Tab. 4 (from Flume to Webmethods) depict the so-
lutions found in the system implementations that
could be associated to the routing and transforma-
tion patterns.
The Apache Camel system seems to be specifi-

cally designed around the EIP, thus supports nearly
all EIP and sticks to the original EIP naming for the

3The Forrester Wave: Hybrid2Integration, Q1 2014

respective solutions, which makes it a benchmark
for the others. Most notable deviations are the
Envelope Wrapper (i. e., wrap application data in-
side an envelope, compliant with the messaging in-
frastructure) and Message Translator patterns (i. e.,
translate one data format into another one; not in
transformation patterns). None of them is directly
represented in Camel, however, can be implemented
using UDFs (i. e., user-defined functions like Camel
Processor) or scripting (e. g., Camel Script), there-
fore marked as partially covered by parentheses.

The most common routing pattern solutions are
the Content-based Router, the Splitter and the Ag-
gregator. Since the Message Filter is a special case
of the content-based router and filter can be used to
construct the latter, not all systems provide imple-
mentations for both of them. The splitter is some-
times implemented according to the description in
the EIP, however, some vendors decomposed it to
its iterative core functionality (e. g., For Each in
IBM, Oracle, Cloudpipes). The aggregator shows
many partial solutions that require user-defined
functions (e. g., Informatica, Oracle, Tray.io), while
only few provide its EIP functionality (e. g., Aggre-
gator in BizTalk, SAP Cloud Integration, Tibco or
ContentMerge in Apache Nifi).

The transformation patterns seem to play a ma-
jor role in the analyzed systems, since most of them
are broadly supported. However, there seems to be
a tendency to provide UDF capabilities and leave
the burden to the user to deal with the semantics.

Finally, the dynamic routing patterns (e. g., Dy-
namic Router), those patterns that contain the re-
cipient in their content (e. g., Recipient List, Rout-
ing Slip), and the Message Resequencer, e. g., used
for the exactly-once-in-order service quality [89],
were sparsely implemented. This leaves the ques-
tion on their relevance or other components that
take over their function.

Summary. While some of the EIP like Content-
based Routing or Message Filter, Splitter and Con-
tent Enricher can be found in most of the systems,
others are rarely implemented (e. g., Resequencer,
Routing Slip). The analysis of these patterns and
their relevance are left for future work, and thus not
analyzed further.

3.1.2. New Solutions not covered by System Imple-
mentations

We now analyzed the collected systems with re-
spect to their functionalities according to the har-

13

Table 3: Original EIP used in systems; supported
p
, partial (

p
), unknown/not supported �

Pattern Boomi IBM Informatica Jitterbit BizTalk SAP Oracle
Content-based Router

p p
- -

p p p

Message Filter -
p

- -
p

- -
Dynamic Router - - - -

p
- -

Recipient List - - - - - - -
Splitter

p p
(
p
)

p p p p

Resequencer - - - - - -
p

Routing Slip - - - - - - -
Aggregator - - (

p
) -

p p
(
p
)

Envelope Wrapper (
p
) (

p
) (

p
) (

p
) - - -

Content Enricher (
p
) - - (

p
) (

p
)

p
-

Content Filter (
p
) - - (

p
) (

p
)

p
-

Claim Check (
p
) - - (

p
) - (

p
) -

Normalizer (
p
) - (

p
)

p
(
p
) (

p
) -

Message Translator
p

- (
p
)

p p p
-

Table 4: Original EIP used in systems; supported
p
, partial (

p
), unknown/not supported �

Pattern Flume Nifi Camel Tray.io Zapier Cloudpipes Tibco Webmethods
Content-based Router (

p
)

p p p
-

p p p

Message Filter
p

-
p

-
p p

- -
Dynamic Router (

p
) -

p
- - - - -

Recipient List - -
p

- - - - -
Splitter

p p p
-

p p p
-

Resequencer - -
p

- - - - -
Routing Slip - -

p
- - - - -

Aggregator (
p
)

p p
(
p
) - -

p
-

Envelope Wrapper - - (
p
) - - - - -

Content Enricher (
p
)

p p p
(
p
) (

p
)

p p

Content Filter (
p
)

p p
(
p
) (

p
) (

p
)

p p

Claim Check - -
p

- - - (
p
) -

Normalizer (
p
) -

p
(
p
) (

p
) (

p
)

p p

Message Translator (
p
)

p
(
p
)

p
(
p
) (

p
)

p p

vested NFA from Sect. 2.3), namely security, media,
streaming or more abstract “processing”, conversa-
tions, error handling, and monitoring. Comparing
the NFA with the collected system functionalities,
while neglecting functionalities covered by the EIP,
gives an answer to the question which topics are
required and used in addition. Hereby, the system
functionalities represent an implemented solution
as part of an actual integration system.

Figure 5 depicts found solutions not covered by
the EIP by NFA and system vendor. During the
analysis new NFA were identified – not mentioned
by Gartner, the EIP authors, or the literature –
that seem to play a role in practical terms: stateful
integration processes using storage, (pattern) com-
position (mentioned in Zimmermann et al. [5]), and
system operations. These three new NFA were in-
cluded into the analysis of the other systems as well.
All non-related topics are collected as miscellaneous
(Misc).

Notably, all identified NFA are at least partially
covered by system implementations, indicating that
solutions in form of conceptual definitions are re-
quired (e. g., as patterns). According to Mule-
soft [90], the major challenges in cloud integration

systems are security and management. The man-
agement includes error handling and monitoring,
which allow to control the behaviour of the integra-
tion scenarios.

The classic application integration addresses the
variety problem for textual message formats [2].
With the availability of integration systems for “ev-
erybody” (e. g., in form of a cloud integration sys-
tem) non-textual formats gain importance.

The trade-o↵ between stateful and stateless mes-
sage processing is represented by storage capabil-
ities in integration systems, for which nearly all
vendors propose a solution and conversations. The
stateful approaches could be represented by conver-
sational protocols, which allow to move the state
from the integration systems to the communication
partners (idea sketched in [55]). Most of the service
qualities (e. g., at-least-once, exactly-once process-
ing) [3, 89] require stateful integration processes.
Consequently, this would require changes in the ap-
plications. Current systems provide only rudimen-
tary support, if at all.

Finally, a broad variety of miscellaneous topics
was collected, e. g., sentiment analysis, natural lan-
guage translators, but also more general functions

14

Figure 5: Solutions for NFA not covered by the EIP by system vendor.

like sort, loops, as well as explicit format handling,
i. e., marshalling and type conversion.

Summary. Notably, security and error handling
(and monitoring) capabilities are predominantly
found. They address the challenges of security and
management. Furthermore, solutions for the in-
creasing variety of message formats (cf. media) as
well as the volume and velocity handling can be
found in the systems are part of new processing
types. The storage of data and message seman-
tics like quality of service are relevant for integra-
tion scenarios. This leads to the trade-o↵ between
stateful vs. stateless integration processes, which
briefly address in Sect. 5. The (stateful) conversa-
tions, which could be part of a solution, are cur-
rently under-represented.

3.2. System Summaries along NFA
3.2.1. Security
The aspect of confidentiality or message privacy

is solved on transport, message and storage lev-
els. The transport level channel encryption can
mostly be specified in the inbound and outbound
adapters in form of the transport protocol (e. g.,
HTTPS, SFTP) and guarantees that the message
cannot be read during transmission (e. g., Jitter-
bit’s Transmission Protection). Once, the message

is received by the inbound adapter and handed to
the subsequent operation in the integration pro-
cess, message privacy can be applied or reversed.
Therefore many vendors provide explicit message
encryptors and decryptors (e. g., PGP Encrypt and
Decrypt from Dell Boomi, AES ENCRYPT from
Informatica or Encrypt / Decrypt in Apache Nifi),
or encrypting adapters (e. g., FileProcessorConnec-
tor in Informatica, FileChannel in Apache Flume,
WSSProvider in Tibco). The encrypted storage of
messages helps to protect the message’s privacy in
the store, e. g., can be configured in SAP’s DB-
Storage and Persist operations. The configura-
tion of the message privacy solutions mostly in-
clude encryption algorithms, key lengths and cer-
tificates. Similarly, the integrity and authenticity
of a message can be ensured on the di↵erent lev-
els. Most of the vendors provide configurations for
safe and authenticated transport (e. g., using user
and password, certificate or token-based authenti-
cation). The transport is considered safe if changes
of the message can be recognized by the receiver
and the authenticity guarantees that the sender is
the expected one. For instance, most of social me-
dia endpoints like Twitter and Facebook use token-
based OAuth authentication. In addition, many
vendors provide explicit message signers and signa-

15

ture verifiers (e. g., Digest/Hash function in IBM,
Signer and Verifier in SAP Cloud Integration) as
well as safe message storage is provided, e. g., by
Jitterbit or SAP Cloud Integration. For the stor-
age, the authenticity seems to be implied, since the
cloud platform message or data store is used. The
availability of integration scenarios is not only a sta-
bility, but also a security concern. Therefore some
vendors like IBM, SAP Cloud Integration provide
implicit countermeasures, e. g., redundant message
stores with high availability and disaster recovery,
as well as Apache Flume with explicit Morphli-
neSolrSinks and Kafka Channel configurations. Fi-
nally, changes to the message are tracked for audit-
ing purposes. This is made explicit as Audit Trails
in Jitterbit and Oracle or Service Auditing in Web-
Methods.

3.2.2. Media
The literature review in Tab. 1 shows that there

are no solutions for multimedia processing in appli-
cation integration or related domains (e. g., SOA,
EDA). The system analysis does only provide few,
superficial solutions. For instance, textual repre-
sentation of binary content is explicitly configurable
in most of the systems (e. g., Base64 Encode / De-
code in Dell Boomi and IBM, Encoder / Decoder
in SAP Cloud Integration). These encodings play a
major role when communicating with remote appli-
cations, but also when calling services (e. g., user-
defined operations) using textual message proto-
cols. In addition, most of the vendors allow user-
defined operations in form of scripting capabilities
(e. g., Script, Processor in Apache Camel, Expres-
sions in Informatica). With that, more complex
operations can be performed like the compression
of – usually bigger – multimedia messages. De-
spite that, pre-defined compression operators can
be found in, e. g., Dell Boomi, Jitterbit, Apache
Nifi, which allow to configure the compression type
(e. g., zip). The explicit support of scripting seems
to be a general trend, when representing transfor-
mation patterns (cf. Sect. 3.1.1). This could either
mean that the implementations are too diverse to
formulate a general solution or indicate that the
topic was not considered yet. The support of ex-
plicit image processing operations seems to be lim-
ited to Nifi’s ResizeImage and ExtractImageMeta-
data functions as well as IBM’s Read MIME activ-
ity. The only real multimedia operation is the im-
age resizing, since the metadata simply provide a
format specific capture of the defined image’s meta

tags.

3.2.3. Processing
While the literature review does not show so-

lutions for message processing, especially not for
“data-aware” or Big Data processing, the systems
implement solutions. The canonical solution for
processing larger amounts of data is to scale-out to
multiple processing units, constituting parallel sub-
processes. The parallel processing of one message in
subprocesses using a broadcast can be done, e. g., in
BizTalk with Create concurrent flows, SAP Cloud
Integration Gateways, or Apache Camel Multicast.
Furthermore, the explicit configuration of parallel
processing within an integration process (i. e., not
process parallelization) is supported by, e. g., Dell
Boomi using the Flow Control properties, Jitterbit
Parallel Processing, Tibco Non-inline subprocesses
and Critical Section, BizTalk Scope batch property.
Alternatively, a more data-centric approach, how-
ever, impacting the latency of the process, is micro-
batching [91]. Vendors like Dell Boomi and Jitter-
bit also support batch processing of messages us-
ing the Flow Control properties or Chunking con-
figurations. The processing of message streams al-
lows the system to handle larger amounts of data
than the integration system resources would allow.
This more connection oriented approach was iden-
tified by Zimmermann et al. [5] as missing pat-
tern category in the context of synchronous message
processing. An explicit streaming support is pro-
vided, e. g., by Jitterbit Streaming Transformation
and Apache Camel. However, not all integration
operations or adapters are (conceptually) capable
of streaming.

3.2.4. Conversations
Gartner [6] as well as Zimmermann et al. [5] men-

tion the importance of conversations for messaging.
These conversations are similar, however, stand in
contrast to the choreography (e. g., [92, 15]) and in-
teraction patterns for services [37] in SOA because
they denote more complex tasks than sending and
receiving data or messages. They target complex
(stateful) conversations as partially covered in [55].
Some of the systems allow a timed redelivery of
messages in a non-error case (e. g., SAP Cloud In-
tegration, Apache Camel). This feature is similar to
the Contingent Requests pattern in [37]. For a con-
versation, an acknowledgement mechanism would
be required similar to [55]. One technique of re-
ducing the number of requests to an endpoint is

16

request caching. In Tibco, request caching can be
configured by specifying time slices and operations
in the Caching Stage. The SAP Cloud Integration
system allows to map synchronous to asynchronous
communications and vice versa. This becomes nec-
essary when the endpoints’ message exchange mech-
anisms do not fit.

3.2.5. Error Handling

Error handling is a crucial aspect of integration
scenarios [5] for the control and fault tolerance
aspects. In the literature we found solution at-
tempts [3, 70] like the Dead Letter Channel pat-
tern for the collection of failing messages, while the
systems implement various, more sophisticated so-
lutions. The fundamental topic for dealing with
errors in integration scenarios is the handling of ex-
ceptions. Therefore, most of the systems provide
a “catch-all” capability (e. g., Catch All in IBM),
which sometimes even come with an exception sub-
process for more advanced handling (e. g., Excep-
tion Subprocess in SAP Cloud Integration). In ad-
dition, vendors like Dell Boomi, IBM, SAP Cloud
Integration and Tibco provide more fine-granular
scoping of exception handlers, e. g., down to the
single operation. More advanced topics include es-
calation, fault-tolerance and eventually prevention
techniques. Most notably, the systems support es-
calation mechanism like (partial) abortion of com-
plex processes (e. g., incl. parallel processing) and
raising indicators for alerting, as well as message
redelivery on exception for tolerance, and message
validation, load balancing (cf. [56]) and flow con-
trol to prevent errors. More recent work [93, 94] –
not found in the literature review – covers all of the
found system solutions as patterns and shows their
composition. Furthermore, it introduces the con-
cept of compensations (e. g., for undo operations),
which was not found within the reviewed systems.

3.2.6. Monitoring

The monitoring of integration scenarios gains
importance especially within integration platforms
hosted by a third party and across those platforms
in cloud and mobile computing. The major moni-
toring aspects found in the systems can be distin-
guished into UI components that show important
aspects of the system, called monitors, and a rather
event-based registration on instance level. For ex-
ample, Dell Boomi supports message change events
by Find Changes, which can be extended to Field

Tracking. Oracle supports the latter with Busi-
ness Identifiers. That means, user-defined events
on technical and business level can be tracked via
conditional events. Examples for monitors can be
found in most of the systems across all parts of an
integration scenario (i. e., from adapter or channel,
over component, down to message monitors). The
monitors can be fed by built-in and user-defined
message interceptors (e. g., in Apache Flume and
Camel), which allow scenario specific monitoring.
When integrating hybrid applications, most sys-
tems provide central, cloud monitors instead of lo-
cal ones.

3.2.7. Storage

An integration system requires persistent stores
and queues to be operable, e. g., for system manage-
ment and monitoring. In addition, message delivery
semantics (e. g., reliable messaging like “exactly-
once-in-order”) [89], secure messaging, and legal
aspects (e. g., “Which messages were received and
processed?”) must be ensured. In the literature
only simple messaging related storage are men-
tioned like the Message Store [3], for storing mes-
sages during processing, and the Claim Check [3] to
store (parts of) the message during processing and
re-claim them later. Consequently, several system
vendors identified the need for additional storage
capabilities, summarized to data stores and their
access (e. g., DB Update in Jitterbit, DBStorage
in SAP Cloud Integration), as well as memoization
and caching during one instance of a scenario or
between them (e. g., Add to Cache in Dell Boomi,
Shared Variables in Tibco, Global Variables in Jit-
terbit). For secure messaging, security related stor-
age like the Key Store (e. g., in Apache Flume,
Camel and SAP Cloud Integration), for storing cer-
tificates and secure key material, and the Secure
Store (e. g., in SAP Cloud Integration), for storing
secure tokens, users, and passwords, can be found.

3.2.8. Composition

In Zimmermann et al. [5] the composition of EIP
is mentioned as one of the missing pieces. Many
system vendors, e. g., Dell Boomi, IBM, BizTalk,
SAP Cloud Integration, allow subprocess modeling
as well as delegation from the main integration pro-
cess. One important solution are integration pro-
cess templates, which are configurable re-use pro-
cesses. Many of the vendors support them, how-
ever, under di↵erent names, e. g., Template inte-

17

gration process in IBM, Snapshot of Jitterpack in
Jitterbit, Blueprint in Cloudpipes.

3.2.9. Miscellaneous

The most notable, specific features are explicit or
implicit loops, keyword search and replace as well as
content sort and format handling. The implicit loop
configurations include While Loop activity, e. g., in
IBM, Looping in BizTalk, and the Loop Collection
connector in Tray.io. Explicit loops are possible
in most of the systems by back-references in the
process. Dedicated search and replace functional-
ity is provided, e. g., in Dell Boomi, Jitterbit, and
Apache Nifi. While most type converters are im-
plicit in most systems, marshalling support is made
excplicit, e. g., in Jitterbit, SAP Cloud Integration,
and Apache Nifi. More “exotic” functions are text
sentiment analysis in Cloudpipes, an Archiving ac-
tivity in IBM, and a Yandex language translator in
Apache Nifi.

4. Design of Pattern Catalog

This section summarizes the findings of the lit-
erature and system reviews in form of a pattern
catalog, capturing and describing the found ad-hoc
solutions and functionalities as new patterns. These
patterns can be seen as the starting point of a con-
tinuation of the EIP, but also recent trends to ex-
press domain knowledge as patterns [95]. In doing
so, hypothesis H3 “Some trends are handled in
an (yet) immature and ad-hoc fashion” is targeted.
The design goals for the pattern catalog are:

1. Comprehensiveness, i. e., coverage of system
implementations that are not in the literature

2. Novelty, i. e., literature coverage of the missing
or only partial pattern definitions for NFA

The proposed pattern catalog is summarized in
Tabs. 5 and 6 categorizing the patterns by NFA as
Category. The patterns in column Pattern Name
are further grouped by sub-categories as Scope. Due
to lack of space, the descriptions of all patterns con-
tained in the catalog are provided as supplementary
material [44] and two of them are introduced in de-
tail in Sect. 5. While in this section we focus on
patterns, the supplementary material illustrates the
modeling of the new patterns for two integration
scenarios from the quantitative analysis in Sect. 6.

4.1. Goal 1 (Comprehensiveness): System Imple-
mentation Coverage

In detail, comprehensiveness is evaluated by com-
paring the coverage of patterns with the NFA that
are not or only partly covered by patterns in the lit-
erature, represented by the combination of columns
Category and Scope. The coverage of system imple-
mentations reflected by column System Examples
was chosen in order to provide pattern definitions
referring to examples (but not all) of the corre-
sponding system implementations (if at least one
vendor supported them). Subsequently, we refer
only to the categories that have a special relevance
for the comprehensiveness of our analysis.

Security. Take, for example, NFA Security in com-
bination with scope Confentiality (cf. Tab. 5), for
which no comprehensive pattern is provided in the
literature on the one side, but system implementa-
tions by, for example, Dell Boomi [72], Informatica
[74], or Apache Nifi [82] exist. Addressing design
goals 1) and 2) led to the set of suggested patterns
Message Encryptor, Message Decryptor and En-
crypting Endpoint. Message Encryptor, for exam-
ple, covers the system implementations PGP En-
crypt / Decrypt, AES ENCRYPT, and Encrypt /
Decrypt.

Media. Besides formatting patterns for structured
message content, the media specific patterns for un-
structured content are under-represented in current
system implementations, since there is only one pat-
tern with direct relation to multimedia processing
(e. g., Image Resizer [82]). Although there are func-
tionalities for the work on the structured multime-
dia metadata (e. g., Metadata Extractor), further
research should target the unstructured multime-
dia data and processing (e. g., in the context of syn-
chronous, streaming protocols).

Summary – Comprehensiveness. With the pattern
catalog we address 94.74% of the NFA scopes or
subcategories (i. e., all but 1 out of 19) derived from
system implementations. A synch / streaming pat-
tern elicitation – as also mentioned by [5] – was
not conducted in the context of this work, since the
system review did not lead to pattern changes or
new patterns, but only adds an additional process-
ing style. However, we consider this an interesting
topic especially in the context of the Media and Big
Data trends, and propose a separate study for this
current gap.

18

Table 5: New integration patterns for NFA in the context of system implementations from security to processing without
pattern solutions already covered by literature

Category Scope Pattern Name System Examples
Security Confidentiality,

Privacy
Message Encryptor,
Message Decryptor,
Encrypted Message

PGP Encrypt / Decrypt [72], AES ENCRYPT
[74], Encrypt / Decrypt [82]

Encrypting Endpoint /
Adapter

FileProcessorConnector [74], FileChannel [81],
WSSProvider [85]

Authenticity,
Identity

Message Signer, Signa-
ture Verifier, Signed /
Verified Message

Digest/Hash [73], Signer, Verifier [77]

Storage Encrypted / Encrypting
Store

DBStorage, Persist [77]

Safe Store Most of the vendors
Redundant Store MorphlineSolrSinks [81], implicit [73, 77]

Transmission Encrypted Channel Transmission Protection [75]
Safe, Authenticated
Channel

Password, certificate, token-based (Most of the
vendors)

Audit Log Audit Trails [75, 78], Service Auditing [86]
Media Format Type Converter Type Converter [83, 79, 80]

Encoder, Decoder Base64 Encode / Decode [72, 73], Encoder / De-
coder [77]

Marshaller, Unmarshaller “Data Format” [83], “ConvertJSONToSQL” [82],
“JsonXMLConverter” [77]

Compress Content, De-
compress Content

implicit [72, 75], Compress Content [82]

Custom Script Script, Processor [83], Expression [74]
Metadata Extractor Read MIME activity [73], ExtractImageMeta-

data, ExtractMediaMetadata [82]
Unstructured Image Resizer Image Resizer [82]

Processing Synch / Stream-
ing

- Streaming transformations [75], partially [77],
streaming [83]

Parallel Parallel Multi-
cast, Sequential
Multicast

[76, 86, 77]

Join Router implicit [83], join [77]
Other Delegate Process Call [77], Direct-VM [83]

Loop Loop Activity [73], Looping [76]
Find and Replace Search/Replace [72], Control Character Replacer

[75], Scan Content [82]
Content Sort Sort [83]

4.2. Goal 2 (Novelty): Literature Coverage

Now, we set the pattern findings from the litera-
ture review for the NFA – summarized in Tab. 1 –
into context with the new pattern proposals derived
from the system analysis. We exclude the solu-
tions from the original EIP [3], and Media, Synch /
Streaming and Composition (not in NFA, however,
came up during system analysis and mentioned in
[5]), for which no solutions were found in the lit-
erature. In addition, we excluded Error Handling,
since it is comprehensively covered from a pattern
perspective and compared to system implementa-
tions in prior work [93, 94] (not found in the liter-
ature review).

Security. Although some security patterns were
proposed in the SOA domain [30, 31], they only
provide partial solutions with respect to the NFA
and no solution in the context of the system review.

Conversations, Processing. In terms of conversa-
tion patterns, the system implementations only
showed basic support (cf. Tab. 6), however, some

more can be found in the literature, showing that
this is an area for integration systems to add more
features. Although, Barros et al. [37] mostly reiter-
ate the original EIP, there are few patterns that are
new in the context of the system implementations.
In the category of multi-lateral communication, the
One-from-many pattern [37] is a special case of our
more general Join Router that we found in the sys-
tem implementations (e. g., Apache Camel, SAP
Cloud Integration). The One-to-many send pattern
[37] is similar to the (parallel) Multicast – found in
the systems (e. g., Apache Camel, SAP Cloud Inte-
gration), however, some systems have variants that
we captured as Sequential Multicast, which routes
messages of the same type to multiple receivers in
sequence to guarantee the successful delivery to all
recipients.

Summary – Novelty. From the functionality re-
quired by system implementations, 59 distinct, new
patterns are derived that were not found in the
analyzed literature. However, for 5 out of 7 NFA
(compare to Tab. 1), the literature indicates missing

19

Table 6: New integration patterns for NFA in the context of system implementations from conversations to composition without
pattern solutions already covered by literature

Category Scope Pattern Name System Examples
Conversations Endpoint Commutative Receiver -

Timed Redelivery until
Acknowledge

-

Fault tolerant Timeout synchronous re-
quest

-

Failover Request Handler Failover Client [81]
Resources Request Collapsing -

Request Partitioning -
Monitoring Processing Message Cancellation [76, 82]

Usage Statistics [77, 78]
Immediate
Insights

Raise Indicator [72, 75, 76, 77]

Detect [76, 82]
Message Interceptor [81, 83], implicit [77]

Monitors Component Monitor [77, 84]
Channel Monitor [77, 78, 80, 84, 85]
Message Monitor [77, 78, 79]
Resource Monitor [77, 85]
Circuit Breaker [83]
Hybrid Monitor [77]

Storage Data, Variable Data Store [73, 75, 77]
Store Accessor DB Update [75], DBStorage [77]
Transient Store Add to Cache [72], Shared Variables [85], Global

Variables [75]
Security Key Store, Trust Store,

Secure Store
[81, 83, 77]

Composition Integration Subprocess [72, 73, 76, 77]
Integration Pro-
cess Template

Template Integration Process [73], Snapshot [75],
Blueprint [84]

patterns as research challenge (cf. Sect. 2.3), thus
supporting the extension of the integration pattern
catalog for security ([15, 31, 45, 50, 68, 69]), multi-
media ([6]), synch / streaming ([5]), conversations
([5], [6]), monitoring ([45, 61, 62]), and pattern com-
position (from system review Sect. 3, [5]). In addi-
tion, the system review raises a demand for storage
patterns that was not mentioned in the literature.

4.3. Solutions for Future Challenges

We propose several new conversation patterns,
of which none was found in the system implemen-
tations. The proposed endpoint-specific patterns
Commutative Receiver and Timed Redelivery Un-
til Acknowledgement (similar to the Contingent re-
quests pattern in [37, 55]) – that together denote
a solution for a critical trade-o↵ for scalability in-
spired by [95] – are discussed in detail in Sect. 5.
The other patterns are further discussed in the sup-
plementary material [44], and target the additional
conversation scopes: Fault tolerance and Resources.
The multi-tenant processing, conversation patterns
(e. g., Cross Scenario and Cross Tenant) patterns
that are mostly required in hybrid and cloud com-
puting setups, are already covered by prior work
[89], thus not shown.
Toward a more stable system, the Timeout Syn-

chronous Request and Failover Request Handler

patterns are improving the fault-tolerance of the
messaging. Especially in the Big Data context,
the resources of an integration scenario or platform
become crucial for their stability. Therefore, the
Request Collapsing pattern reduces the number of
requests within a conversation. In addition, the
Request Caching reduces the amount of duplicate
requests to the same endpoint, while Request Par-
titioning optimizes requests to endpoints and con-
fines errors to one request aspect. Together with
other patterns from the literature review and the
proposed patterns in this work, we see a clear ev-
idence for further research required. Since none of
the patterns was found during the system review
this indicates potential for current integration sys-
tem and application endpoint implementations.

The monitoring of integration scenarios reaches
from real-time, scenario-specific processing to near-
real time monitors. One further challenge – also
identified by [45] and partially covered by the sys-
tems with mixed on-premise and cloud integration
– is the monitoring across di↵erent platforms (e. g.,
cross-cloud, across on-premise and cloud).

5. Example Integration Pattern Realization

As example from the catalog, we selected pat-
terns related to the non-trivial trade-o↵ between

20

stateful and stateless integration processes (inspired
by cloud computing challenges [95]). Especially
the system review shows that all vendors provide
extensive storage capabilities – beyond the EIP,
leading to stateful processes. However, the under-
represented conversation patterns could o↵er an
alternative, thus allowing for stateless processes.
While stateless processes have scalability benefits,
they come with some drawbacks that have to be
considered. We selected this trade-o↵ due to its
relevance in the context of Big Data, its relevance
for Cloud Computing, and because it addresses one
well-represented (i. e., storage) and the currently
under-represented, but important area of (stateful)
conversations. Subsequently, we describe the trade-
o↵ as problem description, discuss a suitable pat-
tern format and conclude with two pattern descrip-
tions and their realization.

5.1. Problem Description: Stateful vs. Stateless In-
tegration Processes

Operating an integration system requires persis-
tent stores and queues, e. g., monitoring, key or
secure store to achive security, or auditing for le-
gal reasons. In addition, transactional message
processing (e. g., aggregator pattern) as well as
message delivery semantics (e. g., reliable messag-
ing like “exactly-once-in-order”) [89] require some
persistent state. While the system operability
avoids influencing the message processing by not
using shared states between integration scenario in-
stances, the transactional processing and message
delivery semantics of the stateful message proces-
sors (i. e., patterns) usually require shared states.
For example, when a stateful aggregator – as part
of a scenario instance – processes a sequence of mes-
sages, a second scenario instance could be used to
distribute the load. However, in the absence of
“process stickiness” (i. e., messages of one sequence
are only sent to one instance), the stateful aggrega-
tor in the second instance has to be able to complete
a sequence the other instance started, thus shared
state. Hence, the shared states imply complex state
handling across integration processes in compute
clusters or cloud environments, and this may have
a negative impact on their scalability. Alternatively
– following the ideas on (stateful) conversation pat-
terns from Hohpe [55] – some of the discussed mes-
saging related storage and message delivery seman-
tics could be moved to “smart” message endpoints
(i. e., applications), which already have a persistent

state, thus making the integration processes state-
less.

For example, Fig. 6 illustrates the trade-o↵ be-
tween Exactly-once In Order (EOIO) delivery se-
mantics within the integration scenario (i. e., re-
quires a stateful Message Store, Resequencer and
Idempotent Receiver [3], and transactional Message
Redelivery on Exception [94]) in Fig. 6(a) and as a
(stateful) conversational approach in Fig. 6(b). The
integration processes are represented in BPMN 2.0
similar to [46]. An EOIO delivery requires a trans-
actional redelivery in case of an exception, a mes-
sage ordering step according to a sequence of mes-
sages in form of a Resequencer and an Idempotent
Receiver, which is able to deduplicate the messages.
Figure 6(a) depicts the instance spanning state for
the retry and the resequencing. To avoid stateful
integration process, both capabilities can be moved
to the endpoints (cf. Fig. 6(b)). While this will not
work for legacy, packaged applications, it results
into an improved scalability within the integration
process and moves the resequencing decision to the
receiver. To eventually stop sending, the sender –
redelivering the message periodically – requires a
stop event (i. e., an acknowledgement) from the re-
ceiver.

The solution’s trade-o↵ are the several messages
that are sent by the receiver until an acknowledge-
ment is received, while being able to process all
messages in parallel using stateless integration pro-
cess instances. In other words, the performance im-
provements gained through better scalability and
lower latency of the conversational approach – by
not waiting for the failure of a sent message – is
contrasted by the more resources overall required
in case of many failures.

5.2. Patterns and Pattern Formats

To formalize the new challenges and the result-
ing, required capabilities within an integration sys-
tem, thus coming to less immature and ad-hoc solu-
tions (cf. H3), we propose to express them as pat-
terns. Similarly, expert knowledge and best prac-
tices were already collected for software design by
Gamma et al. [96], EIP by Hohpe et al. [3], and re-
cently for cloud computing patterns by Fehling et
al. [95]. For a suitable pattern representation, we
compare their pattern formats in Tab. 7, and select
common categories for our proposal.

From the analysis of several known pattern for-
mats in Tab. 7, we selected: name, icon, driving
question, context, solution, results, and known uses

21

(a) Stateful EOIO (b) Stateless EOIO

Figure 6: Conversational approach for Exactly Once in Order (EOIO).

Table 7: Common pattern formats: Enterprise Integration Patterns (EIP) [3], Cloud Computing Patterns (CCP) [95], Design
Patterns (DP) [96]

Categories Description EIP CCP DP
Name pattern identifier

p p p

Icon visual representation
p p

-
Problem / Driving Question / Motivation di�culty as question

p p p

Intent statement about design issue - -
p

Also known as other pattern names - -
p

Context / Motivation introduces problem domain
p p p

Forces, Appilcability problem constraints
p

-
p

Solution how to solve the problem
p p

-
Sketch, Structure illustrate solution

p
-

p

Participants, Collaborations participants, responsibilities - -
p

Results / Consequences how to apply the solution
p p p

Next / Related Patterns related patterns, di↵erences
p

-
p

Sidebars / Implementation / Code pattern variations
p

-
p

Examples / Known Uses real system examples
p p p

to round-o↵ the description. We leave out the sepa-
rate categories of forces (i. e., problem constraints)
and implementation (i. e., pattern variants), which
we include into the selected context and known uses
categories, respectively. The pattern descriptions
in the supplementary material [44], add a Data As-
pects category (not further discussed here), which
gives even more insight into the configuration of the
pattern solutions.

5.3. Pattern Examples and Realization

From the problem description we take three ca-
pabilities that are required to represent an EOIO,
while keeping the integration processes stateless.
We summarize the capabilities to the following

two patterns, for which we explain the realization:
Commutative Receiver and Timed Redelivery un-
til Acknowledge. In addition, we require the Quick
Acknowledgement pattern from [55].

Commutative Receiver. The commutative receiver
accounts for two tasks: message deduplication and
out-of-order handling. Therefore, the application’s
state is re-used, hence no additional state in the
integration process is required.

How to ensure idempotent, in-order
message processing without inter-
mediate state in form of persistent
integration scenarios?

22

(Icon: the icon uses the icon notation from [3],
combining the in-order sequencing as well as the
idempotent storage.)
Context: Out-of-order communication with
endpoints/applications.
Solution: Guarantee that endpoint/application
handle arriving out-of-order messages will be stored
within their sequence and only then processed, if
the sequence is (partially) complete and in the
correct order.
Result: This solution handles out of order
messages and applies them in-order within the
application endpoint.
Relations to other patterns: This pattern is an
extension of the Idempotent Receiver from [3] with
additional Message Sequence handling.
Known uses: not found in literature or system
review, however, Microsoft advices developers to
implement commutative endpoints in the context
of micro services4.

Timed Redelivery until Acknowledge. The com-
mutative receiver moves the message redelivery
on exception from the integration process to the
sender application, while conducting an asyn-
chronous communication. Hence, no exceptions
are propagated back to the sender, however,
the redeliveries are stopped by asynchronously
received Acknowledgements from the receiver (via
the integration system). Until then, the messages
are resent with increasing delay to reduce the load
of duplicate messages.

How to ensure that a message will be
received without intermediate stor-
age, e. g., in form of Redelivery on
Exception [94]?

(Icon: the icon uses the icon notation from [3],
combining delayed message send with asynchronous
reception of acknowledgments using a transactional
store.)
Context: This pattern is used for asynchronous
communication with message delivery guarantees
Solution: Instead of relying on intermediate stor-
age and retry within the integration system, the
application sends multiple instances of the same
message with configurable timings until the actual
receiver endpoint acknowledgements (e. g., Quick

4Designing Services, visited 02/2017: https://msdn.

microsoft.com/en-us/library/ee658114.aspx.

Acknowledgement [55]) reach the sender. Requires
an Idempotent [3] or Commutative Receiver for
certain message delivery semantics [89]
Result: Send copies of the same message asyn-
chronously until the receiver’s acknowledgement
reaches the sender.
Relations to other patterns: This pattern is an
extension of the Retry pattern in [55], and related
to the Redelivery on Exception pattern in [94].
Known uses: - (not found in literature or system
review).

Solution Summary. As an extension a Timed Rede-
livery until Acknowledge pattern would be required
that makes multiple attempts to deliver a message
(potentially with exponential back-o↵ delay). That
might result to duplicate message instances, sent to
the receiver. Assuming a stateless integration pro-
cess, an idempotent receiver [3] is required to detect
and handle the duplicates. The sketched conversa-
tion works fine for exactly-once processing seman-
tics [89]. However, for ensuring in-order message
processing (e. g., create sales order, before update),
it would not be su�cient. A stateless integration
process cannot reliably re-order the incoming mes-
sages, delegating this task to the receiver applica-
tion. The receiving application has to handle in-
coming messages in an associative and commuta-
tive way (e. g., handle update, before create). An
implementation of this Commutative Receiver pat-
tern can be found in the microservice context (e. g.,
service applications). When the receiver got all
messages belonging to one message sequence (i. e.,
without duplicates), it sends an Acknowledgement
message that is asynchronously processed by the
sender, which stops redelivering corresponding mes-
sages immediately.

6. Quantitative Analysis

In this section we conduct a quantitative anal-
ysis of integration scenarios to study the usage of
original EIP and the new patterns from the pattern
catalog in Sect. 4. We selected the SAP Cloud In-
tegration system from the review (cf. Sect. 3), for
which we found “real-world” examples of all sce-
narios from Fig. 2. With over 1, 000 customers and
several hundred integration scenarios delivered as
standard content SAP Cloud Integration represents
a cloud integration system for application and data
integration. The analysis targets the hypotheses
“The original EIP of the 2004 book are all widely

23

https://msdn.microsoft.com/en-us/library/ee658114.aspx
https://msdn.microsoft.com/en-us/library/ee658114.aspx

used in praxis” and “H4: Solutions not in EIP can
be found in real-world integration scenarios for the
trends”. Therefore, we firstly select several scenar-
ios along the identified trends and briefly describe
them. Secondly, we evaluate found original EIP and
new solutions.

6.1. Integration Scenarios

The new trends – set into context denoted by
edges via the integration system node in Fig. 2 – can
be summarized to integration the scenario domains:

• On-Premise to Cloud: Most organizations pro-
ductively run on packaged, on-premise appli-
cations. They need to connect these applica-
tions with cloud applications for various rea-
sons, e. g., extensions for legal reasons or new
functionality, to connect with business part-
ners. This integration domain is called hybrid
integration [4].

• Cloud to Cloud or Business Network (in-
cluding social): Native cloud applications or
cloud integrated on-premise applications in-
teract with business partners in business net-
works (e. g., payment, financial, supplier rela-
tionships), connect to social networks (e. g.,
social marketing) or consume cloud services
(e. g., machine learning).

• Device to Cloud (including mobile and per-
sonal computing): What starts with business
applications on “bring your own device” for
mobility, extends to intelligence brought to ma-
chines (e. g., sensors and actuators in smart
logistics or production) and eventually comes
down to sensors and devices for personal com-
puting.

We left out the conventional On-Premise to On-
Premise application integration and other varia-
tions due to our focus on new trends. For the
quantitative analysis, we selected one application
integration solution for each of the new scenario
domains, and we added one for cloud to cloud and
business networks due to the slight focus on these
domains. The solutions can be visited as SAP
Cloud Integration standard content [97].

SAP Cloud for Customer (C4C). The C4C solu-
tions for the communication with on-premise En-
terprise Resource Planning (ERP) and Customer
Relationship Management (CRM) applications, ab-
breviated c4c-erp and c4c-crm, can be considered

typical hybrid corporate to cloud application in-
tegration [97]. The dominant integration styles –
according to the classification in [2] – are process
invocation and data movement. The state changes
(e. g., create, update) of business objects (e. g., busi-
ness partner, opportunity, activity) as well as mas-
ter data in the cloud or corporate applications (e. g.,
ERP, CRM) are exchanged with each other.

SAP Financial Services Network (FSN). In con-
trast to C4C, FSN [98], abbreviated fsn, is a cloud-
based, business network that connects banks and
other financial institutes with their corporate cus-
tomers (e. g., for payments, bank account manage-
ment). The integration style is mostly process in-
vocation [2]. Besides reliability, the major focus lies
on secure message exchange.

SAP Cloud Integration eDocument/Electronic In-
voicing (eDocument). The SAP Cloud Integration
eDocument/Electronic Invoicing is a solution for
country-specific electronic document management
[97]. The edocuments solution helps cooperations
to interact with legal authorities (e. g., implement
the new EU Data Protection Regulation5).

SAP Predictive Maintenance and Service (PdMS).
In PdMS

[97], machine data is collected using an Internet
of Things (IoT) platform and enriched with busi-
ness information coming from, e. g., SAP Business
Suite. This allows real time monitoring of the ma-
chine that triggers alerts resulting in service tickets
in SAP CRM or ERP. Based on that any unusual
trends or behavior becomes visible and appropri-
ate action, potentially avoiding unnecessary service
costs, can be taken.

6.2. Scenario Analysis

For the analysis of the SAP delivered standard
content in this paper, we prototypically imple-
mented data discovery and mining capabilities into
the SAP Cloud Integration system, which identified
a total of 154 distinct integration scenarios (c4c-erp:
42, c4c-crm: 37, fsn: 56, edocument: 13, pdms: 6).

The total number of patterns for all scenarios
is 1501 (w/o adapters, endpoints). For the more
“classical” integration scenarios in c4c-erp and c4c-
crm nearly all integration patterns could be covered

5EU – General Data Protection Regulation: http://goo.
gl/Ru0slz.

24

http://goo.gl/Ru0slz
http://goo.gl/Ru0slz

Figure 7: Scenarios using original EIP

by original EIP from [3] (apart from second level
configuration on monitoring and exception han-
dling). For the cloud integration scenarios fsn and
eDocument as well as for the pdms IoT scenario,
466 new requirements (and 597 complementing, sec-
ond level configurations) were needed in total, out
of which 66% are covered by existing EIP (i. e., 1025
capabilities in total). This means that for these in-
tegration scenarios approximately 1

3 of the required
patterns are not covered by the original EIP.

Pattern Solutions covered by the EIP. The distri-
bution of patterns covered by original EIP is de-
picted in Fig. 7. Not all EIP were required in
the scenarios of the integration solutions, however,
nearly all of them facilitate the tasks of (i) Mes-
sage Construction: solutions Document Message
and Request-Reply ; (ii) Messaging Channels: so-
lution P2P Channel ; (iii) Message Routing: solu-
tions Content-based Router, Splitter, and Aggrega-
tor ; (iv) Message Transformation: solutions Con-
tent Enricher, Content Filter, and Message Trans-
lator.

New Pattern Solutions. Additional pattern solu-
tions are covered by integration capabilities, de-
picted in Fig. 8. We grouped the new solutions
according to the pattern catalog from Sect. 4 and
added the corresponding pattern proposals for each
of them. While approximately half of the new pat-
terns from the catalog are used in the real-world
scenarios, the new conversation patterns, are not
yet used in any of the scenarios. For example, the
confidentiality requirements covered message con-
fidentiality or privacy patterns (Message Encryp-
tor, Message Decryptor, Encrypted Message, En-
crypting Endpoint, Encrypting Adapter) are called
Msg. Privacy, and the authenticity and integrity
requirements (Message Signer, Signature Verifier,
Signed / Verified Message) are summarized to Msg.
Auth.. Thereby the message confidentiality is ex-
clusively required for the communication within the
FSN business network, while message authenticity
is also used for exchanging eDocuments with the
legal authorities and for PdMS.

In the category multimedia, currently no real
media format handlers (Type Converter, Encoder,

25

Figure 8: New capability categorization.

Decoder) are used (e. g., image, video). However,
we grouped the used functionality into three pat-
terns. The Encoder and Decoder patterns repre-
sent the handling of binary message content, exclu-
sively used in FSN and eDocument scenarios. This
is due to the various communication partners, using
di↵erent encodings, as well as third party services
(e. g., financial document mapping engines), which
requires special encodings. The Custom Script al-
lows to add versatile User-defined Functions, which
are mostly used as auxiliary in FSN scenarios. The
compression algorithms (Compress Content, De-
compress Content), which would be immensely rel-
evant in real multimedia scenarios, are used in FSN
scenarios due to larger messages sizes (e. g., aggre-
gated FSN payment details). Finally, marshalling
(Marshaller, Unmarshaller) support is required in
FSN scenarios, since some communication partners
require JSON to XML conversion and vice versa.

The processing of messages is mostly done by
moving messages through the pipeline. However,
especially the FSN and CRM integration require
streaming and parallel processing. This is again
due to scenarios with larger messages to be pro-
cessed (e. g., IDoc segments in CRM) and stream-
based splitting in PdMS. The Multicast pattern is

used as Sequential Multicast in FSN to allow guar-
anteed rollback for all branches in case of an error
and as Parallel Multicast in PdMS for parallel pro-
cessing purpose.

This behaviour is complemented by a Stop All
setting in the FSN, PdMS and partially CRM sce-
narios, consequently stopping the message process-
ing in all parallel instances of the integration sce-
nario. Another error handling functionality is the
Rethrow, which allows to (re-) throw exceptions.
The Rethrow is mainly used in eDocument, FSN,
PdMS and CRM scenarios to indicate that a situ-
ation is still unresolved. Especially in FSN, PdMS
and eDocument scenarios, it is important to inform
a business expert or administrator about erroneous
situations. The Raise Indicator is used for this pur-
pose. To prevent from unconrollable behaviour and
to customize the information returned in case of an
error in synchronous scenarios, a Catch-all excep-
tion process (with several steps) is used in FSN and
eDocument scenarios.

To remember parts of a message or additional
information generated by adapters or message pro-
cessors, a Transient Store (cf [56]) is used in FSN.
The Store Accessor, used by FSN and eDocument,
is mostly used for stateful pattern compositions and

26

for legal reasons (Data Store, Audit Log). Espe-
cially in FSN, most of the message stores are en-
crypting (Encrypting Store), which means that the
messages are stored confidentially.
The composition in terms of the Integra-

tion Subprocess pattern (excluding the exception
sub-processes) indicates complex processing logic,
which can mostly be found in FSN, PdMS and
eDocument scenarios. Sometimes composition is
used for re-usable process parts.
In summary, the analysis shows the need for new

patterns and solutions as seen in the system review.
While the hybrid integration scenarios simply ex-
tend the on-premise integration into the cloud re-
lying on transport level security, all other new inte-
gration scenario domains require more on security
and control over the message processing in form of
error handling. This becomes more obvious, the
more exclusively the integration scenarios are run-
ning in the cloud. For example, the small amount
of device integration scenarios still relies on inte-
gration logic on the devices, thus show only few
security, error handling and processing capabilities.
The scenarios are less complex – compared to the
cloud to cloud cases, hence require limited compo-
sition options. Furthermore, with increasing cloud
focus, the trade-o↵ between more complex, but ex-
pressive, stateful and simpler, better scalable, state-
less message processing seems to lean towards the
interaction with storage currently. The conversa-
tion patterns – including stateful conversations –
are still mostly unexplored. The same is true for
the increasingly important topic of multimedia pro-
cessing, which will give a new edge to the variety
and interoperability problems in EAI [2].

7. Challenges, Limitations, Impact

The literature (cf. [5]) and the quantitative anal-
ysis of real-world integration scenarios (cf. Figure
7) show that some of the enterprise integration pat-
terns (EIP) described by [3] in 2004 are still widely
used, thus denote best-practices in the area of ap-
plication integration. This supports the assumption
of the EIP authors that the patterns are still prac-
tically relevant [5]. Literature and system reviews
also reveal that since 2005 several new trends and
non-functional aspects (NFA) for enterprise appli-
cation integration have appeared that are not cov-
ered by the EIP from 2004. Literature as well as
systems partly o↵er solutions to these new trends

and NFA where the systems provide a more compre-
hensive support. Solutions mentioned in the liter-
ature comprise patterns, formalization, and model-
ing, covering the spectrum from a more abstract de-
scription as patterns (cf. Sect. 5) to the implemen-
tation and execution as well as towards the user’s
point of view. For this reason, patterns are regarded
as the “glue” for which a comprehensive descrip-
tion is required first. Hence, this work (together
with the supplementary material [44]) aimed at fill-
ing the gaps in existing patterns for new integra-
tion trends and NFA (cf. Sect. 5): security, (ideas
on) conversation, monitoring, storage. Nonetheless,
the di↵erent reviews and analyses conducted in this
work indicate open research challenges. These are
subsequently summarized and discussed.

7.1. Research Challenges

The literature review shows that for the trends
and NFA di↵erent solutions have been proposed,
mainly patterns, formalization, and modeling.

7.1.1. Patterns

Patterns are the predominant solution proposed
in literature (cf. Tab. 1). Moreover, this work
has closed gaps by providing patterns for NFA not
present so far. Still pattern descriptions would be
necessary in the context of the following trends
and NFA. At first, multimedia functions are under-
represented. Due to the access to the end user, mul-
timedia becomes more and more interesting for all
kinds of applications (e. g., sentiment analysis, mon-
itoring in di↵erent domains like medicine or agricul-
ture). For application integration, this targets the
volume, variety and interoperability problems. The
resulting increase of heterogeneity of media formats
and communication partners (e. g., cloud applica-
tions, mobile devices, camera phones) demands for
revisiting the EIP in the context of multimedia op-
erations and their semantic aspects. Consequently,
the increasing message sizes require the evaluation
of optimization techniques (e. g., message indexing),
and more e�cient processing styles like stream-
ing, which the EIP authors also acknowledge [5],
or data-aware integration pattern solutions (e. g.,
[91]). In general, to address the Big Data chal-
lenges of volume and velocity requires correspond-
ing benchmarks for pattern (e. g., EIPBench [99])
as well as for end-to-end system implementations,
which are currently missing. As additional NFA,
only few of the conversation patterns are supported.

27

For instance, Sect. 5 showed that conversation pat-
terns can provide alternatives to improve the cur-
rent processing and might become useful in more
complex application or device interactions (e. g., de-
vice mesh [6]). The monitoring of integration sce-
narios across multiple platforms (e. g., mobile, on-
premise, cloud) – including aspects like raising in-
dicators in case of an event – remains a challenge.
This also hints on further work required for Mobile
Computing and Internet of Things, e. g., standard-
ized protocols, conversation or interaction patterns
(incl. data collection, device reconfiguration), en-
ergy e�ciency. Finally, as new trends and NFA
might constantly arise, their analysis with respect
to pattern support becomes a continuous task.

7.1.2. Formalization
Starting from the pattern view, formalization is

an important step to precisely specify the seman-
tics of the pattern realizations, i. e., formalization
constitutes an important step towards the imple-
mentation and execution of the patterns in integra-
tion scenarios. As shown in Tab. 1 formalization
approaches have been predominantly proposed in
the context of service oriented architectures (SOA)
for validating and optimizing compositions by, for
example, mapping them to Petri nets. Notably, a
more formal definition of integration pattern com-
position (also suggested by the EIP authors [5]) is
required not only for structural validations using
Petri nets – as in the literature review, but also se-
mantic, runtime validations and optimizations on
static scenario as well as dynamic, workload data
is missing. First work on the latter was conducted
by [100], however, has to be revisited in the context
of the trends and NFA as well as new technical ca-
pabilities (e. g., machine learning of / for workload
patterns, routing conditions, condition orderings).
Furthermore, cloud, mobile and device computing
raise new questions about optimal runtime place-
ments of integration processes. In general, there is
still an enormous potential for elaborating formal-
izations for both, trends and NFA, specifically, as a
more or less comprehensive set of patterns has been
proposed by now. A follow-up research question is
how to implement patterns and pattern composi-
tions in solutions using formal models.

7.1.3. Modeling
Except few works in the SOA domain provid-

ing modeling support for compositions, no attention
has been paid to model integration-specific aspects

so far. For compositions, business process modeling
notations such as business process model and nota-
tion (BPMN) can be used, however, the integration-
specific aspects exceed the modeling capabilities.
However, conveying information on the integration
scenarios to users is of utmost importance for, e. g.,
maintenance and adaptations of these scenarios.
Also here patterns might help to form the basis
for di↵erent modeling and visualization proposals.
It could be envisioned to base integration flows on
existing business process modeling languages (e. g.,
BPMN) in order to keep the mental map of users,
but to enhance them with integration-specific icons.
In [44], a first idea of equipping BPMN with integra-
tion icons is depicted for the SAP Cloud Integration
eDocument use case (due to lack of space we refer
to the technical report). In general, NFA like se-
curity and multimedia have to be further analyzed.
Therefore, new visual configuration editors, e. g.,
allowing to “query by sketch” conditions, for inte-
gration scenarios would provide a more adequate,
non-textual configuration. In addition, editors and
visual data science (incl. machine learning) tools
for scenario-based, runtime monitoring, which are
capable of dealing with large amounts of data, could
lead to smarter (cross-) integration platform admin-
istration of integration scenarios. In this context,
the development of visual modeling notations, new
editors together with extensive user studies become
necessary.

7.2. Limitations

Limitations of the work concern the literature
and the system review. For both the searches were
led by the selection of keywords and criteria due to
the vast amount of existing work and in order to
not loose focus of this study. Nonetheless, conduct-
ing further vertical searches and expert additions
that were not found based on the keywords could
be included in the analysis. The selection of repre-
sentative systems is supposed to reflect the current
system o↵ering. Di↵erent types of systems (open
source, commercial, and startup) were considered.
In summary, both reviews were envisioned to be
comprehensive, but not complete. The quantitative
analysis aims at covering a broad range of applica-
tions based on five use cases. One might argue that
the use cases are all provided by the same organiza-
tion. However, this provides the chance to analyze
real-world scenarios instead of toy examples.

28

7.3. Impact

The impact of a continuous analysis of integra-
tion trends and NFA on research and practice is
enormous. The impact on research is reflected in
the open research challenges stated in Section 7.1.
In order to address these challenges, a plethora of
new approaches is necessary. The importance of
the topic from a practical perspective is already
paramount as the system and scenario analyses of
this paper show. Facing new trends that often stem
from practice will perpetuate the importance of this
work in the future. Putting the focus on the hu-
man aspect in addition to a more technical treat-
ment of the topic will also lead to a multitude of
new research questions and practical implications.
While the original EIP from 2004 are still relevant
for many of the new trends in 2016 and beyond,
new capabilities are required to address require-
ments (e. g., non-functional aspects) resulting from
these trends (cf. hypothesis H1).

References

[1] S. Conrad, W. Hasselbring, A. Koschel, R. Tritsch, En-
terprise Application Integration, Spektrum Akademis-
cher Verlag, 2005.

[2] D. S. Linthicum, Enterprise Application Integration,
Addison-Wesley Longman Ltd., 2000.

[3] G. Hohpe, B. Woolf, Enterprise integration patterns:
Designing, building, and deploying messaging solu-
tions, Addison-Wesley Professional, 2004.

[4] Forrester Research, Inc., The Forrester Wave: Hy-
brid Integration For Enterprises, Q4 2016, https:

//www.forrester.com/report/The+Forrester+Wave+

Hybrid+Integration+For+Enterprises+Q4+2016/-/

E-RES131101 (2016).
[5] O. Zimmermann, C. Pautasso, G. Hohpe, B. Woolf,

A decade of enterprise integration patterns: A conver-
sation with the authors, IEEE Software 33 (1) (2016)
13–19.

[6] Gartner, Inc., Gartner Newsroom Emerg-
ing Technologies from 2005 To 2017, http:

//www.gartner.com/newsroom/id/492152,
http://www.gartner.com/newsroom/id/495475,
http://www.slideshare.net/dinhledat/

dinh-ledat-top-10-technology-trends-20072014-gartner,
http://www.gartner.com/newsroom/id/530109,
http://www.gartner.com/newsroom/id/777212,
http://www.gartner.com/newsroom/id/1210613,
http://www.gartner.com/newsroom/id/1454221,
http://www.gartner.com/newsroom/id/1826214,
http://www.gartner.com/newsroom/id/2209615,
http://www.gartner.com/newsroom/id/2603623,
http://www.gartner.com/newsroom/id/2867917,
http://www.gartner.com/newsroom/id/3143521,
http://www.gartner.com/newsroom/id/3482617

(2017).
[7] Forrester Research, Inc., The Top 10 Technology

Trends To Watch: 2016 To 2018, https://www.

forrester.com/report/The+Top+10+Technology+

Trends+To+Watch+2016+To+2018/-/E-RES120075

(2016).
[8] R. Wieringa, Design Science Methodology for Infor-

mation Systems and Software Engineering, Springer,
2014.

[9] B. Kitchenham, Procedures for performing systematic
reviews, Tech. Rep. TR/SE-0401, Keele University,
Keele, UK (2004).

[10] C. Hentrich, U. Zdun, Patterns for business ob-
ject model integration in process-driven and service-
oriented architectures, in: Proceedings of the 2006
conference on Pattern languages of programs, 2006,
p. 23.

[11] C. Hentrich, U. Zdun, Service integration patterns for
invoking services from business processes., in: Euro-
PLoP, 2007, pp. 235–278.

[12] C. Hentrich, U. Zdun, A pattern language for process
execution and integration design in service-oriented ar-
chitectures, in: Transactions on Pattern Languages of
Programming I, Springer, 2009, pp. 136–191.

[13] U. Zdun, C. Hentrich, W. M. Van Der Aalst, A survey
of patterns for service-oriented architectures, Interna-
tional journal of Internet protocol technology 1 (3)
(2006) 132–143.

[14] U. Zdun, Pattern-based design of a service-oriented
middleware for remote object federations, ACM Trans-
actions on Internet Technology (TOIT) 8 (3) (2008)
15.

[15] M. Autili, A. Di Salle, A. Perucci, M. Tivoli, On
the automated synthesis of enterprise integration pat-
terns to adapt choreography-based distributed sys-
tems, ArXiv e-printsarXiv:1512.07682.

[16] V. Gacitua-Decar, C. Pahl, Ontology-based patterns
for the integration of business processes and enterprise
application architectures, Semantic Enterprise Appli-
cation Integration for Business Processes: Service-
Oriented Frameworks, IGI Publishers, Hershey, PA
(2009) 36–60.

[17] M. Heller, M. Allgaier, Model-based service integra-
tion for extensible enterprise systems with adaptation
patterns, in: e-Business (ICE-B), Proceedings of the
2010 International Conference on, 2010, pp. 1–6.

[18] E. Kaneshima, R. T. V. Braga, Patterns for enter-
prise application integration, in: Proceedings of the
9th Latin-American Conference on Pattern Languages
of Programming, 2012, p. 2.

[19] K. Umapathy, S. Purao, Designing enterprise solu-
tions with web services and integration patterns, in:
IEEE International Conference on Services Comput-
ing (SCC’06), 2006, pp. 111–118.

[20] Y. Zheng, H. Cai, L. Jiang, Application integration
patterns based on open resource-based integrated pro-
cess platform, in: International Conference on Infor-
mation Computing and Applications, 2011, pp. 577–
584.

[21] C. Gierds, A. J. Mooij, K. Wolf, Reducing adapter
synthesis to controller synthesis, IEEE Trans. Serv.
Comput. 5 (1) (2012) 72–85.

[22] R. Seguel, R. Eshuis, P. Grefen, An overview on proto-
col adaptors for service component integration, Tech.
rep., Technische Universiteit Eindhoven (2008).

[23] V. N. Gudivada, J. Nandigam, Enterprise application
integration using extensible web services, in: IEEE In-
ternational Conference on Web Services (ICWS’05),

29

https://www.forrester.com/report/The+Forrester+Wave+Hybrid+Integration+For+Enterprises+Q4+2016/-/E-RES131101
https://www.forrester.com/report/The+Forrester+Wave+Hybrid+Integration+For+Enterprises+Q4+2016/-/E-RES131101
https://www.forrester.com/report/The+Forrester+Wave+Hybrid+Integration+For+Enterprises+Q4+2016/-/E-RES131101
https://www.forrester.com/report/The+Forrester+Wave+Hybrid+Integration+For+Enterprises+Q4+2016/-/E-RES131101
http://www.gartner.com/newsroom/id/492152
http://www.gartner.com/newsroom/id/492152
http://www.gartner.com/newsroom/id/495475
http://www.slideshare.net/dinhledat/dinh-ledat-top-10-technology-trends-20072014-gartner
http://www.slideshare.net/dinhledat/dinh-ledat-top-10-technology-trends-20072014-gartner
http://www.gartner.com/newsroom/id/530109
http://www.gartner.com/newsroom/id/777212
http://www.gartner.com/newsroom/id/1210613
http://www.gartner.com/newsroom/id/1454221
http://www.gartner.com/newsroom/id/1826214
http://www.gartner.com/newsroom/id/2209615
http://www.gartner.com/newsroom/id/2603623
http://www.gartner.com/newsroom/id/2867917
http://www.gartner.com/newsroom/id/3143521
http://www.gartner.com/newsroom/id/3482617
https://www.forrester.com/report/The+Top+10+Technology+Trends+To+Watch+2016+To+2018/-/E-RES120075
https://www.forrester.com/report/The+Top+10+Technology+Trends+To+Watch+2016+To+2018/-/E-RES120075
https://www.forrester.com/report/The+Top+10+Technology+Trends+To+Watch+2016+To+2018/-/E-RES120075
http://arxiv.org/abs/1512.07682

2005, pp. 41–48.
[24] W. Deng, X. Yang, H. Zhao, D. Lei, H. Li, Study

on EAI based on web services and SOA, in: Interna-
tional Symposium on Electronic Commerce and Secu-
rity, 2008, pp. 95–98.

[25] C. Mauro, J. M. Leimeister, H. Krcmar, Service ori-
ented device integration-an analysis of SOA design
patterns, in: 43rd Hawaii International Conference on
System Sciences (HICSS), 2010, pp. 1–10.

[26] Y. Liu, X. Liang, L. Xu, M. Staples, L. Zhu, Using ar-
chitecture integration patterns to compose enterprise
mashups, in: Software Architecture & European Con-
ference on Software Architecture, 2009, pp. 111–120.

[27] Y. Liu, X. Liang, L. Xu, M. Staples, L. Zhu, Compos-
ing enterprise mashup components and services using
architecture integration patterns, Journal of Systems
and Software 84 (9) (2011) 1436–1446.

[28] D. Braga, S. Ceri, F. Daniel, D. Martinenghi, Mashing
up search services, IEEE Internet Computing 12 (5)
(2008) 16–23.

[29] S. Cetin, N. I. Altintas, H. Oguztüzün, A. H. Dogru,
O. Tufekci, S. Suloglu, A mashup-based strategy for
migration to service-oriented computing., in: Interna-
tional Conference on Pervasive Service, 2007, pp. 169–
172.

[30] X. Qu, X. Yang, J. Zhong, X. Lv, Integration patterns
of grid security service, in: Sixth International Con-
ference on Parallel and Distributed Computing Appli-
cations and Technologies (PDCAT’05), 2005, pp. 524–
528.

[31] D. Shah, D. Patel, Dynamic and ubiquitous security
architecture for global SOA, in: The Second Interna-
tional Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, UBICOMM’08.,
2008, pp. 482–487.

[32] M. Fisher, S. Sharma, R. Lai, L. Moroney, Java EE
and. Net Interoperability: Integration Strategies, Pat-
terns, and Best Practices, Prentice Hall Professional,
2006.

[33] C. Ouyang, E. Verbeek, W. M. Van Der Aalst, S. Breu-
tel, M. Dumas, A. H. Ter Hofstede, Formal semantics
and analysis of control flow in WS-BPEL, Science of
Computer Programming 67 (2) (2007) 162–198.

[34] N. Lohmann, P. Massuthe, C. Stahl, D. Weinberg,
Analyzing interacting WS-BPEL processes using flexi-
ble model generation, Data & Knowledge Engineering
64 (1) (2008) 38–54.

[35] A. Kumar, Z. Shan, Algorithms based on pattern anal-
ysis for verification and adapter creation for business
process composition, in: OTM Confederated Interna-
tional Conferences, 2008, pp. 120–138.

[36] J.-m. Jiang, S. Zhang, P. Gong, Z. Hong, Mes-
sage dependency-based adaptation of services, in:
IEEE Asia-Pacific Services Computing Conference
(APSCC), 2011, pp. 442–449.

[37] A. Barros, M. Dumas, A. H. Ter Hofstede, Service
interaction patterns, in: International Conference on
Business Process Management, 2005, pp. 302–318.

[38] T. Köllmann, C. Hentrich, Synchronization patterns
for process-driven and service-oriented architectures.,
in: EuroPLoP, 2006, pp. 199–228.

[39] F. B. Vernadat, Interoperable enterprise systems:
Principles, concepts, and methods, Annual reviews in
Control 31 (1) (2007) 137–145.

[40] G. Grossmann, M. Schrefl, M. Stumptner, Exploit-

ing semantics of inter-process dependencies to instan-
tiate predefined integration patterns, in: Proc. of the
26th international conference on Conceptual modeling,
2007, pp. 155–160.

[41] H. Taylor, A. Yochem, L. Phillips, F. Martinez, Event-
driven architecture: How SOA enables the real-time
enterprise, Pearson Education, 2009.

[42] O. P. Patri, V. S. Sorathia, A. V. Panangadan, V. K.
Prasanna, The process-oriented event model (PoEM):
A conceptual model for industrial events, in: Inter-
national Conference on Distributed Event-Based Sys-
tems, 2014, pp. 154–165.

[43] S. Asmus, A. Fattah, C. Pavlovski, Enterprise cloud
deployment: Integration patterns and assessment
model, IEEE Cloud Computing 3 (1) (2016) 32–41.

[44] D. Ritter, S. Rinderle-Ma, Toward a collection of cloud
integration patterns, arXiv preprint arXiv:1511.09250.

[45] D. Merkel, F. Santas, A. Heberle, T. Ploom, Cloud
integration patterns, in: European Conference on
Service-Oriented and Cloud Computing, 2015, pp.
199–213.

[46] D. Ritter, Experiences with business process model
and notation for modeling integration patterns, in:
European Conference on Modelling Foundations and
Applications, 2014, pp. 254–266.

[47] D. Ritter, Towards more data-aware application inte-
gration (extended version), CoRR abs/1504.05707.
URL http://arxiv.org/abs/1504.05707

[48] D. Mansor, Moving to the cloud: Patterns, integration
challenges and opportunities, in: Proceedings of the
7th International Conference on Advances in Mobile
Computing and Multimedia, 2009, pp. 9–9.

[49] H. Buckow, H.-J. Groß, G. Piller, K. Prott,
J. Willkomm, A. Zimmermann, Integration strategies
and patterns for SOA and standard platforms, in: GI
Jahrestagung (1), 2010, pp. 398–403.

[50] M. Heiss, A. Oertl, M. Sturm, P. Palensky, S. Vielguth,
F. Nadler, Platforms for industrial cyber-physical
systems integration: contradicting requirements as
drivers for innovation, in: Modeling and Simulation
of Cyber-Physical Energy Systems, 2015, pp. 1–8.

[51] D. Ritter, J. Bross, Datalogblocks: relational logic
integration patterns, in: International Conference on
Database and Expert Systems Applications, 2014, pp.
318–325.

[52] T. Scheibler, F. Leymann, A framework for executable
enterprise application integration patterns, in: Enter-
prise Interoperability III, Springer, 2008, pp. 485–497.

[53] T. Scheibler, F. Leymann, Realizing enterprise inte-
gration patterns in WebSphere, Tech. rep., University
of Stuttgart (2005).
URL http://dx.doi.org/10.18419/opus-2563

[54] R. Thullner, A. Schatten, J. Schiefer, Implement-
ing enterprise integration patterns using open source
frameworks, Software Engineering Techniques in
Progress (2008) 111–124.

[55] G. Hohpe, Conversation patterns, in: The Role of
Business Processes in Service Oriented Architectures,
no. 06291 in Dagstuhl Seminar Proceedings, 2006, p. 7.

[56] L. González, R. Ruggia, Addressing QoS issues in ser-
vice based systems through an adaptive ESB infras-
tructure, in: Proceedings of the 6th Workshop on Mid-
dleware for Service Oriented Computing, 2011, p. 4.

[57] D. Fahland, C. Gierds, Using petri nets for modeling
enterprise integration patterns, Tech. rep., bpmcen-

30

http://arxiv.org/abs/1504.05707
http://arxiv.org/abs/1504.05707
http://arxiv.org/abs/1504.05707
http://dx.doi.org/10.18419/opus-2563
http://dx.doi.org/10.18419/opus-2563
http://dx.doi.org/10.18419/opus-2563

ter.org (2012).
[58] D. Fahland, C. Gierds, Analyzing and completing

middleware designs for enterprise integration using
coloured petri nets, in: International Conference on
Advanced Information Systems Engineering, 2013, pp.
400–416.

[59] O. P. Patri, A. V. Panangadan, V. S. Sorathia, V. K.
Prasanna, Semantic management of enterprise integra-
tion patterns: A use case in smart grids, in: Data
Engineering Workshops (ICDEW), 2014, pp. 50–55.

[60] S. Basu, T. Bultan, Automatic verification of in-
teractions in asynchronous systems with unbounded
bu↵ers, in: International conference on Automated
software engineering, 2014, pp. 743–754.

[61] P. Mederly, M. Lekavỳ, M. Závodskỳ, P. Návrat, Con-
struction of messaging-based enterprise integration so-
lutions using AI planning, in: IFIP Central and East
European Conference on Software Engineering Tech-
niques, 2009, pp. 16–29.

[62] P. Mederly, P. Návrat, Construction of messaging-
based integration solutions using constraint program-
ming, in: East European Conference on Advances in
Databases and Information Systems, 2010, pp. 579–
582.

[63] R. Kazman, K. Schmid, C. B. Nielsen, J. Klein, Un-
derstanding patterns for system of systems integration,
in: System of Systems Engineering, 2013, pp. 141–146.

[64] R. Land, I. Crnkovic, S. Larsson, Process patterns
for software systems in-house integration and merge-
experiences from industry, in: Conference on Soft-
ware Engineering and Advanced Applications, 2005,
pp. 180–187.

[65] D. Chen, G. Doumeingts, F. Vernadat, Architectures
for enterprise integration and interoperability: Past,
present and future, Computers in industry 59 (7)
(2008) 647–659.

[66] H. Panetto, R. Jardim-Goncalves, A. Molina, Enter-
prise integration and networking: theory and practice,
Annual Reviews in Control 36 (2) (2012) 284–290.

[67] K. Wang, M. Dumas, C. Ouyang, J. Vayssière, The
service adaptation machine, in: European Conference
on Web Services, 2008, pp. 145–154.

[68] S. Rajam, R. Cortez, A. Vazhenin, S. Bhalla, De-
sign patterns in enterprise application integration for
e-learning arena, in: International Conference on Hu-
mans and Computers, 2010, pp. 81–88.

[69] W. He, L. Da Xu, Integration of distributed enterprise
applications: a survey, IEEE Transactions on Indus-
trial Informatics 10 (1) (2014) 35–42.

[70] G. Hohpe, Your co↵ee shop doesn’t use two-phase
commit, IEEE Softw. 22 (2) (2005) 64–66.

[71] S. Cranefield, S. Ranathunga, Embedding agents in
business processes using enterprise integration pat-
terns, in: International Workshop on Engineering
Multi-Agent Systems, 2013, pp. 97–116.

[72] DELL Boomi, AtomSphere User Guide,
http://help.boomi.com/atomsphere/

GUID-A98714FA-9EAB-4B69-BCC8-7D8984F0B0EC.html

(2017).
[73] IBM, WebSphere Cast Iron Cloud integration, https:

//www.ibm.com/support/knowledgecenter/SSGR73

(2017).
[74] Informatica, Cloud-Integration, https://www.

informatica.com/de/products/cloud-integration.

html (2017).

[75] Jitterbit, Harmony Cloud Integration, https://www.
jitterbit.com/harmony/ (2017).

[76] Microsoft, BizTalk Server, https://msdn.microsoft.
com/en-us/library/dd547397(v=bts.10).aspx

(2017).
[77] SAP SE, SAP HANA Cloud Integration, http:

//www.sap.com/product/technology-platform/

hana-cloud-integration.html (2017).
[78] Oracle, BEA WebLogic Integration, https://docs.

oracle.com/cd/E13214_01/wli/docs81/index.html

(2017).
[79] Tray.io, Tray.io Docs, http://docs.tray.io/ (2017).
[80] Zapier, Zapier v2 Documentation, https://zapier.

com/developer/documentation/v2/reference/

(2017).
[81] Apache Foundation, Apache Flume, https://flume.

apache.org/ (2017).
[82] Apache Foundation, Apache Nifi, https://nifi.

apache.org/ (2017).
[83] C. Ibsen, J. Anstey, Camel in Action, 1st Edition,

Manning Publications Co., 2010.
[84] Cloudpipes, Cloudpipes Documentation, https://

docs.cloudpipes.com/ (2017).
[85] Tibco, Tibco Cloud Integration Documentation,

https://integration.cloud.tibco.com/docs/

index.html (2017).
[86] Software AG, Webmethods Integration Cloud,

http://www.softwareag.com/corporate/products/

cloud/integration/default.asp (2017).
[87] Gartner, Inc., Magic Quadrant for Enterprise

Integration Platform as a Service, World-
wide, https://www.gartner.com/doc/3263719/

magic-quadrant-enterprise-integration-platform

(2016).
[88] Forrester Research, Inc., The Forrester Wave: iPaaS

For Dynamic Integration, Q3 2016, https://www.

forrester.com/report/The+Forrester+Wave+iPaaS+

For+Dynamic+Integration+Q3+2016/-/E-RES115619

(2016).
[89] D. Ritter, M. Holzleitner, Integration adapter model-

ing, in: Conference on Advanced Information Systems
Engineering, 2015, pp. 468–482.

[90] MuleSoft, Integration: The cloud’s big challenge,
accessed: 01/2017 (2017).
URL https://www.mulesoft.com/resources/

cloudhub/integration-clouds-big-challenge

[91] D. Ritter, Towards more data-aware application in-
tegration, in: British International Conference on
Databases, 2015, pp. 16–28.

[92] C. Peltz, Web services orchestration and choreography,
IEEE Computer 36 (10) (2003) 46–52.

[93] D. Ritter, J. Sosulski, Modeling exception flows in in-
tegration systems, in: Enterprise Distributed Object
Computing Conference, 2014, pp. 12–21.

[94] D. Ritter, J. Sosulski, Exception handling in message-
based integration systems and modeling using BPMN,
Int. J. Cooperative Inf. Syst. 25 (2) (2016) 1–38.

[95] C. Fehling, F. Leymann, R. Retter, W. Schupeck,
P. Arbitter, Cloud Computing Patterns - Fundamen-
tals to Design, Build, and Manage Cloud Applications,
Springer, 2014.

[96] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-oriented Soft-
ware, Addison-Wesley Longman Publishing Co., Inc.,
1995.

31

http://help.boomi.com/atomsphere/GUID-A98714FA-9EAB-4B69-BCC8-7D8984F0B0EC.html
http://help.boomi.com/atomsphere/GUID-A98714FA-9EAB-4B69-BCC8-7D8984F0B0EC.html
https://www.ibm.com/support/knowledgecenter/SSGR73
https://www.ibm.com/support/knowledgecenter/SSGR73
https://www.informatica.com/de/products/cloud-integration.html
https://www.informatica.com/de/products/cloud-integration.html
https://www.informatica.com/de/products/cloud-integration.html
https://www.jitterbit.com/harmony/
https://www.jitterbit.com/harmony/
https://msdn.microsoft.com/en-us/library/dd547397(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/dd547397(v=bts.10).aspx
http://www.sap.com/product/technology-platform/hana-cloud-integration.html
http://www.sap.com/product/technology-platform/hana-cloud-integration.html
http://www.sap.com/product/technology-platform/hana-cloud-integration.html
https://docs.oracle.com/cd/E13214_01/wli/docs81/index.html
https://docs.oracle.com/cd/E13214_01/wli/docs81/index.html
http://docs.tray.io/
https://zapier.com/developer/documentation/v2/reference/
https://zapier.com/developer/documentation/v2/reference/
https://flume.apache.org/
https://flume.apache.org/
https://nifi.apache.org/
https://nifi.apache.org/
https://docs.cloudpipes.com/
https://docs.cloudpipes.com/
https://integration.cloud.tibco.com/docs/index.html
https://integration.cloud.tibco.com/docs/index.html
http://www.softwareag.com/corporate/products/cloud/integration/default.asp
http://www.softwareag.com/corporate/products/cloud/integration/default.asp
https://www.gartner.com/doc/3263719/magic-quadrant-enterprise-integration-platform
https://www.gartner.com/doc/3263719/magic-quadrant-enterprise-integration-platform
https://www.forrester.com/report/The+Forrester+Wave+iPaaS+For+Dynamic+Integration+Q3+2016/-/E-RES115619
https://www.forrester.com/report/The+Forrester+Wave+iPaaS+For+Dynamic+Integration+Q3+2016/-/E-RES115619
https://www.forrester.com/report/The+Forrester+Wave+iPaaS+For+Dynamic+Integration+Q3+2016/-/E-RES115619
https://www.mulesoft.com/resources/cloudhub/integration-clouds-big-challenge
https://www.mulesoft.com/resources/cloudhub/integration-clouds-big-challenge
https://www.mulesoft.com/resources/cloudhub/integration-clouds-big-challenge

[97] SAP SE, SAP HANA Cloud Integration - Prepack-
aged Content, https://cloudintegration.hana.

ondemand.com/ (2017).
[98] SAP SE, SAP Financial Services Network,

http://www.sap.com/product/financial-mgmt/

financial-services-network.html (2017).
[99] D. Ritter, N. May, K. Sachs, S. Rinderle-Ma, Bench-

marking integration pattern implementations, in: In-
ternational Conference on Distributed and Event-
Based Systems, 2016, pp. 125–136.

[100] M. Böhm, D. Habich, S. Preissler, W. Lehner,
U. Wloka, Cost-based vectorization of instance-based
integration processes, Inf. Syst. 36 (1) (2011) 3–29.

32

https://cloudintegration.hana.ondemand.com/
https://cloudintegration.hana.ondemand.com/
http://www.sap.com/product/financial-mgmt/financial-services-network.html
http://www.sap.com/product/financial-mgmt/financial-services-network.html

	Introduction
	New Challenges for Enterprise Application Integration
	Research Method
	Contributions and Paper Outline

	Literature Review
	Processing of selected literature – topics and trends
	Literature summaries
	Service-oriented and Event-driven Architectures
	Cloud Computing, Business Networks, and Hybrid Applications
	Internet of Things and Big data
	General EAI approaches

	Synthesis and Discussion of Non-functional Aspects

	System Review
	Processing of selected systems
	EIP Solutions used in System Implementations
	New Solutions not covered by System Implementations

	System Summaries along NFA
	Security
	Media
	Processing
	Conversations
	Error Handling
	Monitoring
	Storage
	Composition
	Miscellaneous

	Design of Pattern Catalog
	Goal 1 (Comprehensiveness): System Implementation Coverage
	Goal 2 (Novelty): Literature Coverage
	Solutions for Future Challenges

	Example Integration Pattern Realization
	Problem Description: Stateful vs. Stateless Integration Processes
	Patterns and Pattern Formats
	Pattern Examples and Realization

	Quantitative Analysis
	Integration Scenarios
	Scenario Analysis

	Challenges, Limitations, Impact
	Research Challenges
	Patterns
	Formalization
	Modeling

	Limitations
	Impact

