Author version.
The final publication is available at Springer via
http://www.springer.com/de/book/9783319595351#0otherversion=9783319595368

Visual Modeling of Instance-Spanning
Constraints in Process-Aware Information
Systems

Manuel Gall, Stefanie Rinderle-Ma

University of Vienna, Faculty of Computer Science, Vienna, Austria
manuel.gall@univie.ac.at, stefanie.rinderle-maQunivie.ac.at

Abstract. Instance-Spanning Constraints (ISCs) have raised attention
just recently although they are omnipresent in practice to define con-
ditions across multiple instances or processes, e.g., bundling of cargo.
It would be crucial to convey ISC information on, e.g., shared instance
resources to users. However, no approach for visualizing ISCs has been
presented yet. To overcome this gap we analysed literature and derived
visualization requirements for constraints on multiple instances of the
same or different processes. The proposed language ISC_Viz is based on
BPMN-Q and incorporates existing visual notations to reduce the cog-
nitive load on the user. The applicability of ISC_Viz is shown along 114
ISC modeling examples. Moreover, a questionnaire-based study with 42
participants is conducted in order to assess the usability of ISC_Viz.

Keywords: Constraint Visualization, Instance-Spanning Constraints,
Compliance, Process-Aware Information Systems

1 Introduction

In many cases, business process instances are not executed in an isolated fashion,
but share, for example, resources. Restrictions and properties on these intercon-
nections can be expressed based on so called Instance-Spanning Constraints
(ISC) [3]. More precisely, ISCs can span multiple instances, but also multiple
processes. An example for an ISC spanning multiple instances of the same pro-
cess is synchronization at a critical resource (e.g., wait until resource is fully
loaded). Imposing an order between treatments for a patient in two medical pro-
cesses is an example for a process-spanning ISC. As shown by a recent study [14],
ISC examples can be found for almost any domain. Although ISCs might refer
to design time aspects of business processes, the lion’s share of ISC examples
becomes effective during runtime [3].

Thus a comprehensive ISC support for business processes is indispensable.
This includes formalisms to specify ISC and associated verification techniques in
order to check for ISC violations. However, as stated in [9] checking constraints
by only providing some kind of wviolation: yes / no answer is in general not
sufficient. In turn, it is crucial to adequately include users in the constraint

http://www.springer.com/de/book/9783319595351##otherversion=9783319595368

checking process as often the users are required to handle constraint violations.
In order to be able to deal with constraints and their violations it is necessary
that users can understand constraints.

Thus visual modeling languages for constraints in business processes are re-
quired. For constraints that do not span any instances or processes, i.e., so called
intra-instance constraints (IIC), some proposals for visual modeling languages
exist, for example, BPMN-Q [2] and extended Compliance Rule Graphs (eCRG)
[7]. These languages, however, were not designed having ISC in mind. Hence,
overall, there is no language that supports the visual modeling of constraints
spanning multiple instances or processes. However, this would be very impor-
tant since ISC might be even harder to understand than IIC due to the additional
information on the spanning part of the constraints.

Thus this work aims at developing a visual modeling language for ISC. In
detail the goals are to

— define requirements for an ISC modeling language.
— elaborate and implement a visual modeling language for ISC.
— show the applicability and usability of the suggested language.

In order to reach these goals, the work at hand follows the design science
research methodology (cf. [18]). At first, requirements are derived from existing
work on constraints in general and ISC specifically. Existing proposals for visual
constraint modeling languages in the business process domain are evaluated
along the requirements. As a result an existing language is chosen as fundament
for elaborating the visual ISC modeling language ISC_Viz, i.e., the resulting ar-
tifacts are a collection of requirements, an assessment of existing languages, and
ISC_Viz. ISC_Viz is then evaluated in two ways. Its applicability is shown by
modeling the representative ISC for each of the categories introduced in [3] and
modeling the complete ISC example data set of 114 real-world ISC presented in
[14]. The usability of the language is evaluated based on a user study. Stakehold-
ers of the proposed solution can be process and constraint designers, auditors,
as well as process participants.

The paper is structured as follows. Section [2] derives requirements for a vi-
sual ISC modeling language and Sect. [3] evaluates existing constraint modeling
languages along these requirements. In Sect. [4 a visual modeling language for
ISC is proposed. Section [5] presents the evaluation. In Sect. [6] related approaches
are discussed and Sect. [7] closes with a summary.

2 Requirements

To create a visual language that fits the needs of ISC we derive requirements from
existing work. Ly et al. [9] introduces a framework for Compliance Monitoring
Functionalities (CMF). This framework consists of three groups of requirements,
i.e., modeling requirements, execution requirements and user requirements. In
the following, we focus on CMF modeling requirements as input for deriving re-
quirements on modeling instance spanning constraints (ISC). The modeling re-

quirements consist of three functionalities referring to time, data, and resources.
These three functionalities can be mapped to requirements for modeling ISC.

1.

2.

Time enables the specification of temporal constraints, e.g., for a specific
moment in time and period of time.

Data can be restricted to one instance or shared between multiple instances
of different processes. We differentiate between two data types. Process data
consists of input and output data which is read or written when a task is
executed. Fxecution data is created by executing instances and can be seen
as meta data, i.e., how many instances of a certain process are currently
running.

. Resources can be restricted i.e. one resource can be accessed by a maximum

of five instances simultaneously.

These requirements are refined within the ITUPC [II] framework and the

CRISP project [3]. The IUPC framework helps to identify process constraints
based on several criteria. These criteria are used to define our ISC requirements.

4.

10.

Behavior: describes in which order tasks are executed. A compliance rule
engine might, for example, enforce that a certain task has to be executed
before another.

. Structural Pattern: defines the connection between constraint and process.

A structural pattern consists of one or multiple tasks.

. Trigger: defines when the constraint is checked. A constraint can be checked

based on time and structural pattern. Time can be a specific point in time or
a recurring check every day at a certain time. Structural pattern is triggered
before or after a task is executed and might involve data and or resources.

. Interoperability: describes that one constraint might span multiple of these

requirements, e.g., a booking process has to be executed within a certain
time and depends on a specific resource. The proposed visualization shall
be able to comprehend different constraint types within one visualization
without additional semantics.

. Spanning Processes: ISC can span single or multiple processes [3]. A con-

straint only referring to one process has to span multiple instances in order
to be considered an ISC.

. Spanning Instances: Typically, ISC impose constraints on multiple instances.

A constraint that refers to instances in a separate way, i.e., does not span any
instances, is referred to as intra-instance constraint (IIC). Taking a design
time perspective, ISC can also span multiple processes, but no instances.
Action refers to the behavioral part of the IUPC framework e.g. synchro-
nization between process instances. Such a synchronization needs two actions
wait to stop all involved instances before or after a certain activity and start
to start execution of the synchronous activities.

These 10 requirements build the foundation for evaluating and selecting a

visual modeling language. The selected language is then extended to support
ISC.

3 Analyzing Visual Constraint Modeling Languages

Our goal is to propose a visual modeling language for ISC that can be used
for IIC. For this reason we take a look at current visual constraint modeling
languages in the area of business processes and evaluate them along the ISC re-
quirements set out in Sect. 2 The following sections contain a brief description
of each language and show a visual model of an IIC for illustrative purposes. As
representative IIC we are using an example from a study on constraint visualiza-
tion, i.e., ”c5: The testing has to be followed by an approval and the integration.
Additionally, no changes shall take place between the approval and the integra-
tion.” [10]. Assume that this IIC is enacted on the BPMN model depicted in

Fig.

I____________I__D_ _________________ T T T T T |

| | Code |

7 ! }
®—~?[Approval]—»[Tntegration]—»O

Fig. 1. Code testing example ¢5 from [10] modeled with BPMN.

To the best of our knowledge, BPMN-Q [2] and eCRG [7] are the only visual
modeling languages for constraints in the business process context. Hence both
languages are selected as candidates for extension towards modeling ISC and
evaluated along the harvested requirements in the following.

3.1 BPMN-Q

BPMN-Q [2] extends BPMN to enable visual query modeling based on a set of
processes. However, BPMN-Q can be easily adjusted for compliance checking
and hence constitutes a candidate language for visual ISC modeling. One of the
strengths of BPMN-Q is that it does not introduce a completely new visual
notation as it is based on BPMN. There are a few additional language elements
to be learned. In the initial version of BPMN-Q Awad et al. focus on control flow.
In [2] the approach is extended towards visual modeling of data and resources
[1]. Currently the notion of time constraints is not integrated with BPMN-Q.
However BPMN allows for modeling time-related information such as point in
time and time spans. Overall, this covers the modeling requirements for ISC
modeling. Finally, BPMN-Q can be mapped onto past linear time logic (PLTL).
Fig. [2] visualizes the constraint ¢5 with BPMN-Q syntax.

3.2 Extended Compliance Rules Graphs — eCRG

Compliance Rule Graphs (CRG) [I0] initially focused on visually modeling con-
trol flow related constraints. The approach was extended (eCRG) [§] to enable

Testln A roval m
“ﬁfh to >> pp <<Leads to>> g

Fig. 2. Code testing example c¢5 modeled with BPMN-Q

modeling of time, data, and resource constraints. Time constraints can be mod-
eled in eCRGs in different ways, e.g., by modeling a particular point in time or
so called time distance. The latter allows for modeling time constraints for single
and multiple tasks. eCRG does not enable the modeling of execution data. Fig.
visualizes constraint c5 in eCRG syntax.

Testing [——| Approval *! Integration
| C&ﬁe
L s - XS e J

Fig. 3. Code testing example ¢5 modeled with E-CRG

3.3 Requirements Analysis

As shown in Table [[] BPMN-Q and eCRG fulfill some of the requirements. Both
deal with time and data constraints in a different way, but do not allow for
modeling the full capabilities that are required for ISC such as execution data.
None of the languages enables the modeling of “spanning information” at process
and instance level. Moreover, it is not possible to model that certain actions are
to be enforced.

By using the existing BPMN visualization for time the shortcoming of BPMN-
Q compared to eCRG is minimal. An advantage of BPMN-Q might be that the
underlying process modeling notation BPMN is known to a broader audience.
As information on the underlying process models plays a vital role for ISC (even
more than for IIC), we finally opted for BPMN-Q as the fundament for de-
veloping ISC_Viz. In particular, this requires to propose an extension covering
time/data/trigger/action visualization and the instance spanning part of con-
straints.

4 ISC_Viz

The requirements analysis revealed that BPMN-Q needs extensions with re-
spect to Trigger, Spanning Processes, Spanning Instances, and Action (cf. Table

Requirements BPMN-Q|E-CRG
Time ~ X
Data ~ ~
Resources ~ ~
Behavior X X
Structural Pattern X X
Trigger ~ ~
Interoperability X X
Spanning Processes

Spanning Instances

Action

Table 1. The first column references each requirement defined in Section [2| For each
requirement a ” X” marks that this requirement is satisfied, a ~ marks partially satisfied
requirements.

1)) in order to express ISC-related information. For Trigger visualization exist-
ing BPMN symbols can be used. For Spanning Processes and Spanning Instances
and Action additional visualization concepts must be proposed. Specifically, this
means to enrich a graph with additional information. In order to not reinvent
the wheel, experience from visualization approaches in the business process do-
main are considered, i.e., the work on visualizing differences between business
process in []. In this work, nine visualization possibilities, e.g., shapes, color,
and symbols, were analyzed in order to suggest a generic visualization that can
be applied to a wide range of process model types.

4.1 Visualizing Spanning Processes and Spanning Instances

As the goal is to extend BPMN-Q with information on Spanning Processes and
Spanning Instances we need a visual style that can be incorporated into the
language. For example, adding new shapes for process and instance spanning
information does not seem to be sufficient due do the number of new shapes that
is necessary for expressing, for example, spanning data elements, time elements,
and task dependencies.

We [4] emphasize that colors and symbols are suitable to visualize differ-
ences between multiple processes. Color is a visual element that is currently not
used within BPMN-Q. By using color to express information on Spanning Pro-
cesses and Spanning Instances two additional visual elements are introduced.
The “standard” black version for IIC remains the same and two new versions
using different colors are introduced for ISC, i.e., Green visualizes Spanning In-
stances, while Blue visualizes Spanning Processes.

4.2 Visualizing Actions

Besides color we [4] recommend the usage of symbols to show differences be-
tween graphs. For visualizing actions such symbols offer various advantages over

color. An advantage is that different types of actions can be expressed as vari-
ous symbols are available. Colors are technically not limited, but the cognitive
perception is restricted with respect to distinguishing colors. Another advantage
of using symbols is extensibility. So far a set of actions for one subject has been
described such as start and wait actions connected with an activity. However,
further actions are conceivable. In this case these new actions can be visualized
using additional symbols. The set of symbols suggested in this paper is known
from user interfaces like execution engines and media player controls. Figure
depicts the symbols suggested in this work for the action part described in
current literature [11UT5].

> W @ O 0 o

Start Wait Restart Alert GiveBack GiveBack
prohibit

Fig. 4. Selected actions and associated symbols

4.3 Visualizing Trigger

For trigger visualization symbols from BPMN are used. For constraints involving
data and resources we use conditional. Conditional trigger describes the integra-
tion of external business rules which is suitable for compliance rules. Data and
resources checked within the trigger are visualized with arrows leading to the
trigger. Time constraints are visualized with the BPMN Timer. The timer trig-
ger allows for expressing points in time, time spans, and timeouts. In order
to differentiate between intra-instance and instance-spanning we use a different
color for ISC triggers.

4.4 Complete Visualization

Overall, the proposal is to visualize the spanning part of a constraint with color,
the more complex actions with symbols, and the trigger with BPMN symbols.

Tllustrating the extensions to BPMN-Q Figure [5| shows a process model and
the ISC ”Wait until centrifuge is filled.” [14]. At first, some explanation is given
on the meaning of the colors. Then the general structure of the language is
described.

— Green activity shows that this constraint spans multiple instances.

— Purple shows a trigger with a data constraint ”execution data”. Centrifuga-
tion is only done when the centrifuge is full. Information if the centrifuge is
full can be derived from other instances. When there are 5 mixtures waiting
for centrifugation (execution data) and the centrifuge allows for 6 mixtures
then all 6 instances resume work after the 6th mixture is put into the cen-
trifuge.

— Red are the actions as they perform critical tasks and influence the process
execution. In this example all instances are stopped before centrifugation
until the centrifuge is full. When the centrifuge is full all instances resume
their work.

. . . . put out of
O—p[examine mixture]—p[put in centrifuge]—»[centrifugation]—’[centrifuge

(VizColor) ; (VizTrigger)
: D “execution data”
-
'
. - Lo o T - - - - -
(VizTriangle) (VizAction)

D “execution data”
|

|

D “execution data”

I

Fig. 5. Top: Shows a process model for a centrifugation process. Bottom: visualizes an
ISC with trigger and actions.

As can be seen from Figure [5] the constraint is modeled in four ways as it is
not yet answered how many details shall be shown to the user. These four types
are referenced by the following evaluation as follows.

— VizColor: visualizes the spanning part of the constraint.

— VizTrigger: is based on VizColor and adds the trigger visualization.

— VazTriangle: is based on VizTrigger with additional action visualization. To
show the actions within a triangle is a way to keep the constraint vertically
small when multiple activities with diverse trigger and actions are involved.

— VizAction: describes the same information as VizTriangle, but with a dif-
ferent visualization of the action part. Here, the actions are modeled and
visualized in a more process-oriented way and thus connected by edges.

5 Evaluation

We evaluate the ISC_Viz proposal in two ways. First a questionnaire is addressing
visual detail and understanding of modeled constraints. Secondly, the applica-
bility is illustrated by modeling examples for each category introduced by Fdhila
et al. [3).

5.1 Questionnaire

The questionnaire was designed aiming at two goals. The first goal was to identify
which of the proposed visualizations is preferred by the participants. Second goal
was to identify how certain BPMN-Q language extensions such as actions and
trigger are understood by the participants.

Method The initial draft of the questionnaire was designed based on the guide-
lines by Porst [13]. Structured with an introduction, questions targeting the vi-
sualization and gathering empirical data. The introduction briefly explained ISC
and provided an example process consisting of three constraints where each one
was visualized with all four types presented in Section [£:4] First question of the
questionnaire was about visual preference. Based on three example constraints
participants had to mark their preferred type. Further questions from this sec-
tion refer to, for example, assignment of attributes (spanning, trigger, actions)
for a given constraint, based on a visualization selecting an appropriate tex-
tual description, ranking of visualizations, animation, and color validation. The
questionnaire concludes with demographic questions about age, employment,
and gender.

This draft was refined with a 2-stage pretest. In the first stage the questions
were discussed with a group of peers familiar with ISC. Goal of this stage was
to validate the understanding and goal behind each question. Outcome of this
stage was a refinement of question and answer wording. The second stage con-
sisted of a test where three participants from the target audience performed the
questionnaire. These three participants were allowed and encouraged to ask ques-
tions, but those questions were just noted and not answered. Based on this stage
the introduction was changed as participants were confused what the difference
between trigger and action is.

As ISC visualization is a new and arising research topic there does not exist a
large group of experts for participating in the questionnaire. Therefore the target
audience was set to participants familiar with process modeling visualizations as
this is one of the foundations our visualization builds upon. On a scale from 1
(expert) to 7 (never worked with process models) the participants rated them-
selves with a mean (2.90) and median (3). In total 42 computer science students
from three master courses participated in the questionnaire. The majority of
participants (59.52%) were men, (30.95%) women, (7.14%) with no answer and
(2.39%) other. The questionnaire and respective answers are available fronﬂ

Results The questionnaire was printed and while all questions besides the de-
mographic questions are mandatory it is up to the participant if the question is
answered. From the set of 42 participants two missed to answer a question. The
answers of these two participants were retained within the dataset. For affected
evaluations we will outline that answers are missing.

! nttp://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=visualization

http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=visualization

The goal is to measure how well the ISC_Viz proposal is understood with fo-
cus on the extensions, i.e., Spanning Processes, Spanning Instances, Trigger, and
Action. In order to evaluate the understanding the participants had to categorise
six visual ISC examples. For each example the participants had to check a range
of constraint properties, for example, Spanning or Not Spanning. These proper-
ties are reflected on the X-Axis of Figure[6] On the Y-Axis the accumulated mean
number from the 6 example processes and according percentages are shown. High
values on the Y-Axis show a high accordance with our proposed ISC_Viz lan-
guage. When a visualization shows a property and a participant marked it then
this counts as one participant. When a visualization shows a property and a par-
ticipant has not marked this property then this does not count. Contrary to this
when no property is shown and a participant marked one this does not count
and when the participant did not mark the property it counts. For example,
Figure [f] VizAction is given we expect a participant to mark the following prop-
erties Spanning, Data Constraint, Action Wait and Trigger Before. This leads us
to a result where we can see that symbols for action (Action_Give_back, Action
Restart, Action Wait) are in accordance by a mean of 35.5 (84.52%) participants.
Trigger After shows a mean of 33.83 (80.56%) participants in accordance and
seems to be understood very well while Trigger Before seemed to be confusing
with 28.83 (68,65%) accordance. Time Constraints themselves seem to be clear
38.33 (91.27%) to the participants while data constraints show an accordance of
25 (59.52%). This is a surprising result as the data constraint is not changed in
visual representation compared to BPMN.

Accordance Mean accordance score of 6 processes
42 (100%)
36 (86%)
30 (71%)
24 (57%)
18 (43%)
12 (29%)
6 (14%)
0 (0%)
Spanning Data Time Action Action Action Wait Trigger Trigger
Spannmg Constraint Constraint Give_back Restart Before After

Fig. 6. Results of questionnaire: understanding of ISC_Viz.

As their first task the participants had to select their preferred type based
on a short textual description of a constraint. The descriptions increased in dif-
ficulty. The first example was a simple constraint spanning instances, the second
and third example constraint span processes. First and second descriptions used
the same type of data element (execution data) while the third used a specific

data element. Table [2 shows the distribution over 41 participants. Each partici-
pant was allowed to select one type per description. VizColor was chosen in 6.5
% of the cases. VizTriangle sums up to 23.58 % and is evenly distributed among
the examples. VizTrigger sums up to 33.33 % and favours the simple examples
while VizAction clearly favours the complex example3 with a total of 36.59 %.

Type ‘Example 1 Example 2 Example 3‘Sum‘Percentage

VizColor 5 2 1 8 6,50 %
VizTrigger | 16 18 7 41| 33,33 %
VizTriangle 10 8 11 29 | 23,58 %
VizAction 10 13 22 45 | 36,59 %

Table 2. For each example column the distribution is shown across all 4 types.

While the classification above was shown at the beginning of the question-
naire the following ranking was conducted after working through various ISC
examples. The task was to rank the types beginning from 1 (best) to 4. Table
summarizes these results. Analysis with the Friedman test show an order pref-
erence with x2(3) = 59.69,p < .0001, with VizAction being best ranked mean
(1.64) followed by VizTrigger (1.95), VizTriangle (2.79) and concluding with
VizColor (3.62). However an analysis with Wilcoxon signed-rank test shows no
significant difference between VizAction and VizTrigger (Z = —1.27,p = .102).
When comparing the second and third example based on Friedman test with
Wilcoxon test a significant difference is observed (Z = —3.02, p = .0.00126).

Further into the questionnaire the participants had to answer if expand func-
tions are preferred. Extending VizTrigger to VizTriangle is preferred by 47.61
% and VizTrigger to VizAction is preferred by 66.67%.

Rank| VizColor VizTrigger VizTriangle VizAction

1 1 15 4 22

2 4 14 11 13

3 5 13 17 7

4 32 0 10 0
Sum 152 82 117 69
Mean| 3,62 1,95 2,79 1.64

Table 3. Each column represents the ranking achieved by the type. Low ranking
represents preferred visualization.

The visualization part of the questionnaire concluded with a question what
a green activity expresses. From 42 participants 35 (83.33 %) answered instance
spanning, 6 (14.29 %) marked process spanning, and 1 (2.38%) did not answer
the question. This shows that the participants understood that the spanning
part of the constraint is expressed by color.

In summary these results suggest that either VizAction or VizTrigger are
suited for visualizing constraints. Based on the fact that VizAction ranks better
in both cases, the first more intuitive rating and the second ranking we suggest
the usage of VizAction for visual modeling of ISC.

For creating a modeling tool for ISC_VIZ we suggest the usage of expand
and collapse interaction between VizTrigger and VizAction.

As another result, the name for the trigger before and trigger after are
changed to conditional before and conditional after to be more precise and to
have a clear distinction to the timer trigger.

5.2 Example based Evaluation

Based on the results from the questionnaire the following examples are visualized
with VizAction. Our examples are picked from a meta study on run-time ISC
[14]. Each example fits one category of the classification introduced by [3]. The
classification is divided into a category for design-time and four categories for
run-time. Figure [7] shows how these categories differentiate from each other.
Context expresses the spanning part of constraints. A constraint is considered
single spanning when the constraint spans only processes or instances and multi
spanning when it spans both. Modeling requirements are for example time, data
and resources. Modeling requirements are considered single when a constraint
uses none or one modeling requirement. Constraints that involve more then one
modeling requirement are expressed as multi. For our evaluation we pick one
example from the meta study per category and model these constraints with our
ISC_Viz language. To give a comprehensive view all constraints from Tabldd] are
visualized within Figure [7]

Context |Requirements|Rule

Multiple|Multiple ” A user is not allowed to execute more than 100
tasks (of any workflow) in a day”

Multiple|Single ”Maximal KWP-2000 Connections The number of
connections to KWP2000 should not exceed 10.”

Single |Multiple ”There should not exist more than one instance

of W such that the input parameters (say loan
customer) is the same and the loan amount sums
up to $100K during a period of one month.”
Single |Single ”?Wait until centrifuge is filled.”

Table 4. For each category by Fdhila et al. [3] we picked one example from Rinderle-Ma
et al. [14] which will be modeled with ISC_Viz

As we [T4] do not provide any design time ISC, in addition, the following
example constraint is introduced:

A resource is shared among processes but cannot be accessed at the same time
by multiple instances.

For a better understanding of possible violations of the design time ISC,
assume the following two situations reflected in the associated process models.
Process one uses the resource every day at 8 pm for 30 minutes. Process two
needs to use the resource every Monday at 8 pm for two hours. With these two
textual descriptions it is clear to see that a violation will happen every Monday
when two processes try to access the resource at the same time.

Figure [7] depicts the ISC_Viz models for all five ISC examples. It can be seen
that ISC_Viz enables the modeling of ISC representatives for all categories. In
addition to the examples provided in Table [4 all 114 ISC from the meta study
[14] are modeled with ISC_Viz. The models can be found hereﬂ

. O
&,&\ Context
W
$ Multi Context Multi Context
Multi Requirements Single Requirement
D“execution data” D“execution data”

l‘user |
L/ [

Modeling
Requirements

Single Context Single Context
Multi Requirements Single Requirement
Dlnnn customer D“execution data”

[D“executiou data” [
|/ |

<
W
?ﬁ',\‘éf‘\(Q
0 & resource A
I

I

Fig. 7. Each of the categories from [3] is represented with one example plus one design
time example.

2 http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=visualization

http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=visualization

6 Related Work

Dealing with business process compliance is a broad research field that can be
divided into design time [5] and runtime [9]. Both categories consider various
perspectives [16], i.e., control flow, time, data, and resources. For a comprehen-
sive view the iUPC Framework [II] was developed. Process-Aware Information
Systems are executing multiple instances of various processes simultaneously.
This simultaneous execution allows for further development of business process
compliance from IIC towards ISC [T2/T76]. Across several domains ISC examples
[14] are collected. Event Calculus is proposed and evaluated for formalizing ISC
[3]. These approaches are fundamental to create a visual ISC modeling language.
Intra instance constraints are visually modeled in several ways [2/T0]. These ap-
proaches consider various perspectives, i.e., time, resource and data. However
they focus on intra-instance constraints and do not allow for visually modeling
ISC.

7 Conclusion and Outlook

This paper introduces the visual modeling language ISC_Viz for IIC and ISC.
Specifically the latter has not been addressed in the literature. ISC_Viz is based
on BPMN-Q for the intra-instance part and extended by two visual styles, i.e.,
colors and symbols. These styles enable to model spanning information (i.e., be-
tween instances and processes) as well as action and trigger information. ISC_Viz
was evaluated with respect to its applicability and usability. More precisely, 114
real-world ISC examples were modeled using ISC_Viz. Moreover, the approach
was evaluated with 42 participants. The latter showed that ISC_Viz can be un-
derstood with little training. This proposal builds the basis for future research
on visualization of ISC, for example, the visualization of compliance violations.

Acknowledgment This work has been funded by the Vienna Science and Tech-
nology Fund (WWTF) through project ICT15-072.

References

1. Awad, A., Weidlich, M., Weske, M.: Specification, Verification and Explanation
of Violation for Data Aware Compliance Rules. In: Proceedings of the 7th Inter-
national Joint Conference on Service-Oriented Computing (ICSOC-ServiceWave
2009). Lecture Notes in Computer Science, vol. 5900, pp. 500-515 (2009)

2. Awad, A.: Bpmn-q: A language to query business processes. In: In Proceedings of
EMISAO7. pp. 115-128 (2007)

3. Fdhila, W., Gall, M., Rinderle-Ma, S., Mangler, J., Indiono, C.: Classification and
formalization of instance-spanning constraints in process-driven applications. In:
International Conference on Business Process Management 2016 (June 2016)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Gall, M., Wallner, G., Kriglstein, S., Rinderle-Ma, S.: A Study of Differ-
ent Visualizations for Visualizing Differences in Process Models, pp. 99-108.
Springer International Publishing, Cham (2015), http://dx.doi.org/10.1007/
978-3-319-25747-1_10

Ghose, A., Koliadis, G.: Auditing business process compliance. In: Int’l Conf. on
Service-Oriented Computing. pp. 169-180 (2007)

Heinlein, C.: Workflow and process synchronization with interaction expressions
and graphs. In: Int’l Conf. on Data Engineering. pp. 243-252 (2001)

Knuplesch, D.,; Reichert, M., Kumar, A.: Visually monitoring multiple perspectives
of business process compliance. In: Int’l Conf. on Business Process Management.
pp. 263-279 (2015)

Knuplesch, D., Reichert, M., Ly, L.T., Kumar, A., Rinderle-Ma, S.: On the formal
semantics of the extended compliance rule graph. Technical Report UIB-2013 - 05,
Ulm University, Ulm (April 2013)

Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Com-
pliance monitoring in business processes: Functionalities, application, and tool-
support. Information Systems 54, 209-234 (2015)

Ly, L., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable compli-
ance rule graphs in process-aware information systems. In: Conference on Advanced
Information Systems Engineering. pp. 9-23 (2010)

Mangler, J., Rinderle-Ma, S.: TUPC: identification and unification of process con-
straints. CoRR abs/1104.3609 (2011), http://arxiv.org/abs/1104.3609

Pflug, J., Rinderle-Ma, S.: Dynamic instance queuing in process-aware information
systems. In: Symposium on Applied Computing. pp. 1426-1433 (2013)

R., P.: Fragebogen. Ein Arbeitsbuch, Wiesbaden 22 (2008)

Rinderle-Ma, S., Gall, M., Fdhila, W., Mangler, J., Indiono, C.: Collecting examples
for instance-spanning constraints. Tech. Rep. abs/1603.01523, CoRR (2016)
Rinderle-Ma, S., Mangler, J.: Integration of process constraints from heterogeneous
sources in process-aware information systems. In: Int’l Workshop on Enterprise
Modelling and Information Systems Architectures. pp. 51-64 (2011)

Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Int’l Conf. on Business Process Management, pp. 149-164.
Springer (2007)

Warner, J., Atluri, V.: Inter-instance authorization constraints for secure workflow
management. In: Symposium on Access Control Models and Technologies. pp. 190—
199 (2006)

Wieringa, R.: Design Science Methodology for Information Systems and Software
Engineering. Springer (2015)

http://dx.doi.org/10.1007/978-3-319-25747-1_10
http://dx.doi.org/10.1007/978-3-319-25747-1_10
http://arxiv.org/abs/1104.3609

	Visual Modeling of Instance-Spanning Constraints in Process-Aware Information Systems

