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ABSTRACT
The growing number of (cloud) applications and devices massively
increases the communication rate and volume pushing integration
systems to their (throughput) limits. While the usage of modern
hardware like Field Programmable Gate Arrays (FPGAs) led to low
latency when employed for query and event processing, application
integration adds yet unexplored processing opportunities. In this
industry paper, we explore how to program integration semantics
(e. g., message routing and transformation) in form of Enterprise
Integration Patterns (EIP) on top of an FPGA, thus complementing
the existing research on FPGA data processing. We focus on mes-
sage routing, re-define the EIP for stream processing and propose
modular hardware implementations as templates that are synthe-
sized to circuits. For our real-world “connected car” scenario (i. e.,
composed patterns), we discuss common and new optimizations
especially relevant for hardware integration processes. Our exper-
imental evaluation shows competitive throughput compared to
modern general-purpose CPUs and discusses the results.

CCS CONCEPTS
•Applied computing→Enterprise application integration; •
Hardware→Reconfigurable logic and FPGAs; • Information
systems → Stream management;

ACM Reference format:
Daniel Ritter, Jonas Dann, Norman May and Stefanie Rinderle-Ma. 2017.
Industry Paper: Hardware Accelerated Application Integration Processing.
In Proceedings of ACM International Conference on Distributed Event-Based
Systems, Barcelona, Spain, June 19 - 23, 2017 (DEBS ’17), 12 pages.
https://doi.org/http://dx.doi.org/10.1145/3093742.3093911

1 INTRODUCTION
Through the increasing amount of (cloud) applications and devices,
Enterprise Application Integration (EAI) [13] is facing immense data
volumes that have to be processed with high throughput. Consider
a “connected car” scenario where each car (e. g., 260.3 million in
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the US1) sends telemetry data and error code messages of one kB
every few seconds for further processing in a data warehouse. As
in [4], the near real time processing of complex events or patterns
is considered a challenging requirement. For such scenarios, Field
Programmable Gate Arrays (FPGAs) [25] promise lower latency,
higher throughput and lower energy consumption than comparable
solutions in software and on general purpose CPUs. With multi-
chip processors delivered with FPGAs on the chip (e. g., by Intel),
FPGAs might become far more widely used than today, and thus
allows them to be included in cloud-scale deployments [5].

Considering only the throughput [22] shows that a single inte-
gration system instance would not suffice to process the load of
messages generated in the connected car scenario using typical
integration patterns. These enterprise integration patterns (EIP)
[11] are more complex than message queuing for reliable queues
and topics [6, 26] or event and stream processing for continuous
queries and alerts [17, 27] for which FPGAs were employed before.
At the same time the throughput demands are beyond the ones
for query processing using FPGAs [16] which are bound by disk
access.

Figure 1 shows howdatabase query processing puts programmable
hardware in form of FPGAs into the data path of the systems to
evolve them toward heterogeneous many-core systems. We en-
vision EAI processing logic on the FPGA, which we put on the
network path between applications, devices and databases. The
extensive body of research and industrial work on FPGA-based
hardware event stream and data processing reports on competi-
tive results (e. g., reconfigurable logic, low-latency) due to parallel
streaming [9] through hardware characteristics like parallel stream
evaluation and asynchronous circuits, and reduced power consump-
tion compared to modern general-purpose CPUs.

Figure 1: FPGA hardware for EAI processing.

However, hardware is not the “silver bullet” [16], and the effi-
cient usage of FPGAs involves non-trivial aspects such as making
the right design decisions for the computation model, dealing with
1Number of vehicles in the US, visited 05/2017: http://www.statista.com/statistics/
183505/number-of-vehicles-in-the-united-states-since-1990/

https://doi.org/http://dx.doi.org/10.1145/3093742.3093911
https://doi.org/http://dx.doi.org/10.1145/3093742.3093911
http://www.statista.com/statistics/183505/number-of-vehicles-in-the-united-states-since-1990/
http://www.statista.com/statistics/183505/number-of-vehicles-in-the-united-states-since-1990/


DEBS ’17, June 19 - 23, 2017, Barcelona, Spain Daniel Ritter, Jonas Dann, Norman May and Stefanie Rinderle-Ma

low-frequency clocks, balancing the trade-off in usage between
synchronous and asynchronous circuits, and resource limitation.
In addition, it remains unclear, how the potential of FPGAs can
be efficiently exploited for EAI. Important questions about the
EAI building blocks and semantics, represented by the EIP, and
their usage on FPGA hardware have to be answered. For instance,
the EIP are defined for asynchronous, non-streaming cases, while
FPGA hardware supports streaming very well. Hence, we have to
answer the question “How does the application of EIP on FPGA in-
fluence their semantics and implementations?”, and find an efficient
representation on hardware. Furthermore, EAI is about variety in
message protocols, which requires support for non-trivial message
formats and operations (e. g., hierarchical formats like JSON and
JSONPath predicates). The work on database and event processing
discusses some data aspects relevant to application integration,
which leads to the question: “Could FPGAs accelerate the message
routing even more than transformations?”.

In this work - taking the results and conceptual extensions into
account - we study the feasibility, advantages and limitations of
(composed) EIP on hardware. We define the streaming semantics
of selected EIP, because our work fully focuses on streaming (i. e.,
no message off-loading into RAM), and analyze how they can be
deployed on FPGAs. This is not trivial because of the illustrated
trade-offs between computation model, throughput, resource limita-
tions, parallelization and diverse integration semantics. We catego-
rize the streaming semantics of the EIP into three template classes
based on their interaction with user-defined conditions and expres-
sions: Expression Template (ET), Predicate Template (PT) and No
User Template (NUT). Consequently only these classes have to be
synthesized to hardware. For the user conditions (i. e., predicate,
expression), we define a state machine parsing and matching ap-
proach for hierarchical message protocols. In particular the paper
contains the following contributions:
(1) An extensive literature review on the FPGA lessons learned

and design choices in related domains.
(2) Definition of basic integration semantics (i. e., including mes-

sage, pipeline) and EIP streaming semantics for most commonly
used routing and transformation patterns in integration scenar-
ios according to [22]

(3) Categorization of those patterns into three template classes and
their implementations on hardware

(4) Hierarchical message format processing and user conditions
on hardware (i. e., predicates and expressions)

(5) Evaluation of the approach using EIPBench [22] benchmarks
and extensions for additional tests on FPGAs

(6) A study of non-trivial tradeoffs for message throughput and
data sizes, parallelism and resource consumption, as well as
optimizations for the connected car example

The work is set into context in Sect. 2, followed by a brief tech-
nical background in Sect. 3. We extend the EIP with streaming
semantics and categorize them into templates for an efficient imple-
mentation on FPGAs in Sect. 4. Section 5 shows the design of format
processing. We evaluate our work in Sect. 6, discuss optimizations
and conclude in Sect. 7.

2 RELATEDWORK
We are not aware of work on implementing EIPs on FPGAs. How-
ever, there is a rich body of work in related domains (i. e., query-,

Table 1: Lessons learned from related work.
Design Decision Reference our approach
parallelism: systolic
vs. MISD

[3],[16] systolic for higher
throughput

automaton: (non-) de-
terministic

[1],[6],[7],[10],[14],
[20],[24],[28],[29]

deterministic format han-
dling

synch vs asynch cir-
cuits

[16] synchronous with flow
control

configurable clocks [16] - (for asynch. designs)
back-pressure [3] for flow control
avoid long distance
streams

[3], [17] system part

avoid deep logic [3] system part
FIFO buffer [6, 16–18] BRAM for reliability

complex event and stream processing, message queuing), relevant
for our work. Especially, the lessons learned on system design (e. g.,
parallelism, automata for format processing), the identified trade-
offs between synchronous and asynchronous designs, and system
integration aspects (e. g., FPGA in the system’s data path) have
influenced our work. We summarize the related contributions in
Tab. 1 and subsequently discuss the approaches.
2.1 Query Processing
Several lessons learned on query processing are also relevant in the
context of EIP. The design of the industrial solutions (e. g., “Netezza
Performance Server”2), which consists of a number of “snippet
processing units”, each tightly coupled with network CPU and
FPGA, and Kickfire’s MySQL Analytic Appliance3 with so-called
“SQL Chip”) do only give limited insight into their design deci-
sions. However, both systems appear to use FPGAs primarily as
customized hardware, with circuits that are geared toward very spe-
cific (data warehousing) workloads, but are immutable at runtime.
In our approach, we aim at exploiting the configurability of FPGAs
by compiling integration operations from an arbitrary workload
into a tailormade hardware circuit.

The research on theGlacier query to hardware compiler provided
valuable learnings with respect to design decisions [16, 18]. As
in [3] several types of parallelism are discussed (cf. Tab. 1): e. g.,
systolic (i. e., pipeline-chain: good scalability even across chips) and
MISD (i. e., tree: long signal path), for which we follow their lead
to higher throughput systolic parallelism. In contrast to glacier,
we do not use an asynchronous (i. e., lower latency, less flip-flop
registers), but a modular synchronous stream design with re-usable
logic. Hence, our design also does not make use of configurable
clock frequencies, which is crucial in an asynchronous design. The
frequencies only vary for integation adapters (e. g., TCP, UDP) and
the integration processing steps. We also use finite state machines,
which naturally translate into FPGAs (inspired by [7]), for message
format conversions - in our case hierarchical data in form of JSON
messages. The asynchronous design approaches in [16–18] requires
FIFO buffers for synchronization. We use FIFOs to implement flow
control in form of back-pressure [3].

2.2 Complex Event and Stream Processing
There is a lot of research on stream queries on hardware, hence we
only summarize the directly related work. Most influential work
2Netezza Corp, visited 05/2017: http://www.netezza.com/
3Kickfire, visited 05/2017: http://www.kickfire.com/
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was conducted in [17, 27], which analyzes the potential of FPGAs
in the domain of data processing using sliding window operators
for a median operator using a sorting network. The experimental
analysis showed promising results compared to a small on-board
PowerPC 405 processor. Compared to our synchronous approach,
an asynchronous design fits well to the sorting network (cf. Tab. 1).

The work on event detection using regular expressions [29],
efficient pattern matching [1] non-deterministic finite automaton
design, complex event processing [10, 24], streaming system [20, 28]
and XML/XPath evaluation [14, 15] influenced our work on the
message format handling. The latter also sketches the idea of an
internet protocol router on packet level, setting the addresses ac-
cording to a routing table [15], similar to a recipient list [11]. Since
no paket throughput or latency measurements were published, it
remains a mere design sketch. All of these approaches use determin-
istic or non-deterministic state machines to represent user-defined
conditions on the hardware. For the hierarchical format handling
(e. g., JSON messages), we define a general, but resource-reduced
way to represent the data (e. g., compared to approaches like [15])
to spare resources for the integration logic.

2.3 Publish/Subscribe and Queuing Systems
Message Brokers are used complementary to application integra-
tion systems. The most well-known commercial solution is the
“Solace Message Router” [26], which implements a JMS-like topic
and queue processing as well as high-availability and disaster recov-
ery on FPGA hardware. The comparison to one of the most popular
software brokers shows superior message throughput rates on the
hardware4.

While Publish/Subscribe systems mostly route data without look-
ing into their content – giving them an edge over application in-
tegration systems – there is some work on content-based routing
in the sense of [11] using FPGAs. [6], for example, proposes an
architecture, which adds FPGAs to each message broker that imple-
ments XML/XPath message routing using complex memory based
XML parser (using content-addressable memory, FIFO buffers) and
matcher leveraging the dual port memory for concurrent read/write.
This work is comparable to the content-based routing and JSON pro-
cessing approaches presented in this work. However, our approach
manage to process JSON with much lower resource consumption.
We only optionally use FIFO buffers based on on-chip BRAM for
back-pressure handling.

In general, back-pressure is used for flow control holding off
senders to further transmit data until the resource is available. We
use back-pressure in our message processing pipeline to avoid
scrambled data and allow for TCP-based flow control via the inte-
gration adapters. This idea is based on [3], which defines a systolic
message queuing system that uses back-pressure based on a wire
protocol for synchronous communication (cf. Tab. 1). Furthermore,
we should try to avoid long distance pipelines or streams and deep
logic in processes [3] in the system part of our pipeline design (cf.
Tab. 1). However, user-defined code might violate this rule.

4Solace vs Apache Kafka, visited 05/2017: http://www.solacesystems.com/techblog/
deconstructing-kafka

2.4 Hardware-accelerated EAI Processing
The EIP authors admit that the current foundations are defined
for an asynchronous processing style [21], and a definition for
synchronous streaming is missing. In our work, we fill this void
and enumerate some of the most relevant EIP as identified in [22]
and specify semantically correct streaming semantics. Based in
these semantics, we are able to define three template classes that
are sufficient to represent all of the patterns and also to synthesize
them to hardware. Overall, we are able to implement the complete
integration system on hardware (cf. Fig. 1). In the experiments we
test different aspects special to integration processing [22] that
have not been tested on hardware before.

3 FPGAS FOR MESSAGING
Field-programmable gate arrays are reprogrammable hardware
chips for digital logic. FPGAs are an array of logic gates that can be
configured to construct arbitrary digital circuits. These circuits are
specified using either circuit schematics or hardware description
languages such as Verilog or VHDL. A logic design on a FPGA is
also referred to as a soft IP-core (intellectual property core). Ex-
isting commercial libraries provide a wide range of pre-designed
cores, including those of complete CPUs. More than one soft IP-core
can be placed onto an FPGA chip. For evaluation and development
purposes FPGAs are often shipped, soldered to a board with periph-
erals, like external RAM, network interfaces or persistent storage.
The characteristics of the Arty Artix-7 FPGA used for this paper
are listed in Tab. 2.

Table 2: Test Hardware Comparison.
Characteristics Xilinx XC7A35T Z600
lookup tables (LUT) 20,800 -
flip-flops (FF) 41,600 -
block RAM (BRAM) /
on-board RAM

1,800 kB / 256 MB - / 24 GB

clock rate (CR) 100 MHz 2.67GHz
cores - 12

On-chip BRAM (divided in 50*36 and 100*18 kB units) is accessible in one and on-board RAM requires several
cycles (depends on fabrics).

3.1 FPGA Architecture
The basic building blocks of FPGAs are Configurable Logic Blocks
(CLBs). Each CLB has two slices that each contain Lookup Tables
(LUTs) and Flip Flops (FFs). LUTs can be configured to arbitrary
functions thatmapmultiple bits (6 in the Xilinx 7-Series) to one (e. g.,
to implement AND and OR gates). The FFs are used to store signals,
but can only hold one bit each. For larger on-chip storage, Block
RAM (BRAM) stores multiple kilobyte. The CLBs and BRAM units
are placed on the chip in a grid and connected over an interconnect
fabric that spans the whole chip. Additional off-chip, DRAM storage
is provided on-board (gigabyte to terabyte) and accessible through
IP cores, however, requires more clock cycles than the one clock
cycle BRAM access.

3.2 Hardware Setup
For a test on real hardware, we use the Arty board with a Xilinx
FPGA. The board is connected to a workstation over the network
interface. To transfer data from and to the FPGA we use the UDP
protocol. The FPGA is not used as a co-processor, but rather as the

http://www.solacesystems.com/techblog/deconstructing-kafka
http://www.solacesystems.com/techblog/deconstructing-kafka
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whole integration system, thus it could be directly connected to
real applications (cf. Fig. 1). We compare the FPGA implementation
with the open-source software integration system Apache Camel
[12] running on an HP Z600 work station, equipped with two Intel
X5650 processors clocked at 2.67GHz with 12 cores, 24GB of main
memory, running a 64-bit Windows 7 SP1 and a JDK version 1.7.0
with 2GB heap space listed in Tab. 2.

4 FROM PATTERNS TO CIRCUITS
The EIP from [11] are the “de-facto” standard for asynchronous mes-
saging in EAI. In this section we map the integration semantics in
form of EIP to hardware concepts by re-defining them for synchro-
nous streaming with flow control (similar to [3]) and classifying
the patterns according to their characteristics to three templates
that are then synthesized to the hardware.

4.1 Basic Integration Semantics
The basic integration semantics are described by a message, a mes-
sage channel, at least one protocol adapter, and an ordered set of
transformation or routing patterns that process the message.

Messages on Hardware. A message consists of a unique identifier,
for identifying the message and enabling provenance along the
different processing steps, a set of name/value pair header entries
containing meta-data about the message and the message body, i. e.,
the actual data transfered.

For the processing on an FPGA, a message is defined as a stream
of bytes, which gets meta-data assigned on entering the FPGA via
the network interface. In particular, we assign a unique message
identifier and the length of the message.

Message Channel on Hardware. The message channels decouple
sending and receiving endpoints or processors and denote the com-
munication between them. Thereby, the sending endpoint writes
data to the channel, while the receiving endpoint reads the data for
further processing. Our message channel definition on hardware

Figure 2: Basic integration aspects on hardware.

is depicted in Fig. 2. We use hardware signals and data lines to
represent the control and data flow through a message channel.
The channels contain a unique identifier as id, the message length
as length, and the body as data of 8 bit chunks from the previously
defined message over the data line (data(0..7)). To indicate that
a message is sent over the channel, we added a message signal
as message, which is set to one (i. e., high), when one message is
sent - even if there is currently no valid data on the data line. The
message signal is zero (i. e., low) only between messages (i. e., the
channel is ready to receive another message). For the transport of
the data to the subsequent processor we define an enable signal as
enable, which is high, when valid data is on the data line and low,

when there is no valid data on the data line. The id and length are
separate lines, which are constant, when the message line is high.

The FPGA hardware is able to stream massively parallel using
pipeline processing. However, for efficient processing, the hardware
is limited to the resources on-chip (e. g., BRAM) and on-board (e. g.,
RAM). Our basic integration aspects are represented with on-chip
resources to avoid latency and throughput penalties for the on-
board resource access. However, we expect that in the future FPGAs
can interact with less overhead with off-chip resources like DRAM
or general-purpose CPUs. This will offer more freedom to use these
off-chip resources, e.g. to buffer large messages.

Flow Control on Hardware Message Channels. The basic capa-
bility of an integration system to protect overload situations and
data corruption is flow control. One technique used in connection-
oriented wire protocols like TCP is back-pressure. Back-pressure
allows the message processors (e. g., routing and transformation
patterns) under high load to notify the sending operation or remote
endpoint (e. g., via TCP back-pressure) about its situation. For in-
stance, for TCP remote endpoints this could lead to the rejection of
new connections.

On the FPGA, we define flow control similar to [3], which is ex-
clusively used there for the synchronous communication between
remote endpoints. For the back-pressure between message proces-
sors (i. e., no TCP support), we cannot reject messages atomically,
because the stream might already be processed partially. There-
fore, we decided for an approach with small FIFO queues in each
processor that are used to buffer message data that cannot be im-
mediately processed by the subsequent processor and thus ensure
that no message data is lost. The receiving processor signals this
by setting its readReady to low (cf. Fig. 2). The FIFO queues can be
represented on hardware using flip-flops (FF), Block RAM (BRAM)
or built-in FIFOs. Since FFs can only store one bit at a time and
are very important for the logic of message processors, we chose
BRAM. Although BRAM is a limited resources as well, it can be
more easily extended by on-board DRAM to buffer larger messages.
If the queue limit is exceeded, and the successor processor is not
ready yet (i. e., readReady low), the current processor notifies its
sender by setting its readReady to low.

4.2 Streaming Integration Patterns
Since the EIP are not defined for stream processing (cf. [21]), we
define streaming semantics for the most relevant message routing
and transformation patterns in practice (i. e., identified in [22]), and
map them to circuits. For our example, we extend the EIP [11] by
load balancer and join router.

4.2.1 Routing Patterns. The routing patterns are used to decou-
ple individual processing steps so that messages can be passed to
different filters depending on a set of conditions [11]. We selected
the most relevant patterns from [22]: content-based router, message
filter and splitter, and add the aggregator, load balancer and join
router used in the example scenario and in our evaluation.

Content-based Router. The content-based router and the message
filter [11] are semantically similar. The filter is a special case of
the router due to its channel cardinality of 1:1, while the router
has 1:n. Both have a message cardinality of 1:1, are read-only (i. e.,
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non-altering message access) and non-message generating (i. e.,
passing the original message).

Streaming Semantics. The router selects a message channel
based on a condition that in worst case might have to fully read
the message (i. e., requires buffering). In our approach the message
corresponds to a data-based window similar to [8]. Alternatively,
the message could be passed further into all leaving channels in
parallel and filtered out later at a synchronization point. While the
latter claims non-buffered streaming semantics the synchroniza-
tion points cannot be set arbitrarily, which could lead to the same
semantics as the message-window semantics in worst case. Hence,
we use data-based windows as basis for our work.

On Circuit. Since, the leaving channel is selected based on a
conditon evaluated on the stream, it specifies a mapping from a
message to a channel. Figure 3(a) illustrates the semantics of our
router design as waveform diagram, which shows high and low
circuit settings for the different signals and data lines required
for the pattern. The input denotes the message from the previous
pattern. The output is the response from the user code. The clock
cycles are denoted by clk. The channel is represented by an integer
identifier. When a message enters the router (i. e., message, data
high) and the data is valid (i. e., enabled high), then the condition
(i. e., user code) is evaluated and the identifier of the selected channel
is set together with the data valid signal enabled. According to the
channel identifier the message will be routed.

(a) Content-based Router (b) Load Balancer

Figure 3: Router and Load Balancer patterns.

Load Balancer. The load balancer pattern – not in [11] – delegates
a message to exactly one of several message channels using a load
balancing strategy (e. g., uniform distribution). As the content-based
router, it is read-only and non-message generating.

Streaming Semantics. For the purpose of this work, the load
balancer is already suitable for streaming since it does not define
any conditions on the message.

On Circuit. Similar to the content-based router, the load bal-
ancer maps from a message to a message channel. Only this time,
the channel identifier is determined by a load balancing logic, con-
figured through user code. Instead of a load distribution, we use
the readReady signal used for back-pressue to determine which
channel is currently available. The first channel available is selected
as receiving channel. This semantics is shown in Fig. 3(b) as ch0
ready. Consequently the output channel is written and the data
valid signal is set. The message will be routed accordingly.

Splitter. The splitter pattern [11] allows to process a message,
if it contains multiple elements, each of which may have to be
processed in a different way. Therefore the inbound message is
split into a number of smaller messages according to a user-defined

expression (i. e., message cardinality 1:n) with a channel cardinality
of 1:1. While the splitter is message generating, it does not add new
data to the n outbound messages.

Streaming Semantics. The splitter splits parts of a message
into smaller parts similar to single elements of an iterable. There
are splitter configurations with data structures of the form: head,
iterable, tail. For each entry in iterable a new message is created by
starting with the common head entries, one entry from iterable and
the common tail entries. In these cases, the head has to be remem-
bered and added before each element from the iterable. However,
in case there is an element after the iterable, called tail, that has to
be added, the streaming is limited. Thereby, the tail is unknown
to the splitter until the end of the message, which means that the
first new message would have to be buffered until the tail arrives.
Similar to the router, a synchronization point could be used to add
the tail part to each of the smaller messages. For the same reason
as for the router, we use the buffered streaming option.

On Circuit. The splitter maps one message to multiple mes-
sages. Figure 4(a) illustrates the execution semantics for input and
output. When the messages arrive and the data is valid, the user-
defined split expression is executed, which leads to several messages.
Thereby the splitter inserts a clock cycle, where the message signal
is set to low and no data is sent inbetween the split messages.

(a) Splitter (b) Aggregator

Figure 4: Splitter and Aggregator patterns.

Aggregator. The aggregator pattern [11] combines a number of
messages to one based on a time or number of messages based
completion condition. Hence it has a message cardinality of n:1, a
channel cardinality of 1:1, and is message generating, however, only
combines data from the inbound messages to the one outbound
message.

Streaming Semantics. By definition, an aggregator has to wait
until the last message arrived. Only then the new message can be
processed. Hence, the aggregator shows buffered streaming seman-
tics on a streaming window, which is defined by the completion
condition of the aggregator.

On Circuit. The aggregator maps from multiple messages to
one message. Depending on the messages, the aggregator might
only close the gaps between multiple messages or combine them in
a new way (e. g., forwarding the common header of the messages
and then the body of each one). In Fig. 4(b) data arriving in separate
messages (i. e., message high) are combined to one message by
setting the message signal to high as long as there are messages
arriving that shall be combined to the outbound message.

Join Router. The join router is a new structural pattern – intro-
duced in this work – that is needed to combine several control flows
to one. This leads to a channel cardinality of n:1 and a message
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cardinality of 1:1. This pattern is not in [11] and the data flow is
combined using an aggregator, not the router.

Streaming Semantics.We define the router already suitable for
streaming for our purpose, since it does not define any conditions
or expressions on the message, but combines several streams to
one.

On Circuit. The join router maps from channel to channel,
however, without any additional logic (e. g., as in the load balancer
case). It simply checks, whether there are messages on the inbound
channels and whether the outbound channel is free (i. e., readReady
high).

4.2.2 Message Transformation Patterns. The transformation pat-
terns are used to translate the message content to make it under-
standable for its receiving processor or endpoint [11]. We selected
the most relevant patterns: content enricher and message translator,
identified by a study on on-premise and cloud integration scenarios
in [22]. All transformation patterns have a channel cardinality and
a message cardinality of 1:1. They do not generate new messages,
but modify the current one.

Content Enricher. The content enricher pattern [11] adds content
to an existing message, if the message originator does not provide
all the required data items. The enrichment can be done (a) statically,
(b) from the message itself or (c) from an external source. In this
work, we consider (a) and (b), however, the external data (c) could
be provided on the on-board RAM.

Streaming Semantics. The current enricher semantics for (a)
and (b) allow to fully stream this operation.

On Circuit. The enricher maps one message to another, while
inserting data into the inbound message. Figure 5(a) shows the pro-
cessing semantics for one message with data1, to which additional
data is added by a user-defined expression as data2. Thereby, the
message and the data valid signals are set to high.

(a) Content Enricher (b) Message Translator

Figure 5: Translator and Content Enricher patterns.

Message Translator. Themessage translator pattern [11] converts
the structure of the inbound message into one understood by the
receiver. This includes filtering content, which covers the content
filter pattern [11].

Streaming Semantics. The current message translator defini-
tion covers streaming for simple cases (e. g., one to one assignments,
data type operations). In addition, for many to one field transla-
tions, parts of the data have to be buffered for later lookup and
assignment.

On Circuit. The translator maps one message to another one,
while reorganizing the data in the inbound message using user-
defined expressions. Figure 5(a) shows the behavior for the inter-
action with the user code, which returns the modified message

content as data’. The message and the data valid signals are set to
high.

4.3 Pattern Templates
Related approaches show that the hardware design is crucial for the
performance of the resulting hardware scenarios [16]. To achieve
good utilization of the FPGA hardware and high throughput we
exploit commonalities between the patterns discussed in Sect. 4.2.
Therefore we arrange them into three classes of behavior, which
we call templates (similar to SQL-Query constructs like project
and join in [18]). Unlike the original routing and transformation
categories from [11], this classification is based on implementation
criteria (i. e., mapping to FPGAs).

From Patterns to Hardware Templates. We build the categories
for the classification along the observation based on the interaction
with the user-defined conditions: predicates or expressions.

Expression Template (ET): The first template combines all
patterns that conduct a “message tomessage”mapping. Theymostly
execute more complex expressions, which are provided by the user,
while working directly with the data line. This applies to the splitter,
aggregator, content enricher and message translator patterns.

Predicate Template (PT): The patterns that conduct a “mes-
sage to channel” mapping, mostly execute simpler conditions like
predicates. They set the message and channel signals. Candidates
are the content-based router, the message filter, and the load bal-
ancer patterns.

No User Template (NUT): There is only one pattern in our
selection that does not fit into the previous templates (and maybe
not the only one). The join router conducts a “channel to channel”
mapping and does not evaluate any user-defined conditions.

Putting it all together. With the basic integration semantics (incl.
flow control) and the patterns categorized into templates, we give a
conceptual view on how an integration pipeline and message pro-
cessors can be synthesized to hardware. Figure 6 gives a conceptual
overview for the three templates. The rectangles denote patterns
or user code, the cylinders buffers and all straight directed edges
denote message channels. The dashed edge returns channel and
enable (cf. Fig. 3). The type converter Fig. 6(d) will be discussed in
Sect. 5.

The ET patterns wire the data to the user code, where it is eval-
uated. The result is buffered in a FIFO queue to support buffered
streaming patterns and deal with back-pressure.

The PT patterns require more system logic (cf. Fig. 6(b)). Hence,
the input data is wired to the system code that executes the user
code and also stores the messages in a FIFO queue for buffered
streaming patterns and back-pressure handling. In addition, the
user code does not return the modified message, but channel and
message signals. Consequently, the data has to be forwarded from
the buffer. The buffers are reset after the message was sent. For n
outbound channels, the system code creates n buffers for wiring
subsequent patterns.

The join router NUT, receives messages fromnmessage channels
at the same time, which are put into n FIFO buffers correspondingly.
Figure 6(c) shows the NUT running a round robin fetch from the
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(a) ET: SP, AGG, MT, CE (b) PT: CBR/MF, LB

(c) NUT: JR (d) JSON Parser

Figure 6: Conceptual view on pattern templates and hierar-
chical format processing.

FIFO queues. Then the messages are pushed further, and the buffers
are emptied. The back-pressure technique is used to avoid several
messages arriving at the same channel, while the buffer of this
channel is not empty yet (cf. writeReady signal).

5 MESSAGE PROCESSING
The message processing is defined by predicates and expressions as
user code. While we decided to transfer data as sequence of bytes,
the data can have arbitrary message types (e. g., simple type like
integer, or more complex like JSON). For instance, JSON messages
can be evaluted by a JSONPath predicate. This in return can be
implemented as an automaton [7, 29]. For predicates, we define one
automaton for parsing the message (i. e., similar to a type converter
[12]) and one for matching a set of conditions. In contrast, the
data might be changed based on complex expressions, for which
one type converter might be used either together with EIP-typed
automata (e. g., a message translator state machine) or user-defined
hardware code that constructs the output message.

5.1 Message Protocol Handling
In this paper, we focus on hierarchical message formats like JSON,
thus implemented a streaming type converter that parses the data
stream (Fig. 6(d)). To answer the general question in integration
systems on “where to do the type conversions?”, we placed the type
parser in every user code that accesses the message. For instance,
we placed the type converters between a pattern’s system code and
user code in ET and PT (cf. Fig. 6(a), Fig. 6(b)). The NUT has no
user code, hence, no dependency on message types.

An alternative approach is having one type converter at the be-
ginning of each flow, which would require less instances of the type
converter (i. e., less LUTs, FFs). However, this converter requires
that all message channels are of the same type, which reduces its
flexibility in usage and consumes more resources due to bigger
amounts of fully materialized data in the FIFO buffers and dur-
ing processing. In our approach, we work with generic message
channels that are not bound to one data type.

When parsing JSON messages, we assume an automaton with a
JSON-specific alphabet (i. e., for tokens and nodes). For handling
hierarchical messages, we define a deterministic automaton with a

start state to an inner node (i. e., object, array) with transitions to a
inner and leaf nodes, denoting simple typed values or complex types
like object for arrays and name/value pairs for objects. Figure 6(d)
depicts the outbound interface of the general type converter for
hierarchical data sturctures. The token signal indicates the current
token (e. g., string, quote, comma), which depends on the current
state of the automaton. The parent signal gives the type of the
parent node (i. e., object or array). It is set when a new inner node is
encountered and the old value has to be pushed to a stack, which is
poppedwhen the new inner node ends. The level denotes a pointer
in the hierarchical data structure and the index signal denotes the
index of the node in the current level of the hierarchy. The level is
increased and decreased as values are pushed and popped from the
stack and the index is increased when a new node is encountered,
and propagated to the stack together with parent. The invalid
signal indicates a malformed structure. Only the number signal is
specific to the JSON parser and passes a value for convenience, if the
current token is a number. This design parses arbitrary hierarchical
structures, while consuming less resources, e. g., compared to [15].

5.2 Predicates and Expressions
After the type conversion a predicate or expression can be executed.
Although we mainly show the user code directly in VHDL for our
evaluations, a general purpose JSONPath to VHDL translator - at
least for predicates - is available. As illustration, List. 1 shows how
a JSONPath predicate, matching OTPRICE lower than 100, 000, is
generated to VHDL as a condition for a content-based router. While
the code generated from the JSONPath serves as illustration, FPGA
vendors provide alternative languages (e. g., Intels I++, former A++,
to VHDL compiler) that could be used for formulatingmore complex
expressions.

We assume a converted JSON message, which means that the
signals enable (in the code shortened to en) and data are those
of the message channel and the signals token (line 1) and number
come from the type converter. The code in List. 1 is located inside
a VHDL process, triggered by the clock that also drives the data
and enable signals. The incoming data is compared to the string
otprice (line 3) and if the whole string matched (line 6), the field
signal is set high (line 8). In the clock cycle after the whole total
price amount was read (i. e., the data is a comma that is the end
of every line) the signal number is compared to 100, 000 (in List. 2,
line 4). The default channel is 0 and if the number is smaller, the
message is routed to channel 1.

Listing 1: Match field
1 if en='1' and token=NAME

2 then

3 if data=otprice(index)

4 then

5 index <=index +1;

6 if index=otpriceLen -1

7 then

8 field <='1'; index <=0;

9 end if;end if;end if;

Listing 2: Eval. Cond.
1 if field='1' and en='1'

2 and data=COMMA then

3 channel <=0;

4 -- $[?(@.OTPRICE <100000)]

5 if number <100000 then

6 channel <=1;

7 end if; channelEn <='1';

8 end if;

6 EXPERIMENTS
In this section we evaluate the FPGA stream processing for applica-
tion integration - represented by the three template variants (i. e.,
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Figure 7: Template throughput for predicate and expression templates and composed patterns.

ET, PT and NUT) - assuming the FPGA can be used as network-
attached integration system (cf. Fig. 1), e. g., as part of a company
network or a cloud setup [5]. We selected the Arty educational
board introduced in Sect. 3 for the hardware tests and compare
some of the results with the open-source, software integration sys-
tem Apache Camel [12] on CPU. For the CCT scenario benachmark,
Intel provided us with the more “product-ready” Arria 10 SoC FPGA
with 500 MHz clocks, 42,620 kB on-chip RAM, 1,006,720 registers
and 251,680 adaptive logic modules, which we used in some of
the other experiments as well. With this more powerful FPGA,
we expect a linear increase of message throughput by the factor
five higher clock speed. Camel runs on a HP Z600 work station,
specified in Tab. 2. Besides verifying the feasibility and correctness
of our approach, the main goal of the experiments is to perform
throughput measurements, to study instance parallelization and
resource consumption. Therefore we use the EIPBench pattern
benchmark [22], which specifies benchmark configurations derived
from “real-world” integration scenarios.

EIPBench is a “data-aware” micro-benchmark designed to mea-
sure the throughput of messaging patterns. Therefore, it specifies
scale factors at pattern (e. g., number of condition and branching def-
initions) and at process level (e. g., number of concurrent users and
message size). The message data sets are generated from the well-
known TPC-H order to customer processing, but we only generate
messages based on orders and customers (optionially embedded
in order messages for message size scaling). To keep this paper
self-contained, Tab. 3 summarizes the benchmark configurations
from [22] for the benchmark definitons that are relevant for our
evaluation and maps them to our benchmark identifiers (e. g., the
EIPBench SP-B 7→ SP-A). We used the existing EIPBench defini-
tions, however, added new benchmarks required for our analysis (cf.
Tab. 3 without EIPBench representation). The hardware throughput
for all benchmarks is measured with a simulator provided by Xilinx
that uses post implementation simulation and element timing data
of the FPGA as in [17]. First we study the message throughput
on a single data stream with the same message size, and later we
consider parallelism and message size, before we showcase our
motivating scenario.

6.1 Pattern Throughput in Perspective
In this section we study the message throughput of our FPGA-based
EIP that show better results than the software implementation.

Table 3: FPGA pattern benchmarks.
Bench-
mark

EIP-
Bench[22]

Description

CBR-A CBR-A simple cond.: OTOTALPRICE < 100.000
CBR-B CBR-B multiple conds.: OTOTALPRICE < 100.000, OR-

DERPRIORITY = “3-MEDIUM”, OORDERDATE
< 1970, OORDERSTATUS = “P”

CBR-C CBR-C conds. on same fields as CBR-B, but multiple
branches with different values

LB-x LB-A distributes messages over x routes.
SP-A SP-B split fields (iterable) into msgs.
SP-B SP-C split order fields (iterable) into separate msgs.

while always adding head and tail
AGG-A AGG-B aggregate fields into msg. (SP-B reverse)
AGG-B - aggregate order entries into msg. (SP-C reverse)
JR-x - join router which joins x routes.
MT-A MT-B map names and filter entries according to a map-

ping program
CE-A - copy each entry, concatenate with a constant
Content-based router (CBR), load balancer (LB), splitter (SP), aggregator (AGG), join router (JR), message transla-
tor (MT), content enricher (CE).

Therefore we use the configurations from EIPBench for all consid-
ered patterns in this work and subsequently identify them by their
abbreviations (cf. Tab. 3).

We measure the empty pipeline as baseline (i. e., w/o message
processors) for all three FPGA templates and for the Camel using
EIPBench order messages. The results are collected in Fig. 7, which
shows that some of the FPGA patterns perform close to the baseline
(i. e., near optimal).

Message and Content Generation. Although the splitter and ag-
gregator are classified as routing patterns according to [11], they
reside in ET template with the message translator and the content
enricher. Figure 7(a) shows that the splitter SP-A performs close to
the baseline, since emitting the same amount of data that it con-
sumes. In the second, SP-B case, the splitter has to wait for the end
of the message to be able to create the messages correctly and then
emits the head with one entry from the iterable and the tail multiple
times. The results for this data generating pattern are better than
for Camel, however, the increasing amount of data reduces the
throughput.

While the aggregators AGG-A (reverse SP-A) and AGG-B (re-
verse SP-B; similar to AGG-A, thus not shown) as well as the mes-
sage translator MT-A on the FPGA perform close to the baseline,
the content-generating CE-A content enricher case shows a similar
effect as for SP-B. That is due to the CE-A enricher case essentially



Industry Paper: Hardware Accelerated Application Integration Processing DEBS ’17, June 19 - 23, 2017, Barcelona, Spain

duplicates the amount of data processed. While the Camel enricher
is not limited by physical on-chip memory, the hardware enricher
throughput reduces to half of the possible capacity (cf. baseline).
The hardware throughput would be higher on bigger FPGAs. The
high throughput of the aggregators are measured on the order data
set, not the much smaller, split order messages, which are produced
by SP-A (in average 11.73 B) and SP-B (in average 197.67 B). When
testing these cases AGG-A performs at 8, 396, 946 msgs/s and AGG-
B at 518, 134msgs/s. This indicates that our approach saturates well
up to the physical capacity limits.

Conclusions: (1) The message throughput of transformations
(i. e., MT-A) and routings (i. e., SP, AGG) is much higher for all of
the benchmarks, but the CE-A case. (2) Content generating patterns
lead to degrading throughput on the FPGA due to the increasing
messages sizes and saturation up to the resouce limits (e. g., BRAM).
(3) The throughput scales linearly with more hardware resources.

Multiple routing conditions and branchings. Let us start with the
question from EIPBench about the “impact of multiple conditions
and route branchings” for the content-based router. The software
implementation shows a decrease in throughput, especially when
increasing the number of conditions and branchings in routing
cases CBR-B and CBR-C (cf. Fig. 7(b)). On the hardware, all router
implementations score close to the baseline due to the parallel pro-
cessing capabilities of our approach and the underlying hardware
support. Hence, as long as the conditions can be executed in parallel,
neither multiple conditions nor branchings significantly reduce the
throughput.

The same results were observed for the load balancer, which is
based on the same PT hardware implementation. Independent of
the number of branches, the load balancer shows results close to the
baseline. These observations indicate a major benefit of hardware
over current software designs for routing patterns (e. g., due to
thread handling).

The third template, which is implemented by the join router
pattern, again scores close to the baseline (not shown). It is inde-
pendent of the number of branches it accepts, too.

Conclusions: (4) The hardware throughput is invariant to mul-
tiple, parallelizable conditions and route branchings. (5) The load
balancer and join router perform near baseline.

Pattern composition. The previous results indicate that some vari-
ants of the splitter, aggregator load balancer, and join router can
be combined to a composite message processing pattern [11] with-
out much throughput penalty (i. e., perform close to the baseline).
However, data generating patterns should be avoided. For example
the scatter-gather [11] uses a multicast pattern [12] (not discussed),
which copies the messages, thus increasing the amount of data.
However, fork and join patterns that introduce no performance
penalty like the load balancer and the join router are usually used
to support optimizations such as “rewrite operator to parallel op-
erator” or “rewrite sequence to parallel” [2]. Especially patterns
with less message throughput (e. g., splitter, content enricher) might
benefit from a parallel instantiation. To shed some light into this
hypothesis we conducted the following experiments on the FPGA
only: composite message processing for the simpler SP-A and AGG-
A case (i. e., SpAgg A) and for the more complex B case (i. e., SpAgg
B), as well as the “rewrite sequence to parallel” optimization with

Table 4: Resource Occupation.
Building Block LUTs % FFs % BRAM %
Translation 82 0.39% 187 0.45% 1 1%
Routing(1 7→2) 246 1.18% 523 1.26% 4 4%
Join Router(2 7→1) 193 0.93% 361 0.87% 2 2%
JSON Parser 752 3.62% 897 2.16% 0 0%
UDP Receiver 649 3.12% 437 1.05% 1 1%
UDP Sender 457 2.20% 234 0.56% 0 0%

This is the maximum space occupation of each building block with optimization turned off. This can be much less,
when only a few features of the building block are used. BRAM is in 18 kB units.

Table 5: Resource Occupation CBR-A|SP-B.
Building Block LUTs FFs BRAM
user code (w/o parser) 101|1907 67|2977 0|0
JSON parser 504|396 193|159 0|0
messageRouter 246|- 523|- 4|-
messageTranslator -|82 -|187 -|1
total 851|2385 783|3323 4|1
percentages 4.09%|11.47% 1.8%|7.99% 4%|1%

three (i. e., LBSpAggJR 3) and four (i. e., LBSpAggJR 4) parallel
SP-AGG sub-sequences for case B.

Figure 7(c) denotes the results for these experiments, showing
a near baseline throughput for SpAgg A case. The SpAgg B is
dominated by the splitter, which reduces the throughput to the
individual SP-B result. When adding a load balancer that distributes
the messages to three instances of a splitter, aggregator pair, while
afterwards joining their output messages using a join router (cf.
LBSpAggJR 3B), the throughput can be increased significantly. With
four splitter, aggregator pairs, the throughput is near baseline again.

Conclusions: (6) The patterns that duplicate data like the mul-
ticast reduce the throughput. (7) The “sequence to parallel” opti-
mization works well on sub-processes that only temporarily work
with more data.

6.2 Parallelism: Space Management
The inherent support for parallelism is an advantage of FPGAs.
When instantiating multiple integration scenarios in FPGA hard-
ware, multiple message streams can be processed truly in parallel.
The number of deployable scenario instances is determined both
by the size of the FPGA, i. e., its resource capacity (incl. LUTs, FFs
and BRAM), and by the capacity of the FPGA interconnect fabric.

Table 4 shows the resource occupation of the system code build-
ing blocks we explained earlier. One important limiting factor of
these building blocks is the BRAM. Each FIFO queue in the building
block uses one 18 kB BRAM block. For example a maximum of 25
routers can be placed on the Artix-7 chip we used for our hardware
tests. Code that has a lot of state, like the JSON Parser, has a high
occupation on LUTs and FFs. The resource occupation numbers in
the table are obtained via the resource occupation analysis tool, of
the Vivado IDE, that can be run on a synthesized and implemented
design.

We placed one fully configured instance of the ET and PT tem-
plates on the Artix-7 chip, the SP-B, and CBR-A. Table 5 shows the
resource usage differentiating the JSON parser, the user and tem-
plate code. We also give the usage in percent of the total number of
available resources. Note that there is a significant difference in size
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(a) complete (b) instance 1 (c) instance 2 (d) instance 24Figure 8: Resource usage on the FPGA chip (floorplan) by the
template two space (i. e., CBR-A) and the remaining system
components.

between the space required by the user code including the JSON
parser (101+504, 1907+396 LUTs, respectively) and the space re-
quired by the system template code (246, 396 LUTs). This overhead
indicates that the space consumption and the pattern performance
hugely depends on the specific user code. Another interesting effect
is the implicit optimization during synthesis to the FPGA (e. g., the
reduction of the JSON parser to the features that are used).

The usage of parallelism brings forth another design trade-off
characteristic of FPGAs. Due to their space occupation, the CBR-A
can be instantiated 24× and the SP-B 8× on the Xilinx chip. To
accommodate these instances, the VHDL compiler has to trade
latency for space by possibly placing unrelated logic together into
the same slice, resulting in longer signal paths and thus longer
delays. This effect can also be seen in Fig. 8, where we illustrate
the space occupied by three of the 24 CBR-A configurations (cf.
instance 1, 2, 24). Occupied space regions are not contiguous, which
increases signal path lengths. This effect has also been identified for
predominantly asynchronous desings [3, 16], while our experiments
did not show any negative impact on the message throughput for
our mostly synchronous designs. In summary, with more on-chip
resources (e. g., FFs, BRAM) a higher degree of scenario instance
parallelism, and thus more overall throughput could be reached.

Conclusions: (8) The message protocol handling and the com-
plexity of user code impact the space consumption. (9) The parallel
processing through multiple instances is only limited by the FPGA’s
resources. (10) The on-chip signal path length does not have an
impact on message throughput.

6.3 Parallelism: Performance
One of the important questions to answer for pattern implementa-
tions is “What is the impact of concurrent users?” [22]. To answer
this question we used the SP-B and CBR-A configurations men-
tioned above to run up to 24 independent data streams in parallel.
We call them processing units to allow comparison with the results
of the software system from [22], where multiple threads were
measured. Figure 9 shows the message throughput per second for
an increasing amount of parallel processing units compared to the
corresponding software implementation.

An important observation is that running additional process
instances has no impact on the other instances, which let the pro-
cesses be executed concurrently. Thereby the signal path length
does not decrease the measured message throughput. Consequently,
the throughput scales linearly with the number of process instances.
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The results for the patterns based on the two hardware templates
show a saturation after their space limits are reached (i. e., for 8, 24
units, respectively). The multi-threaded software implementations,
executed in a single JVM-process, cannot provide the same level
of parallelism as an FPGA. This could be achieved with more JVM-
processes on more CPUs, however, at a considerable expense (e. g.,
management of JVM or even VM instances, power consumption).

Conclusion: (11) The throughput scales linearly with the num-
ber of instances until resource saturation.

6.4 Message Size
The EIPBench specifies a scale factor for data size benchmarks to
target the question on “What is the impact of message sizes?” [22].
Therefore we used the TPC-H order-based messages approximately
up to 8 MB per messsage from EIPBench and evaluated them for
all defined templates. Figure 10 depicts only one result, because all
template baselines performed identical.

The immediate observation is that for increasing message sizes
the memory bandwidth is saturated. In contrast to designs that
use higher level memory (e. g., DRAM) and in-memory object ma-
terialization [17], which scales linearly with the input data size,
our approach uses byte-streams using the local BRAM only for
flow control (e. g., back-pressure). This design decision makes the
approach directly limited by the practical upper boundary of re-
sources on the board, which allows a throughput of approximately
800MBit/s. For illustration, we added a secondary axis for MBit/s in
Fig. 10, which shows an almost stable data volume saturation. We
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think that for most of the IoT scenarios the many smaller messages
should fit into the on-chip memory.

As an evolution of our design, similar to [17], we could aim to
load the messages in RAM temporarily and only pass the message
pointers and a message structure, e. g., containing a map of names
in a JSON to pointers to their data, from pattern to pattern (cf.
Claim Check [11]). This would allow for bigger messages, if the
patterns only perform operations on small parts of the message
(e. g., object lookup). For those cases pointers to larger messages
could be transported, while keeping the processing fast. In case of
many write and/or read operations, data has to be passed back and
forth to the on-board RAM (compared to on-chip BRAM), which
would decrease message throughput.

Conclusions: (12) The throughput is physically limited by the
capacity of the hardware. (13) The throughput can be increased by
using secondary memory, however, trading for more selective data
operations.

6.5 Patterns to Scenarios: Connected Cars
Let us get back to the motivating connected car example. The data
sent from the vehicles separates into approximately 304 B error code
JSONmessageswith fields like "Diagnostic_Trouble_Codes":"MIL
is OFF0 codes" and approximately 762 B telemetry data with fields
like "Vehicle_Speed":"0km/h" and "Engine_Load":"18,8%" from
the car’s OBD device. The error codes are enriched with master data
of the owner by lookup of the obd2_Vehicle_Identification-
_Number_(VIN) and translated into the format understood by the
receiver. For the telemetry data processing, the latter two steps are
performed as well, while an additional message filter is added to
consider driving cars only. The differentiation between error code
and telemetry data is done by an initial content-based router and
the two control sequences are combined by a join router, before
enriching and translating.

Figure 11 depicts the message throughput for the sketched sim-
plified implementation of the sample scenario divided into the
paths taken through the scenario: error code, telemetry and filtered
telemetry. While the measured throughput for the unoptimized
processing (i. e., normal) is as expected, considering the single pat-
tern results, some control- and data flow optimizations from related
domains (e. g., data integration [2]) can be considered. Thereby,
we exclusively focus on techniques that are especially beneficial
for our hardware-based approach and the particular scenario. For
instance, on FPGAs the flows are executed instantly and in parallel.
Hence, optimizations like “Reschedule start of parallel flows” [2]
(i. e., “start the slowest flow first”) and “Merge parallel flows” [2]
(i. e., “avoid forking costs”; no performance improvement, but space
reduction possible), are not applicable or desirable.

The first control-flow optimization that looked promising was
“sub-process parallelization” (i. e., sub-parallel) [2], which targets
to exploit the FPGAs parallel processing, of the sequence: content
enricher and message translator. This worked well for the error
codes, however, not for the telemetry, due to the size of the data.

Since the data and not the control-flow seems to be the limit-
ing factor in this scenario, message-flow optimizations are more
promising. Merging the neighbor patterns (i. e., neighbor merge)
requires less resources due to the removal of one channel. However,
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Figure 11: Connected cars scenario performance.

the freed space is not enough for another instance and the perfor-
mance pentality of a channel is low, thus no significant throughput
increase is measured.

The throughput of the filtering can be increased in all cases, when
stopping the evaluation immediately, when the condition matches
(i. e., early select early-out). This optimization worked well
because significantly less data has to be processed.

The optimizations that work well for query processing are early-
selection and early-projection (i. e., similar to [19]). The selection
optimization (not shown) has no positive effect (i. e., throughput
increase less than 30 msgs/s), because the message filter is not
able to cancel a message transmission when the condition does
not match. The early-projection places a content filter pattern (not
discussed) to the beginning of the process that filters empty fields.
The results in Fig. 11 for early project show an increase in
throughput, since less data is moved through the hardware pipeline.

Lastly, we combined several of the promising optimisations like
sub-parallel, early-out and early project into one scenario and mea-
sured the performance (i. e., combined). For the error codes and the
telemetry the sub-parallel and early project optimizations increase
the throughput, because the early project significantly reduced the
amount of data and the sub-parallel parallelized the slowest part of
the flow. For the filtered messages the early-out optimization caps
the throughput. Seven parallel scenario instances with combined
optimizations fit onto the FPGA.

Power Consumption. For this setup the FPGA can handle 153,061.22
msgs/watt, while the CPU on the Z600 processes 11,052.32 ms-
gs/watt (i. e., measured CPU consumption only). The measurement
follows the technique in [17], which measures the power consump-
tion of CPU and FPGA. The power consumption P of a logic circuit
depends linearly on the frequency at which it operates: P ∝ U 2 × f ,
with voltage U , frequency f . For the consumption of the FPGA, a
power analyzer provided by Xilinx reports an estimated consump-
tion of 1.0W, and for the CPU the consumption lies between the
Extended HALT Power and the Thermal Design Power around 95
Watt. Hence, the scenario can be handled by an FPGA with much
less energy consumption compared to the CPU. If all US cars sent
one message every second, this was a saving of approximately
92.78% of energy, which becomes a critical factor for most data
centers5.

5NRDC, Anthensis. Data Center Efficiency Assessment, visited 03/2017: https://www.
nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf
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Product-ready Hardware. Despite the promising results on Xilinx,
we studied the CCT scenario on the Intel Arria 10 SoC FPGA. Fig-
ure 11 shows the message throughput for one scenario instance (cf.
Intel-large-normal) as for Xilinx. The results are as expected
due to the factor five higher clocking (i. e., 100 MHz Xilinx vs 500
MHz Intel), thus our design scales linearly and could cover CCT for
the car traffic in most countries with one FPGA.

Conclusions: (14) Especially data flow optimizations that re-
duce the message sizes increase the throughput. (15) Besides the
optimizations suitable for CCT, a more systematic study on hard-
ware process optimizations and their combination is required that
collects all control and data flow approaches, analyzes their appli-
cability to hardware and their impact on the message throughput
and space reduction.

6.6 Discussion
From these observations we conclude that FPGAs allow for an
effective message processing based on the EIP streaming seman-
tics. Despite the slow clock rate of our Xilinx FPGA (100 MHz), it
achieves even higher throughput than powerful general-purpose
CPUs, because FPGAs can implement fully concurrent data steam-
ing pipelines. At the same time it consumes less power than a
general-purpose CPU.

Additionally, we would like to discuss further non-functional top-
ics including security aspects, exception handling, and monitoring
of the hardware processing as they are required in advanced scenar-
ios. While some security aspects can be handled on the transport
protocol level, characteristics like message privacy either require ad-
ditional on-chip IP cores or an on-board CPU (e. g., decryption). The
exception handling in integration scenarios can be implemented
with a “stop process” and “message retry” on exception process-
ing [23]. As part of our future work, we want to investigate how the
additional logic for the cancellation of a message in the hardware
pipeline and a timed resend can be added. Eventually, monitoring
capabilities on message and channel level are required for a more
productive setting. Therefore, the statistics could be written to the
on-board RAM and asynchronously fetched and processed by an
on-board CPU.

7 SUMMARY AND OUTLOOK
In this paper we assess the potential of FPGAs as message pro-
cessors for data-intensive operations in the context of application
integration. Therefore we define compatible EIP message stream-
ing semantics, along which we categorized the patterns into three
templates that can be efficiently synthesized to hardware. In addi-
tion, we specify a lightweight component for hierarchical message
format processing.

Our experiments illustrate how FPGAs help to improve message
routing and transformation throughput on hardware compared to
a comparable software setup (e. g., due to the invariance to number
of branches and conditions). Our analysis also revealed some limita-
tions for further research (e. g., data-generating patterns, message
sizes). Furthermore, pattern instance parallelism can be used to scale
the throughput to cover whole real-world integration scenarios on
one chip by synthesizing multiple scenario instances.

We analyzed and discussed the applicability of existing opti-
mization techinques from the application integration domain to an

integration process synthesized on hardware. But we leave a more
systematic analysis as future work.
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