
TagRefinery: A Visual Tool for Tag Wrangling
Appendices

APPENDIX A: CALCULATING TAG QUALITY FOR THE
LAST.FM DATASET
For Last.fm tags, we used the formula in Equation 1 to cal-
culate tag quality Q(t) per tag t. Over all songs s, we sum
contribution of all (tag,song) pairs in the dataset to a tag’s
overall quality Q(t). The Last.fm weight w(t,s) is the per-
centage of taggers of a song who applied a certain tag to the
song, listeners(s) is the number of users who listened to a
song, and playcount(s) is the total number of times a song
has been played. The overall quality Q(t) can be normalized
over the highest quality tag in the dataset. Therefore, the more
occurrences a tag has and the more popular the songs in which
it appears in are, the higher its tag quality will be. Due to the
fact that highly popular songs get significantly more listens
than less popular ones, listeners(s) and playcount(s) showed
an extreme long-tail distribution. As such, we used logarithms
in the formula to lessen the effects of this phenomenon.

Q(t)= ∑
all songs s

w(t,s)×(log(listeners(s))+log(playcount(s)))

(1)

APPENDIX B : WORKFLOW IN DETAIL

1. Decomposition
The Decomposition step takes all tag/item pairs from the input
dataset, changes the case of all characters to lower case and
reduces multiple spaces to one space. Next, all tags are decom-
posed into single words 1in order to perform spell-correction in
future steps. Later on, multi-word tags are reconstructed from
these words according to the initial dataset. Quality of words
that appear only as part of another tag is set as the quality of
the tag they are derived from. When a word appears more than
once (coming from different original tags), its quality is set as
the maximum of all its parents’ qualities.

2. Pre-Filtering
The Pre-Filter step is intended to reduce the computation time
of the work-flow by removing extremely rare words from the
computation. This step is important if the dataset ranges in
the hundreds of thousands of tags (so that there are tens of
thousands of unique words). It is possible to add those words

1The length of Last.fm tags can range between one and 67 words.

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:
• ACM copyright: ACM holds the copyright on the work. This is the historical ap-
proach.
• License: The author(s) retain copyright, but ACM receives an exclusive publication
license.
• Open Access: The author(s) wish to pay for the work to be open access. The addi-
tional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement assuming it is
single spaced.
Every submission will be assigned their own unique DOI string to be included here.

again after one has finished work on refining the parameters in
later steps, for one long computation phase. This increases the
amount of salvaged words due to the fact that a lot of spelling
errors and uncommon word forms are really rare.

3. Black-listing
The user can at this phase import lists of tags, words and
characters that will be removed from the dataset or replaced
with others. For instance, some users might need to remove
all stop-words and prepositions or special characters such as -
_ : ; /.

4. White-listing
The White-list step reads all rows from the input csv and in-
terprets all words in it as ground-truth, for the spell correction
step and all multi-word tags as ground-truth for the multi-word
detection step.

5. Spell-correction
This step corrects spelling errors and consolidates various
forms of the same word. This is accomplished by creating
a character 2-gram set for each word (rock turns into [_r,
ro, oc, ck, k_]) and computing the Jaccard index between
different sets. The Jaccard distance is the fraction of common
2-grams from both sets (intersection) over the number of total
unique 2-grams occuring in both sets (union). If two words
are similar enough, the lower quality word will be replaced
by the higher quality one. This method has the advantage of
complete language independence. This is especially important
in complex datasets like Last.fm, where any language can be
used. Thus, we used 2-grams instead of the popular language
dependent method of stemming. Another common similarity
measure is The Damerau-Levenshtein distance. We dropped
this measure due to its very high computation-time and our
requirement of real-time feedback in the interface.

There are two user customizable thresholds in this step; one
dictates the required degree of Jaccard similarity between
two words for a replacement to happen, and the other is a
threshold on word quality, which is used for designating a
subset of the words as “correct”. These words, along with
any words in the white-list (previous step) are safe from being
replaced, and can replace other similar words. Besides, the tool
provides graphical means for the user to manually reject any
replacements that will be made given the two thresholds. This
is one of the more time consuming steps with a complexity
of O((w+ i)× (n− i)), where w is the number of white-listed
words, i is the number of words chosen by the user as ground-
truth with the word quality threshold, and n is the total number
of words. To compute the similarity between a pair of words,
the first step is the decomposition of the two words into 2-
gram sets, an example of which is shown in Algorithm 1.

The Jaccard Index between these two sets is computed using
Equation 2 .

// Words for the similarity computation
a = rock;
b = roock;
// The 2-gram sets of each of those

words
A = { r,ro,oc,ck,k };
B = { r,ro,oo,oc,ck,k };
// The Jaccard index of the two example

sets as shown in 2
J(A, B) = 5/6 = 0.83;
// The similarity between those two

words is 83.3%
Algorithm 1: Example similarity computation

J(A,B) =
|A∪B|
|A∩B|

(2)

More specifically, spell correction has the following proce-
dure:

1. All single words from the imported ground truth list will be
added to the correct words.

2. The user sets a word quality threshold and a similarity
threshold.

3. All words above or equal to this threshold will be added to
the list of correct words.

4. For each word in the correct words list, the similarity to all
other words (except the words in the correct words list) in
the dataset will be computed using Algorithm 1.

5. Each word which has a similarity above or equal to the
threshold will be added to a replacement list.

6. If there are multiple replacements for the same word, the
word with the highest word quality will be used as the
correct word.

7. The replacement list will be applied to the dataset.

6. Multi-word tag detection
The Multi-Word Tag Detection step consists of two different
algorithms for detecting frequent and unique multi-word tags.
The frequent version counts all occurrences of a all word
sequences and normalizes them to [0,1]. With this algorithm
frequent groups such as “hard rock” have a high value. The
unique version uses again the Jaccard Index as measure, which
is computed as the sum of co-occurrences divided by the sum
of all single word occurrences. This algorithm gives high
values for groups where the words in the group occur mostly
in this combination and not individually.

7. Post-Filtering
After multi-word tags are re-constructed, tag quality is com-
puted again for all tags. In this step the user can set a threshold
on the tag quality to reduce the total amount of tags in the final
dataset, as some use cases might require smaller and higher
quality sets of tags.

8. Manual polishing
This step is intended for manually editing the post-filtered
tags. Here the user can remove synonyms or translate tags
from different languages to one. Also the user might decide
to remove words which do not fit into his use case or rename
multiple words to create custom clusters.

9. Information salvaging
The last step uses the post-filtered and polished tags as a
basis for finding useful tags in the rest of the dataset. The
salvager uses two different equations which are the greedy
method (Equation 3) and the conservative method (Equation
4). The greedy salvager is used for all cases but with single
word tags of a length shorter than three characters. This is
because when word length is this short, the greedy salvager
might salvage wrong or misleading tags. For instance, the
music genre “emo” is salvaged out of the previously removed
tag “emoticon", which means wrong information is introduced
into the dataset, as these two tags are not related. An example
with default settings: “rock" and “emo" are in the final tag
list. “emo-song”, “emoticon”, “tree” and “poprock” have
been previously removed in Pre-Filtering. The salvager would
turn “emo-song” into “emo” , “emoticon” and “tree” will be
removed and “poprock” would turn into “rock".

Greedy regular expression : ”.∗TAG.∗ ” (3)

Conservative regular expression : ”\sTAGs\” (4)

APPENDIX C: IMPLEMENTATION
TagRefinery is built as a server/client application. The server
is written in Java and has a multilayer design. As transport
layer, the open source Socket.IO server implementation Netty-
socketio 2 is used which provides the web socket interface
the client connects to. The second layer is responsible for
the workflow and keeps track of all the states in the system.
Finally, the lowest layer handles the different computations
needed in the system. The client is built in AngularJS 3 and
uses D3 4 for the visualisations. All computations are per-
formed server-side and the client works only as graphical user
interface. The usage of Java and Javascript makes the tool
deployable on all platforms with the only dependency being
Java 1.8.

2https://github.com/mrniko/netty-socketio
3https://angularjs.org
4https://d3js.org

	Appendix A: Calculating Tag Quality for the Last.fm Dataset
	Appendix B : Workflow in Detail
	Appendix C: Implementation

