
Enriching Architecture Knowledge with Technology
Design Decisions

Mohamed Soliman∗, Matthias Riebisch∗ and Uwe Zdun†
∗Department of Informatics, University of Hamburg, Germany

Email: {soliman, riebisch}@informatik.uni-hamburg.de
†Software Architecture Research Group, University of Vienna, Austria

Email: uwe.zdun@univie.ac.at

Abstract—Decision-making is at the core of software archi-
tecture design. However, in order for the architect to take the
right design decisions, assistance is required for exploring the
architectural knowledge, which encompasses the various archi-
tectural solutions, their relationships and distinctions. In the past
decades, the number of available technology options has increased
significantly, while existing architecture knowledge approaches
support technology decisions by representing relations between
the different technology solutions, as well as design problems.
However, they do not differentiate the candidate technologies
according to their offered qualities and drawbacks. Our main
goal in this exploratory study is to understand how technology
solutions are being considered by the architects during the design
process, and how can we enhance existing architecture knowledge
concepts to support technology decision making. Our contribution
in this paper is differentiating the different technology solutions’
features based on a set of architecturally significant aspects,
to facilitate considering technologies during the architecture
design decisions. In addition, we proposed an extension for
existing architecture knowledge models, which characterize the
technology design decisions, and their reasoning. We evaluated
our results through real examples from practitioners. Moreover,
we conducted interviews with experts to validate our proposed
concepts.

I. INTRODUCTION

Taking the right design decisions for crucial design issues
is a core aspect of software architecture. These decisions are
distinguished by their associated risks, which originate from
the various unknowns that surround the decision maker during
the design process. One of the reasons for such uncertainty is
due to the amount and diversity of the architectural solutions,
and their different capabilities to satisfy the system’s Architec-
ture Significant Requirements (ASRs) [1]. As a consequence,
it is arduous to select accurately the appropriate solutions for
the different architecture design problems.

In order to assist the architect in exploring the design
space and selecting the right combination of architectural so-
lutions, approaches have been proposed to model and manage
the architecture knowledge. Recent approaches are based on
modeling the possible Architectural Design Decisions (ADDs)
[2]. Design issues, architectural solutions, and the evaluations
for their different combinations are the main building blocks
of this architecture knowledge, which is characterized by its
continuous evolution.

Architectural solutions could be classified into Conceptual
Solutions and Technology Solutions [3]. The former are ab-
stract solution’s notions for design problems, which could be

implemented differently in different contexts. This type include
patterns (e.g. architectural patterns [4] and design patterns [5]),
as well as design tactics [6]. On the other hand, technology
solutions are concrete solutions, which assist the architect to
develop and implement the system. This include frameworks,
programming languages, standards and libraries. Both types
of solutions are interrelated. In addition, both types impact the
system functionality and quality differently.

Within the past decades, the selection of the right tech-
nology product have turned out to be gradually complicated,
due to the significant increase in the production of software
products by technology vendors, as well as the open source
community [7].

A recent survey [8] on the types of architectural design
decisions and their documentation shows that around 25% of a
system decisions are executive decisions, and most of them are
technology decisions. Moreover, technology decisions as well
as structural decisions have been observed as the mostly docu-
mented design decisions among other categories of decisions.
The survey participants indicated that technology decisions
are taken early in the design process, and it is quite hard to
change them during the system implementation. These results
indicate and affirm the importance of technology decisions for
the software architect.

Despite their well known significance, the current methods
for software architecture design (e.g., [9], [10]), as well as pat-
tern languages (e.g. [11]) don’t support the architect in making
a choice among different technology solutions. Alternatively,
they focus on selecting a combination of conceptual solutions
as first class concepts for solving the different design issues,
presupposing a direct mapping from the conceptual solutions
to the technology solutions [12].

Our main goal in this paper is to support the architect
taking technology design decisions, through answering the
following research questions:

1) RQ1: How does the architect conceive software tech-
nologies as architectural solutions during the deci-
sion making process?

2) RQ2: How can we model and relate technology deci-
sions with existing architectural knowledge concepts?

In order to answer these questions, we conducted an explo-
rative research study. We started with a qualitative content
analysis research process, followed by refinement and valida-
tion interviews. We analyzed the different perspectives, which

2015 IEEE 12th Conference on Software Architecture

978-1-4799-1922-2/15 $31.00 © 2015 IEEE

DOI 10.1109/WICSA.2015.14

135

2015 12th IEEE Conference on Software Architecture

978-1-4799-1922-2/15 $31.00 © 2015 IEEE

DOI 10.1109/WICSA.2015.14

135

2015 12th Working IEEE/IFIP Conference on Software Architecture

978-1-4799-1922-2/15 $31.00 © 2015 IEEE

DOI 10.1109/WICSA.2015.14

135

Content Analysis

Technology Providers‘
Architecture Guidelines

Software Development &
Architecture Discussion Forums

Software Architecture
Design Methods

Initial Elements,
Definitions & Models

Focused Experience
Overview

Details of
Experience

Reflection on
Meaning

Questions under
Consideration

Scope
Definition

Interview Process

Concepts & Models Refinement and Validation

Presenting refined
concepts for validation

Fig. 1: Research Process Diagram.

the technology vendors and architects have in offering and
choosing technology solutions respectively. Our contribution is
modeling technology solutions as a set of features, which are
offered by the technology vendors, as well as their associated
architecturally significant technology aspects (ASTAs), which
are considered by the architect in taking the technology design
decision. Finally, we integrated both concepts with existing
architecture knowledge and ADDs models.

The rest of the paper is structured as follows. In Section
II, we describe and explain in details our research process.
In sections III, and IV, we present our defined concept of
modeling technology solutions as a set of features and aspects.
The two sections are followed by Sec. V, where the proposed
architecture knowledge model for technology decisions is
proposed. In Sec. VI, our validation results for the interviews
data anaylsis is presented, as well as a discussion about the
threats of validity for our study. Related work in the current
state of the art is presented in Sec. VII. Finally, Sec. VIII
provides our conclusions and future work.

II. RESEARCH PROCESS

In order to answer our research questions, we followed the
research process shown in Fig. 1. We divided our research
process into two main phases:

1) Data Gathering and Hypothesis Definition: In this
phase, our main goal was to collect information about
the technology decisions. We wanted to understand,
what are the primary factors, which make an architect
choose or reject a certain technology solution, and

what are the scenarios the architect faces during a
technology decision. In order to achieve this goal,
we followed a qualitative content analysis research
method among different technology resources. As
a result of this phase, we formulated our initial
hypothesis for the technology decision concepts and
models.

2) Hypothesis Refinement and Validation: In this phase,
we refined and validated our proposed concepts and
models. It was important to align our understanding
with what practitioners do in their work. Since the
interview research method is the best method in
discovering the human experience [13], we conducted
a set of interviews with architects and experts, who
are used to take technology decisions frequently. This
process helped us to improve our model, as well as
to validate our ideas.

In the following sections, we explain both the content analysis
and the interview research processes respectively.

A. Content Analysis

Technology selection guidelines and reasoning are ex-
plained in different sources:

1) Technology Vendors Architecture Guidelines: Each
technology vendor provides guidelines (e.g. [14],
[15]) for designing software systems using their de-
signed products. However, they do not conduct com-
parisons between products from different vendors, to
show their strengths and drawbacks.

2) Technology Discussion Forums: This is a rich source
for exploring, how technologists choose a technology
solution. The discussions show the factors, which
drive an architect to choose a certain technology.
In addition, comparisons between technologies are
usually part of the discussions. For example, on the
stackoverflow forum, you might find a topic with
title ”Spring MVC vs JSF”. Nevertheless, technology
forums lack information about the design reasoning
and processes, and their relationship to the architect
concerns in taking a technology decision.

3) Software Architecture Design Methods: Even though
most of the architecture design methods don’t provide
detailed guidance on taking a technology decision,
some architecture design methods (e.g. [6]) provide
guidelines on the different situations, that the ar-
chitect can face during the selection of technology
solutions.

We followed a qualitative content analysis [16] text analysis
process through several selected resources from each of the
above mentioned categories. We selected our data analysis
sources based on their popularity, and richness in technol-
ogy decision knowledge. We followed several guidelines in
text analysis, such as coding, and memoing to refine and
categorize the text. The combination of different resources
analysis supported us to propose our hypothesis from different
perspectives.

136136136

TABLE I: Interview Participants Experience Overview

ID Exp.
(Years)

Technology
Background Role Industries

1 10
C/C++,

Microsoft Products
Technology
Consultant

NLP, Performance
Critical Systems,

E-Commerce

2 13
Microsoft

Technologies
Architect

Flight,
Communications,

Social Media,
Reservation,

Retail and Education.

3 11 Java / J2EE
Technology
Consultant

Billing,
Medical-care,
E-commerce

4 9 Java / J2EE
Enterprise
Architect

Telecom,
Costing & Billing,

Oil & Mining,
Military

5 10
Java / Integration

Technologies
Technology
Consultant

Communications,
Transportation

6 7 Java / J2EE
Technology
Consultant

E-Government,
Automotive

7 12
Database Systems,
Microsoft Products

Enterprise
Architect

E-Government,
Financial

B. Interviews

As we were seeking experience in technology architectural
decisions, several factors have been considered in choosing
the interview participants: 1) Their experience in using and
choosing technologies. 2) Their architecture knowledge and
design skills. 3) The size of the companies and systems, they
are working in or have worked in before. 4) Their interest
and motivation to participate in the study. Before choosing
the interviewed experts, we identified more than 20 candidate
experts through our personal connections. We evaluated them
based on the mentioned criteria, to settle on the 7 participating
experts. It is interesting to mention that, even though some of
the candidate experts work in the role of a software architect
in their companies, they do not take technology decisions. In
these companies, the architecture decisions are divided be-
tween two different roles, the software architects, who design
the system conceptually, and the technology consultants who
choose the technologies. Therefore, we included in our study
experts, who only take technology decisions.

The interviewed experts work, or worked before in software
houses or IT service companies, with more than 100,000
employees. All the experts have either a Bachelor or Master
degree in computer science or engineering. Due to the fact that
the participants live and work in different cities, the interviews
have been conducted remotely through telecommunication
software.

We followed a three-phase interview process as proposed
by Seidman [13]:

1) Focused Experience Overview: In this phase, we
asked the interviewees to answer several questions
to show their experience in software architecture,
as well as their technology experience, projects and
domain of work. We made this step one or two
days before the first meeting, which supported us
preparing the suitable questions which align with the
participant’s context and experience. Table I shows
a brief summary for the experience overview of the
participants.

2) Details of Experience: In this phase, we intend to
learn from the participant’s experience, in order to
refine and validate our concepts. Our initial hypothe-
sis, that we concluded from the content analysis phase
helped us to direct our questions and discussions.
In order to do this, we mapped each concept in
the hypothesis with one or more interview questions,
which has been customized based on the result from
the first phase. During the interview, we were giving
the space for the interviewees to explain and express
their opinion, and tell us about their experiences,
which was the main feedback in this meeting to
verify and improve our concepts. The result from
this meeting is a set of real practical examples from
each participant’s experience, which either align, or
improve or contradict with our initial hypothesis. In
the following sections, we are going to state some
of the Interview Questions (IQ) that we asked to the
experts, as well as their responses1 and examples.

3) Reflection on the Meaning: After the first meeting, we
were able to refine and verify our initial concepts,
through the examples and discussions presented by
the participants. However, it was important to validate
our interpretation between the experience examples
and the proposed concepts. Therefore, in the second
meeting, we focused on discussing the proposed
hypothesis concepts, and relating it to the mentioned
experiences. First, we explained our research goal,
and the initial concepts and models, and for each con-
cept, supported by an example from the participant’s
experience, we asked the interviewee, if this concept
align with their understanding and practice. Based
on their feedback, we either validated or changed
or rejected a certain concept. Sec. VI presents our
evaluation results for the proposed concepts, based
on the interviewees feedback.

For both interviews and for each participant, we recorded
and transcripted the interviews, to allow us analyzing the
discussion. The length for each interview was between 60 and
120 minutes. The difference in duration between the first and
the second interview for each participant is between 2 and 7
days.

III. TECHNOLOGY FEATURES

One of the main challenges during software architecture
design is choosing the right technology solutions (e.g. COTS or
frameworks), in order to implement the designed architecture.
Even though different technology solutions act as alternative
solutions for the same problem, they are different in their
capabilities and qualities.

Technology vendors offer their proposed solutions as a
set of Technology Features. These features are the abstract
capabilities, which they claim, that these technologies provide.
The vendors usually describe the merits of each feature, and
how they could be used to implement a software system.
Features could be classified with respect to the capabilities
provided into different types. In the following paragraph,

1Some of the participants’ answers have been translated from their native
language to English.

137137137

we list and define the types of capabilities offered by the
features. This list has been derived from our analysis and the
interviewees’ practical experiences:

1) Development and Configuration Capability: It pro-
vides the ability to develop or configure an implemen-
tation for a solution through a development environ-
ment, which comprises programming languages and
possibly development and testing tools. An example
from our analysis is the Microsoft Windows Com-
munication Foundation (WCF) technology feature to
develop services for a Service Oriented Architecture
(SOA). The services development is done through the
C# or VB programming languages, supported by the
Microsoft development and testing tools, while, the
services’ protocols are dynamically defined through
a set of XML configurations.

2) Behavior Capability: It provides either existing and
compiled software components, which implement so-
lutions with a certain quality, or a forecasted behavior
for a possible development at certain conditions.
For example, several web-based technologies (e.g.
JSF, ASP.Net) provide an implemented web process,
which embodies HTTP requests handling, and HTML
generation functionalities. On the other hand, pro-
gramming languages’ compilers provide different be-
havioral capabilities, when compiling the source code
to object code. For example, the ability of the Java
virtual machine compilers to handle multithreading
source code among different platforms.

3) Usability Capability: It provides either an existing
user interface functionality, or facilities for develop-
ing a user interface. The main target from these capa-
bilities is to facilitate the usability of the developed
system. For example, Microsoft Sharepoint provides
out of the box user interface features for content and
document management. On the other hand, the recent
version from HTML 5.0 supports the web designer
to use more elegant forms, as well as additional
interactive user interface features (e.g. drag and drop)
to support an easier front-end development.

4) Interoperability Capability: It provides the ability for
the technology solution to integrate and communi-
cate with other technologies. The features could be
either through an implemented interface, or through
supporting a well-known standard or protocol (e.g.
SOAP). For example, Java technologies could access
Microsoft SQL Server through the JDBC SQL Server
Data Access component. On the other hand, Mi-
crosoft WCF offers implementations for 9 protocols
(e.g. HTTP, TCP/IP, P2P, . . .).

5) Storage Capability: It provides the ability for the
technology to store data, considering the data size,
format and processing. For example, Oracle database
offers different product editions, the standard edition
supports storage with maximum 11 GB, with a single
CPU processing, while the enterprise edition has no
storage or processing limit.

6) Operational Capability: It provides the ability for the
technology to monitor and manage the processing of
the system during execution. For example, HP Open-
view products offer features for application status,

Web
Process

Handle
Events

Web Page
Dev

Component
Based MVC

Generate
HTML

Parse &
Build Page Develop Page

Java Dev.
Env.

Facelets
Dev.

JSF

Facelets

Eclipse

Java

JSTL

Multithreading

Pure Object
Oriented

Object
Oriented Style

Concurrency
Tactic String &

Logic

Implemented by

SQL Server

J2SE

JDBC

SQL Server
Data Access

 Technology
Solution

Conceptual
Solution

Development
Environment

Development
Feature

Behavior
Feature

Usability
Feature Interoperability

Feature Commercial Feature

Based-on

Sub-features

Based-on

Dev. Feature
Environment

Contains

Contains

Contains Contains

Contains

Embodies Dev. Feature
Environment

Contains

Contains

Integrates

UI
Components

Open Source

Fig. 2: An example for a technology features’ tree.

HW resources, and database system’s monitoring.
7) Commercial Capability: It is concerned with the

price, licenses, and vendor or community support for
this technology solution.

Each technology solution encapsulates a tree of inter-
related features. Each feature provides a capability from
the previously defined capabilities’ types2. Fig. 2 shows an
example for a partial technology features’ tree, which has
been created through our content analysis activity, integrated
with the industrial examples mentioned by the interviewed
experts. For example, Java Server Faces (JSF) is an open-
source technology solution ’Commercial Feature’, to support
developing a web based application. It contains a web process
’Behavior Feature’, which is based on the component-based
MVC pattern. Several sub-features are associated with the
parent web process feature. This includes developing the
user interface, handling events ’Development Features’, and
generating HTML ’Behavior Feature’. Even though, JSF offers
development user interface feature, it depends on another
technology solution ”Facelets” to implement this feature,
which consequently offer a development feature, through a
development environment. In addition, the Facelets develop-

2We will refer to features, which provide a certain capability type with the
capability name, e.g. Development Feature, Behavior Feature

138138138

TABLE II: Capabilities’ Types and Architectural Concerns
Relationships

Capability Type Influenced Architectural Concerns
Development and

Configuration Capability
Development Time, Training Time, Maintainability

, Testability, Configurability, Evolvability

Behavior
Capability

Performance, Reliability, Security,
Accuracy, Portability, Reusability

Operational
Capability

Manageability, Supportability, Availability

Interoperability
Capability

Interoperability, Inter-process communication

Usability Capability Usability

Commercial Capability
Cost of Ownership, Openness,

Development Time, Training Time

Storage Capability Data Accessability, Scalability

ment feature provides a set of user interface components
’Usability Feature’. On the other hand, JSF event handling
development feature is provided through a Java development
environment, which incorporates development tools, and the
Java programming language with its pure object oriented style.
The Java development environment contains several libraries,
which embody many additional features. For example, the
JDBC library offers an ’Interoperability Feature’ to access
Microsoft SQL Server database technology.

Each of the technology capabilities influence one or more
of the architectural concerns, and subsequently each of the
offered technology features influences different concerns based
on its adopted capability type. Table II shows the relationship
between each of the identified technology capabilities’ types
and the different architectural concerns [17], [18]. Understand-
ing the influence of the technology solutions’ features on
the different concerns supports the architect to evaluate and
compare the different technology features, and consequently
justify the technology design decision. In Sec. IV, we explain
how the influence of features on the stakeholders’ concerns
differentiate the technologies from each other.

IV. ARCHITECTURALLY SIGNIFICANT TECHNOLOGY

ASPECTS

As explained in the previous section, technology solu-
tions embody many different features, which are designed
and implemented within the technology. Consequently, it was
interesting for us to ask the participants, ”IQ: To what level
does the architect need to know about technology features in
order to take the right ADDs?” Bass et al. [6] listed several
important considerations in choosing a technology solution,
such as the capabilities of the development tools, the familiar-
ity of the development community with this technology, the
possible vendor and community support, the drawbacks of the
technology, and the compatibility of this technology with the
existing technology stack.

One of the interview participants mentioned that ”The
architect doesn’t need to know the technology in depth. How-
ever, he needs to know the differences between the different
technologies, their benefits and drawbacks, regarding perfor-
mance, vendor support, . . . ”, another answered ”He needs to
know how technologies work from a high level, considering its
learning curve, development effort, usability, . . . ”.

Based on our analysis and the interviews’ discussions, we
define in this section the different types of Architecturally

Significant Technology Aspects (ASTAs). They are the principal
and distinctive technology solution’s characteristics, which
distinguish the technology solution from other alternative so-
lutions, and consequently support or influence the architectural
design decision. In other words, these aspects qualify such a
technology solution to be selected by the architect to satisfy
one or more ASRs.

ASTAs could be considered as either Benefits or Draw-
backs. Benefits are the advantages, which the technology
solution have over other competitive solutions. On the other
hand, drawbacks are either technology features, which are
missing in this technology solution, even though they exist
in other alternative solutions, or they are well-known existing
features problems, which need to be considered by the architect
during the decision making. Both benefits and drawbacks
act as different sides of the same coin, such that the same
technology solution benefit could be a drawback in another
solution. Moreover, both types act as important factors for an
architectural design decision.

Each ASTA is associated with a technology feature, and
consequently have the same capability type as their related
features3. One of the interview participants mentioned ”Even
though Java provides an important feature for code portability
among different platforms, this is a significant drawback for
our development, which seeks native components development.
This makes us always favor C as our development technology.
Nevertheless, it lacks such a platform independent feature”.
Furthermore, we believe that both benefits and drawbacks are
relative notions, which could be solely determined through
a comparison with other competetive technologies. Such a
comparison are not usually provided by the technologies’
vendors. However, they are part of the software community
discussions and experiences.

Due to the fact that features are commonly described
ideally by the technology vendors, without mentioning their
drawbacks, several discussions on the technology forums try to
share their experiences with either problems, which they faced
in using these features, or missing capabilities, which were
expected to be provided. Associated with these discussions
are side-by-side comparisons between features from different
technologies, which show the benefits and drawbacks of each
feature in comparison to the other technology features. We call
these types of aspects Feature-Based ASTAs.

One of the interview participants mentioned the following:
”In order to choose a web-based framework, we depended on
a comparison between Spring MVC and other frameworks.
We prefered to use the Spring MVC framework over other
frameworks, because it’s supported with better documentation,
which make it easier to develop and learn.” In this situation,
the interviewee took the design decison based on a develop-
ment feature-based benefit, which is the ”better development
documentation”.

On the other hand, as we mentioned in Sec. III, each
feature influences different types of architectural concerns.
This influence could be measured differently depending on
the type of feature’s capability and the assessed concern. For

3We will refer to ASTAs, which assess a certain capability type with the
capability name, e.g. Development ASTA, Behavior ASTA, . . .

139139139

Component
Based MVC

Web Process

ASP. Net ASP. Net
MVC

Request
Based MVC

Web Process

ASP. Net
Web Page

HTML
Web Page

Dev.
Productivity
Complex UI

Improved
by

Performance
with large

pages

Behavior Concern-
based Drawback

Improved
by

Oracle DB

Controller
Develop

Events
Handle

.Net Dev.
Env.

C# .Net
Framework Visual Studio ODP.Net

Oracle DB
Data Access .Net Stored

Procedure
Transaction

 Technology Solution

Conceptual Solution

Development
Environment

 Development Feature Behavior Feature

Interoperability
Feature

 Development
Drawback Behavior Drawback

Based-on Based-on

Sub-features Sub-features

Interoperability Feature-
based Drawback

Dev. Feature
Environment

Dev. Feature
Environment

Contains Contains

Contains

Integrates

e WDev. Concern-based Drawback

Interoperability
Drawback

Fig. 3: A subset from a technology features’ tree with both
feature and concern based drawbacks (ASTA).

example, benchmarking can be a suitable method for compar-
ing the performance of the behavioral features for multiple
technology solutions. In addition, development features could
be measured through development productivity experiments
(e.g. [19]). As a result of these measurements, we could
recognize, which technology solution features are better than
the others regarding the measured concerns. In other words,
the concern-based benefits and drawbacks or Concern-Based
ASTAs.

An interview participant described an experience about a
certain database management system ”After 1 year, the amount
of data in the database reached more than 20 billion records.
After several testing, we discovered that the performance of
data processing operations is degrading exponentially with
the increase in the amount of data, this technology drawback
derived us to take an architectural decision to replace such a
database management system”.

Fig. 3 shows two web interface technology solutions,
ASP.Net and ASP.Net MVC. Both technologies are based on
the MVC architectural pattern. However, they are based on dif-
ferent pattern variations. This difference triggers a distinction
in their development and behavior features. An interviewee
mentioned ”According to our experience, ASP.Net provides a
feature for faster and easier development environment than
the ASP.Net MVC, due to the availability of many reusable
UI components. However, ASP.Net is slower than ASP .Net

MVC in handling thousands of users, due to the fact, that
Component-based MVC need to store the view state of each
UI control.” By analysing this statement, we could identify
the following ASTAs: A) ASP.Net faster and easier develop-
ment than ASP.Net MVC is a ’Development Concern-Based
Benefit’, B) The availability of many reusable UI components
in ASP.Net is a ’Development Feature-Based Benefit’, C)
ASP.Net is slower than ASP.Net MVC in handling thousands
of users is a ’Behavior Concern-Based Drawback’, and D)
Component-based MVC need to store the view state is a
’Behavior Feature-Based Drawback’.

From this experience example, we can conclude that both
types of ASTAs are strongly related, such that an identified
feature-based drawback would impact the feature negatively,
which might lead to a concern-based drawback. Similarly,
a feature-based benefit would impact the technology feature
positively, which possibly lead to a concern-based benefit.

V. ARCHITECTURE KNOWLEDGE FOR TECHNOLOGY

DESIGN DECISION

In this section, we consolidate and model the technology
features and ASTAs’ concepts, which are presented in the
previous sections. In addition, we integrate the proposed tech-
nology concepts with the reusable design decision concepts
proposed by Zimmermann et al. [20], [21]. Finally, we ap-
pended additional decison making elements to formulate our
proposed architecture knowledge (AK) model. The proposed
model supports the architect to make the technology design
decision.

Fig. 4 shows the meta-model for the proposed architecture
knowledge. At the core of the model are the design issues,
which are the architecture design problems facing the architect.
Each design issue is associated with a set of alternative ar-
chitectural solutions. An architectural solution could be either
a conceptual solution, or a technology solution, or a feature
within a technology solution. As explained in the previous
sections, each technology feature may have certain ASTAs,
which are identified through comparisons between different
technology features. ASTAs could be either benefits or draw-
backs, feature-based or concern-based. Moreover, the identified
ASTAs are part of the technology decision justification.

A feature’s drawbacks are usually sources of additional
design issues, which the architect need to overcome before
selecting the technology solution. Overcoming solutions are
different, however, one of their options is using other tech-
nologies, which contain features that address this problem.
For example, one of the interview participants mentioned
”JSF framework has drawbacks, which impact the usability
quality attribute. Two options were proposed, either to use an
additional framework (e.g. Primefaces) to mend this problem,
or hire a web designer to fix the problem manually”.

During our interviews, we asked all the participants the
following question: IQ: What are the steps you take to choose
between a list of possible technology solutions? It was not
surprising that each participant described a different reasoning
process than the others. However, all participants shared a
common set of elements, which they consider in selecting
the technology solution, even though, they are used in a
different order. Therefore, the proposed AK model contains

140140140

-Functionality Description

Design Issue

** has alternatives

Architecture Concern

*

*

consider

Contextual Factors

*

*

associate contextual factors

*
*

has sub-issues

Issue Concern Combination

*

*

contains

*

*

Conceptual Solution

SA Solution

Technology Solution

-Description
-Condition
-Capability Type

ASTA

-Description
-Capability Type

Technology Feature

Drawback

*

*

has architecture significant technology aspects

1

0..*

trigger

-Aspect
-Context
-Metrics
-Assumptions
-QuantitativeResult
-QualitativeResult

Technology Feature Concern Measurement

**Use Evaluation Results

* *Compare / Evaluate Features

* *

Identifies benefits & drawbacks

*
*

Consider Factors during Evaluation

Reusable Technology Design Decision

**

Select solution
* 1

solves

*

*

Based on technology evaluations

1* has features

Benefit

Feature-Based Drawback
-Concern

Concern-Based Drawback
Feature-based Benefit

-Concern

Concern-Based Benefit
1..** leads to1..** leads to

** based on

-Source
-Scope
-Date
-Trust

Technology Features Comparison

Feature Evaluation

*

* is addressed / solved by another technology feature

* *

associated possible justifications with reusable ADD
Decision Justification

*

*

is part of ADD justification

*

*

Evaluation Concepts Technology Concepts Decision Making Concepts

Fig. 4: Software Architecture Knowledge (AK) Metamodel.

and relates the different elements, which are necessary to assist
the architect in taking a technology design decision, such that
it can align with the different design reasoning methods.

Even though, each of the interview participants described
different steps in choosing a technology solution, we can still
group their description into two main reasoning types [22],
[23]:

1) Deductive, problem-driven: In this process, the ar-
chitect starts by analyzing the design issue, and its
associated architectural concerns. For example, in
choosing between different middleware technologies,
interoperability, performance, security and develop-
ment time should be considered. For each of these
concerns, several factors are associated; the technol-
ogy at the client and server, the size and structure
of the transfered data, the network between the two
sides, and the development team skills respectively.
Based on these factors, the architect can start eval-
uating the different technology features (e.g. [24]).
Alternatively, the architect could assess the feature’s
quality through evaluating the conceptual solution
(e.g. evaluation for architectural patterns [25]), which
this feature implements. By the end of the process, the
architect needs to make trade-offs among the different
concerns (e.g. using [26]).

2) Inductive, solution-driven: In this process, the archi-
tect starts by checking other experiences, which have
similar situations. In other words, design decisions
which have been taken in different projects but with

similar circumstances, and based on matching both
conditions, the architect chooses the suitable technol-
ogy solution. We believe that technology decisions
that are justified based-on the architectural concerns
and factors are reusable, such that similar architec-
tural concerns and factors could be repeated among
different projects. On the other hand, technology
decisions that are justified based on business or
social aspects cannot be reused within the context
of software design decision (maybe arguably reused
in a business context).

Even though our main research goal is not to drive a design
process, it is important to understand the different reasoning
methods, which the architect uses, in order to identify the
important architecture knowledge elements and their relation-
ships.

VI. EVALUATION RESULTS

A. Interview Responses Analysis Results and Observations

Table III shows the data analysis results for the intervie-
wees’ responses. In order to accurately evaluate the feedback
of the participants for each of the explained concepts in the
previous sections. We designed several levels of responses:

1) Concept Contribution: The participant mentioned
based on his experience a new concept or an improve-
ment to a concept which was not originally part of
the content analysis derived hypothesis.

141141141

TABLE III: Interview Data Analysis Results
++: Concept Contribution, �: Concept Supported

Y: Concept Accepted, N: Concept in Doubt
–: No Answer Provided

Concept vs. Participant 1 2 3 4 5 6 7 %
Technologies as Features
& ASTAs (Sec. III & IV) � � � � � � � 100

Development & Configuration
Feature or ASTA (Sec. III & IV) Y N � ++ � � Y 86

Behavior Feature or
ASTA (Sec. III & IV) � Y � � � � � 100

Usability Feature or
ASTA (Sec. III & IV) Y Y Y � Y � � 100

Interoperability Feature or
ASTA (Sec. III & IV) – ++ Y Y ++ – � 71

Storage Feature or
ASTA (Sec. III & IV) � Y Y Y Y – � 86

Operational Feature or
ASTA (Sec. III & IV) – – – – ++ Y � 43

Commercial Feature or
ASTA (Sec. III & IV) Y Y ++ Y Y – � 86

Decision Making Factors
(Sec. V) Y � � Y � – Y 86

Decision Making Concerns
(Sec. V) � Y � � � – � 86

Decision Making Evaluation
Report (Sec. V) Y – � – – � � 57

Decision Making Deductive
Problem Driven (Sec. V) Y � � � Y Y � 100

Decision Making Inductive
Solution Driven (Sec. V) Y – – – � � � 57

Drawbacks ASTA (Sec. IV & V) � Y ++ Y ++ � � 100

2) Concept Supported: The participant supported the
hypothesis concept with additional examples from his
experience.

3) Concept Accepted: The participant accepted the pro-
posed concept. However, she does not have an exam-
ple from her experience to support it.

4) Concept in Doubt: The participant indicated that the
concept is unclear to her, or it does not align with
her experience.

The concepts which were characterized as unclear by the
majority of the participants have been removed.

All the concepts have been experienced by the participants
during their decision making experience. We can observe
that the drawback ASTAs concept (Sec. IV & V) and the
interoperability features and ASTAs (Sec. III & V) were the
mostly contributed concepts due to their importance to the
participants. However, some of the contributed concepts have
not been evaluated by all participants, due to the fact, that the
interviews have been conducted incrementally.

B. Threats to Validity Assessment

As all qualitative empirical studies, our study faces valid-
ity threats. This section explains the construct, internal, and
external validity threats, as well as reliability of the study.

1) Construct Validity: In this type of validity, we are
concerned with validating the accurate representation of the
initial content analysis hypothesis through the interviews’
questions, as well as the interviews’ answers interpretation. In
order to map our initial hypothesis to the interview questions:
First, we defined a set of general questions, such that each
question is related to a hypothesis concept using a concept

mapping. After our first phase of the interview process, we
were able to adapt these questions to align with the experts
understanding, which supported a more suitable explication
of the hypothesis constructs. The interviewee had no idea
about our initial hypothesis during the second phase of the
interview process. In addition, the interview participants work
in different companies, and they don’t know about each other.
This prevented any interactions between the different experts,
as well as any possibility of hypothesis guessing.

During the third phase of the interview process, our main
goal was to validate our interpretation for the experiences and
examples collected during the second phase of the process.
By presenting and explaining our concepts and relating it to
the examples mentioned by the participants, we were able
to assure that we have the right generalizability across the
hypothesis constructs. In addition, conducting the concept
validation among all the participants supported us to minimize
biasing during the results interpretation. However, we based
our concept discovery and validation on 7 interviews, which
is insufficient to cover all the possible aspects of technology
decisions. Therefore, we believe that additional empirical stud-
ies are needed to extend the proposed concept.

2) Internal Validity: In this type of validity, it’s important
for us to insure that the interview setup supported us to drive
the concluded results. In conducting our interview, we followed
a set of guidelines (e.g. [27]) in questions preparation, as well
as in managing the conversation with the participant. With
each participant, we started with a general question, like ”IQ:
What are the factors which influence choosing a technology?”
during the participant answer, we give the freedom for the
expert to explain his answer, and we asked the expert to focus
on real experience examples. This supported us to interpret
the meaning. In some cases, we mentioned the same question
twice, however, with different ways to ensure that the par-
ticipant provides the needed information, without interrupting
his speaking. In addition, the 3 phase process helped us to
have more than a chance to clarify our understanding to the
examples or concepts explained by the interviewees. Even
though, it was originally assumed that all experts should have
the same level of experience, five of the interviewed experts
contributed to the concepts more than the other two. However,
this ratio shouldn’t impact our results. Moreover, all experts
supported us in the model validation through the interview
”reflection of meaning” phase.

3) External Validity: In this type of validity, we would
like to assess our interview study results regarding its gen-
eralizability. Regarding this aspect, we have several threats of
validity. We did not select the interview participants randomly,
as we depend on our network of experts. However, we made
no control on their mentioned experiences. As the different
participants have experience in different domains, we didn’t fo-
cus our discussion on domain specific problems. Even though
one of the participants has experience in embedded systems,
the interview focused on experiences and technologies used
within information and distributed systems domain. Moreover,
we focused on the solution level of software architecture during
our discussion, more than the enterprise level.

4) Reliability: In order to support the reliability of mea-
surement, we followed an intra-rater reliability method, such
that the 3rd phase of the interview ensured that the same

142142142

concepts have been validated and evaluated by the interviewed
participants, while the participants responses were recorded by
a single interviewer. All the interviews were conducted one-to-
one with prepared questions, which give the chance for each
participant to give his opinion about others’ inputs.

VII. RELATED WORK

A. Software Architecture Design Methods

In the past two decades, several prominent software archi-
tecture design methods (e.g. RUP 4+1 views [28], [29]) have
been suggested and utilized in practice. The proposed methods
target modeling the software architecture in several views, such
that each view comprises distinctive diagrams for modeling
the proposed solution, in order to satisfy the stakeholders’
architectural concerns. In addition, the methods provide several
guidelines for the correlation between the different viewpoints.
Most of the methods dedicate a viewpoint for the implemen-
tation or system realization. For example, one of the RUP 4+1
views is the the development view, which model the proposed
solution technology components and connectors, providing
guidelines for taking the technology decisions, such as ease of
development, software management and reuse. However, the
proposed architectural methods provide minimum support for
a concrete architectural knowledge base [30]. Consequently,
this makes the architects depend on their personal experience,
instead of reusing and learning from others experiences.

B. Pattern Languages

A pattern language is concerned with defining a group
of patterns, which solve related problems in the same do-
main. Moreover, some pattern languages provide relationships
between patterns, to support the architect taking the design
decisons through moving from one pattern to another. In
the past two decades, many pattern languages have been
proposed (e.g. [31]). However, each pattern language addresses
a different domain of problems. Typically, pattern languages
do not incorporate technology solutions as first class elements
within their network of decisions. Nevertheless, each pattern
provides optionally a list of technology examples, which im-
plement this pattern. A proposed pattern language [3] integrate
technology solutions with pattern languages. The proposed lan-
guage model interrelationships between different technology
solutions, as well as an implementation relationship between
technologies and patterns. However, the suggested solution’s
network doesn’t provide guidance for decison making and
reasoning on technologies.

C. Software Architecture Design Decisions

Since the paradigm shift [2] of perceiving the software
architecture as a set of architectural design decisions (ADDs),
many approaches have been proposed. Even though all ap-
proaches are centered around the design decisions notion,
they tackle different problems. A recent survey [32] on the
architectural decisions field shows that most of the approaches
focus on modeling, documenting and capturing the ADDs
rationale (e.g. [33], [34] and [35]) for the sake of minimizing
the software architecture erosion phenomena. However, these
approaches don’t support the architect in reasoning about the
design decisons. Alternatively, other approaches (e.g. [36],

[37]) consider the design decision as a mean for reasoning
about the design problems. In other words, they try to model
and depict the different methods, that the architect can use to
think about an architecture design problem. Nevertheless, they
don’t support a concrete reusable architecture knowledge.

A recent study on the software architecture knowledge
[38] shows that, the current architecture knowledge approaches
have less support regarding architecture knowledge sharing and
reuse. Differentiating the reusable architecture knowledge from
the project specific have been considered by Ali Babar et al.
[39] and Zimmermann et al. [20], [21]. The former approach
considered a generic knowledge component based solely on
patterns, which can be selected during the design decisions
capturing. On the other hand, Zimmermann et al. proposed a
reusable architecture knowledge framework, with the design
issues and architectural solutions as the main elements, while
the possible decisions’ relations are modelled between them.
In addition, the decisions are divided based on their granu-
alarity into conceptual, technology and products. Even with
the provided support for modeling technology decisions, the
approach proposed by Zimmermann et al. lacks the ability
to distinguish between the different technologies’ capabilities
from each other, such that it’s hard for the architect to choose
the suitable technology solution for the project situation. We
believe that the approach proposed by Zimmermann et al. is
promising regarding architecture knowledge reuse. Therefore,
we based our approach on this proposed model.

VIII. CONCLUSION AND FUTURE WORK

We started our study with the goal of understanding tech-
nology decisions in practice. Based on this goal, we designed
our research method to provide maximum support for data
gathering and validation from practitioners. Our contribution
in this paper is modeling technology decisions, their features,
architectural aspects, and evaluations as extension for existing
architecture knowledge models based on empirical evidence
from interviews and literature. The proposed approach con-
sidered the different design reasoning approaches that the
architect use, as well as the different types of technologies
and decisions.

In terms of future work, we are planning to implement
the proposed AK models in a tool, and conduct an empirical
experiment among practitioners, in order to assess and validate
the usefullness of the approach. One of the concerns raised
by the interviewees is the amount of knowledge required,
and the complexity of their gathering and update. Thus, we
believe approaches for technology knowledge exploration and
extraction are needed, through natural language processing
approaches among current technology literature and discussion
forums.

REFERENCES

[1] L. Chen, M. Ali Babar, and B. Nuseibeh, “Characterizing architecturally
significant requirements,” Software, IEEE, vol. 30, no. 2, pp. 38–45,
March 2013.

[2] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in 5th Working Conf. on Software Architecture, 2005,
pp. 109–120.

143143143

[3] S. Mahdavi-Hezavehi, U. van Heesch, and P. Avgeriou, “A pattern
language for architecture patterns and software technologies introducing
technology pattern languages,” in Proceedings of the 16th European
Conference on Pattern Languages of Programs (EuroPLoP). Confer-
ence Proceedings, 2011.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture: A System of Patterns, 1st ed.
John Wiley & Sons, Jul. 1996.

[5] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Softwaresystemen. Addison-
Wesley Professional, 1994.

[6] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012.

[7] B. Boehm, “A view of 20th and 21st century software engineering,” in
Proceedings of the 28th international conference on Software engineer-
ing, ser. ICSE ’06. New York, NY, USA: ACM, 2006, pp. 12–29.

[8] C. Miesbauer and R. Weinreich, “Classification of design decisions: An
expert survey in practice,” in Proceedings of the 7th European Con-
ference on Software Architecture, ser. ECSA’13. Berlin, Heidelberg:
Springer-Verlag, 2013, pp. 130–145.

[9] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[10] J. Bosch, Design and use of software architectures: Adopting and
evolving a product-line approach. New York, NY, USA: ACM
Press/Addison-Wesley, 2000.

[11] P. Avgeriou and U. Zdun, “Architectural patterns revisited – a pattern
language,” in Proceedings 10th European Conference on Pattern Lan-
guages of Programs (EuroPlop 2005), Irsee, 2005, pp. 1–39.

[12] H. Cervantes, P. Velasco-Elizondo, and R. Kazman, “A principled way
to use frameworks in architecture design,” Software, IEEE, vol. 30,
no. 2, pp. 46–53, March 2013.

[13] I. Seidman, Interviewing as Qualitative Research: A Guide for Re-
searchers in Education and the Social Sciences. Teachers College
Press, 2006.

[14] M. Cade and H. Sheil, Sun Certified Enterprise Architect for Java EE
Study Guide. Pearson Education, 2010.

[15] M. P. . P. Team, Microsoft Application Architecture Guide, 2nd Edition.
Microsoft Press, 2009.

[16] U. Flick, E. von Kardoff, I. Steinke, and B. Jenner, A Companion to
Qualitative Research. SAGE Publications, 2004.

[17] P. Lago, P. Avgeriou, and R. Hilliard, “Guest editors’ introduction: Soft-
ware architecture: Framing stakeholders’ concerns,” Software, IEEE,
vol. 27, no. 6, pp. 20–24, Nov 2010.

[18] International Standardization Organisation, “Iso/iec/ieee 42010 - sys-
tems and software engineering - architecture description,” 2011.

[19] G. Phipps, “Comparing observed bug and productivity rates for java and
c++,” Software: Practice and Experience, vol. 29, no. 4, pp. 345–358,
1999.

[20] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster,
“Managing architectural decision models with dependency relations,
integrity constraints, and production rules,” Journal of Systems and
Software, vol. 82, no. 8, pp. 1249–1267, 2009.

[21] M. Soliman and M. Riebisch, “Modeling the interactions between deci-
sions within software architecture knowledge,” in Software Architecture,
ser. Lecture Notes in Computer Science, P. Avgeriou and U. Zdun, Eds.
Springer International Publishing, 2014, vol. 8627, pp. 33–40.

[22] A. Tang and H. van Vliet, “Design strategy and software design
effectiveness,” Software, IEEE, vol. 29, no. 1, pp. 51–55, Jan 2012.

[23] A. Tang, “Software designers, are you biased?” in Proceedings of
the 6th International Workshop on SHAring and Reusing Architectural
Knowledge, ser. SHARK ’11. New York, NY, USA: ACM, 2011, pp.
1–8.

[24] I. Gorton, A. Liu, and P. Brebner, “Rigorous evaluation of cots middle-
ware technology,” Computer, vol. 36, no. 3, pp. 50–55, Mar 2003.

[25] S. Bode and M. Riebisch, “Impact evaluation for quality-oriented archi-
tectural decisions regarding evolvability,” in Proceedings 4th European
Conference on Software Architecture, ECSA 2010, ser. LNCS, M. Babar

and I. Gorton, Eds., vol. 6285. Springer Berlin / Heidelberg, 2010,
pp. 182–197.

[26] T. Al-Naeem, I. Gorton, M. Babar, F. Rabhi, and B. Benatallah, “A
quality-driven systematic approach for architecting distributed software
applications,” in Software Engineering, 2005. ICSE 2005. Proceedings.
27th International Conference on, May 2005, pp. 244–253.

[27] S. Hove and B. Anda, “Experiences from conducting semi-structured
interviews in empirical software engineering research,” in Software
Metrics, 2005. 11th IEEE International Symposium, Sept 2005, pp. 10
pp.–23.

[28] P. Kruchten, “The 4+1 view model of architecture,” IEEE Softw., vol. 12,
no. 6, pp. 42–50, Nov. 1995.

[29] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and
P. America, “A general model of software architecture design derived
from five industrial approaches,” Journal of Systems and Software,
vol. 80, no. 1, pp. 106–126, Jan 2007.

[30] D. Falessi, G. Cantone, and P. Kruchten, “Do architecture design meth-
ods meet architects’ needs?” in Software Architecture, 2007. WICSA
’07. The Working IEEE/IFIP Conference on, Jan 2007, pp. 5–5.

[31] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented
Software Architecture, Volume 4: A Pattern Language for Distributed
Computing. Chichester, UK: Wiley, 2007.

[32] D. Tofan, M. Galster, P. Avgeriou, and W. Schuitema, “Past and
future of software architectural decisions a systematic mapping study,”
Information and Software Technology, vol. 56, no. 8, pp. 850 – 872,
2014.

[33] P. Kruchten, P. Lago, and H. Vliet, “Building up and reasoning about
architectural knowledge,” in Quality of Software Architectures, ser.
Lecture Notes in Computer Science, C. Hofmeister, I. Crnkovic, and
R. Reussner, Eds. Springer Berlin Heidelberg, 2006, vol. 4214, pp.
43–58.

[34] U. van Heesch, P. Avgeriou, and R. Hilliard, “A documentation frame-
work for architecture decisions.” Journal of Systems and Software,
vol. 85, no. 4, pp. 795–820, 2012.

[35] D. Falessi, G. Cantone, and P. Kruchten, “Value-based design decision
rationale documentation: Principles and empirical feasibility study,” in
Software Architecture, 2008. WICSA 2008. Seventh Working IEEE/IFIP
Conference on, Feb 2008, pp. 189–198.

[36] V. Clerc, P. Lago, and H. van Vliet, “The architects mindset,” in
Software Architectures, Components, and Applications, ser. Lecture
Notes in Computer Science, S. Overhage, C. Szyperski, R. Reussner,
and J. Stafford, Eds. Springer Berlin Heidelberg, 2007, vol. 4880, pp.
231–249.

[37] A. Tang, M. H. Tran, J. Han, and H. Vliet, “Design reasoning improves
software design quality,” in Proceedings of the 4th International Con-
ference on Quality of Software-Architectures: Models and Architectures,
ser. QoSA ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 28–42.

[38] R. Weinreich and I. Groher, “A fresh look at codification approaches
for sakm: A systematic literature review,” in Software Architecture, ser.
Lecture Notes in Computer Science, P. Avgeriou and U. Zdun, Eds.
Springer International Publishing, 2014, vol. 8627, pp. 1–16.

[39] M. Babar, I. Gorton, and B. Kitchenham, “A framework for supporting
architecture knowledge and rationale management,” in Rationale Man-
agement in Software Engineering, A. Dutoit, R. McCall, I. Mistrk, and
B. Paech, Eds. Springer Berlin Heidelberg, 2006, pp. 237–254.

144144144

