
Interface Representation Patterns — Crafting and
Consuming Message-Based Remote APIs
OLAF ZIMMERMANN, University of Applied Sciences of Eastern Switzerland, Rapperswil
MIRKO STOCKER, University of Applied Sciences of Eastern Switzerland, Rapperswil
DANIEL LÜBKE, innoQ Schweiz GmbH
UWE ZDUN, University of Vienna, Faculty of Computer Science, Software Architecture Research
Group, Vienna, Austria

Remote Application Programming Interfaces (APIs) are technology enablers for major distributed system trends such as mobile

and cloud computing and the Internet of Things. In such settings, message-based APIs dominate over procedural and object-
oriented ones. It is hard to design such APIs so that they are easy and efficient to use for client developers. Maintaining their

runtime qualities while preserving backward compatibility is equally challenging for API providers. For instance, finding a well

suited granularity for services and their operations is a particularly important design concern in APIs that realize service-oriented
software architectures. Due to the fallacies of distributed computing, the forces for message-based APIs and service interfaces

differ from those for local APIs – for instance, network latency and security concerns deserve special attention. Existing pattern

languages have dealt with local APIs in object-oriented programming, with remote objects, with queue-based messaging and
with service-oriented computing platforms. However, patterns or equivalent guidance for the structural design of request and

response messages in message-based remote APIs is still missing. In this paper, we outline such a pattern language and introduce
five basic interface representation patterns to promote platform-independent design advice for common remote API technologies

such as RESTful HTTP and Web services (WSDL/SOAP). Known uses and examples of the patterns are drawn from public

Web APIs, as well as application development and software integration projects the authors have been involved in.

CCS Concepts: •Software and its engineering→ Patterns; Designing software;

ACM Reference Format:
Olaf Zimmermann, Mirko Stocker, Daniel Lübke, and Uwe Zdun. 2017. Interface Representation Patterns - Crafting and Con-
suming Message-Based Remote APIs. EuroPLoP (July 2017), 36 pages.
DOI: https://doi.org/10.1145/3147704.3147734

1. INTRODUCTION

Object-Oriented Programming (OOP), Component-Based Software Engineering (CBSE) and Service-
Oriented Architecture (SOA) established practices for designing modular and distributed software
solutions more than a decade ago [Zimmermann et al. 2004]. Since then, the field has further evolved
and matured [Pautasso et al. 2017]. As a consequence, application designs have become more and more
distributed. This trend has reached a preliminary peak with cloud-native microservices and distributed
Internet-of-Things (IoT) architectures that are based on small deployment units communicating via

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’17, July 12-16, 2017, Irsee, Germany
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4848-5/17/07...$15.00
https://doi.org/10.1145/https://doi.org/10.1145/3147704.3147734

Proceedings of the 22nd European Conference on Pattern Languages of Programs

2 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

remote Application Programming Interfaces (APIs) for delivering the overall solution [Fehling et al.
2014; Lewis and Fowler 2014; IERC 2017].

The above mentioned developments require sophisticated and sustainable API designs. However,
API design is hard; inexperienced designers will make mistakes that are avoidable. Fixing a mistake
in a published API is much harder than fixing an error inside a Web application due to the related im-
pact on a potentially huge number of only partially known systems that are using the API, increased
communication and testing efforts, as well as compatibility issues (for breaking changes). As a con-
sequence of these observations, software architects and developers seek related advice. The perceived
knowledge gap can be narrowed by patterns addressing remote API-specific design challenges such
as service discovery and configuration, message construction and consumption, service granularity,
versioning and security.

Many books and pattern languages exist on distributed system design, SOA, Web Services, Repre-
sentational State Transfer (REST), messaging, cloud computing and related topics (see Section 2 for
a summary). However, few (if any) of these cover actual service design, i.e., look into the messages
and their content: Which remote API endpoints (i.e., services in SOA, resources in REST) should be
exposed? How are API calls structured and what do they mean? Which roles do the API calls play in
the overall system-of-systems landscape? We make a first step to tackle this gap in this paper and
focus on the responsibility of API calls and the representation structure of the messages exchanged in
an (integration) architecture; our patterns also address aspects related to service delivery quality.

The patterns reported in this paper are envisioned to become part of a larger pattern language on
Message-Based Remote APIs.1 Let us first illustrate the scope of the whole pattern language. The over-
arching objective of this pattern language is to provide actionable, but also sustainable design guidance
for API and service designers as well as system integrators and maintainers. We will discuss forces
for interface cuts (emphasizing quality attributes and decision criteria) and suggest designs that have
proven useful in multiple project contexts – in terms of structure and meaning of functional interface
contracts and in terms of quality concerns such as usability, reliability, performance, and supporta-
bility. An example of a recurring problem related to a structural concern (taken from the problem
addressed by the Pagination pattern described in Section 4.5) is: How to split up large responses (with
repeating elements) into multiple messages to address constraints regarding capabilities of message
size, network, and/or client and server environments? Furthermore, service identification and evolu-
tion concerns are also included in our overall language scope. While many candidate patterns and their
known uses stem from experiences in architecting business information systems (a.k.a. enterprise ap-
plications), system landscapes, and Web applications such as portal services, all patterns are intended
to be applicable in other domains as well.

This paper focuses on an initial sub-scope of the whole pattern language: basic interface represen-
tations and pagination, i.e., the structure of the message content. Faithful to the ambition of most (if

1The term message-based here means that communication is facilitated through remote message passing [Daigneau 2011]: A
message is sent to a receiver, which must then serve it (e.g., dispatch to an object running inside it, or delegate the message to
an alternate receiver). The dispatch/delegation policy and its implementation is hidden from the sender, who can not make any
assumptions about the receiver-side programming model and service instance lifecycles. In contrast, Remote Procedure Calls
(RPC) do not only model remote service invocations, but also bind server-side subprogram runs to the service instances they
are invoked on; such instances (e.g., remote objects) are visible across the network. In summary, while we deal with remote
calls, we do not assume that these remote calls are remote procedure calls. Message-based remoting services can be realized
in multiple technologies and platforms including RESTful HTTP, Web services (WSDL/SOAP), WebSockets, and even gRPC
(despite its name). For instance, the HTTP 1.1 specification explicitly states that HTTP is a request-response protocol, but it
does not dictate any server-side implementation paradigm (such as object-oriented or functional programming); API calls come
as HTTP methods operating on resources identified by URIs and appearing in messages as resource representations.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 3

not all) pattern languages to provide timeless knowledge, our patterns are presented in an technology-
independent way; technology-specific design elements such as good practices for resource design in
RESTful HTTP appear in our examples. The presented patterns primarily target integration archi-
tects, service designers, and Web developers with an interest in platform-independent architectural
knowledge. Both backend-to-backend integration specialists and frontend architects and developers
as API consumers are supposed to benefit from the captured knowledge. Secondary target audiences
include API product owners, cloud offering providers (developers, operators), and API reviewers.

We established several non-goals as well. Object-oriented remoting, for instance, is out of scope;
therefore, no remote call stubs (as used in RMI and IIOP), object handlers, or remote garbage collec-
tion (as provided in CORBA) are discussed. Due to our focus on representations and message content,
we do not distinguish between synchronous and asynchronous communication. Technology-specific ad-
vice such as REST recipes, hypermedia design advice, and WSDL/SOAP best practices are already
documented elsewhere ([Allamaraju 2010; Zimmermann et al. 2003] are just two of such references)
and therefore also excluded here. Application-level protocols, composed workflows, and messaging con-
versations are covered by other pattern languages that we reference (rather than replicate or rival).
Finally, other organizational concerns that go beyond versioning and basic lifecycle management are
not part of the core focus of our language either.

The paper is structured in the following way. Section 2 discusses relations to patterns in other lan-
guages, as well as differences to them. Section 3 outlines the scope of our pattern languages in terms
of design decisions to be made and forces to be resolved; it also presents the preliminary language
organization into categories. Section 4 then introduces five structural representation patterns. Sec-
tion 5 identifies and lists additional pattern candidates across all categories and outlines the patterns
currently emerging in selected categories. Section 6 summarizes and gives a brief outlook.

2. RELATIONS TO OTHER PATTERNS AND PATTERN LANGUAGES

The design of message-based remote APIs can benefit from many existing pattern works on various
kinds of distributed systems, especially those related to services, as well as pattern works related to
API design (e.g., API design in object-oriented programming) and enterprise integration.

In POSA vol. 4, Buschmann et al. [Buschmann et al. 2007] introduce a pattern language that glues
together patterns from many different pattern languages on distributed systems, ranging from archi-
tectural concerns to low-level design details of distributed systems. The Remoting Patterns language
[Voelter et al. 2004] specifically deals with the Broker-based design and the internal details of a mid-
dleware, but also covers API-related aspects like remote objects, servants, lifecycle management at
runtime, and asynchronous invocations. Asynchronous invocation plays a central role in message-
oriented middleware and is covered in depth in Enterprise Integration Patterns (EIP) [Hohpe and
Woolf 2003]. While EIP focuses on asynchronous messaging systems, it also covers some aspects of
message-based API design. In his general treatment of enterprise application architecture, Fowler
[Fowler 2002] touches on many aspects of remote API design such as Remote Facades or Data Transfer
Objects (DTOs). Similarly, Evans [Evans 2003] covers functional API design with some of his Domain-
Driven Design (DDD) patterns such as Bounded Context, Aggregate, and Service. Even basic design
patterns [Gamma et al. 1995] are relevant for remote API design, as they can be useful for some de-
sign aspects such as introducing a Facade or a Proxy in the API. We adopt and refine such patterns for
message-based remoting.

General data modeling patterns [Hay 1996] cover data representations and meaning, but do so in the
context of data storage and presentation (rather than data transport); therefore, the discussed forces
and solutions to them differ from ours. Domain-specific modeling archetypes for enterprise information
systems also can be found in the literature [Arlow and Neustadt 2004]. Neither the general nor the

Proceedings of the 22nd European Conference on Pattern Languages of Programs

4 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

domain-specific data model catalogs introduced in these two books cover the specific aspects of data
representation in message-based remote API communication.

Services provided by message-based remote APIs can be seen as components with remote interfaces.
Such components and distributed objects are covered by the pattern languages listed above. More
specifically, the work by Daigenau [Daigneau 2011] provides patterns for service-based designs at the
level of existing service platforms and technologies such as both REST and WSDL/SOAP-based Web
services. Contract versioning for backward compatibility is one of the problem sets that is addressed
in this book. In contrast, process-driven SOA patterns [Hentrich and Zdun 2011] reside on a higher
abstraction layer. They describe orchestrations of services based on business process or workflow en-
gines. SOA Patterns by Arnon Rotem-Gal-Oz is largely SOA infrastructure- and platform-centric as
well [Rotem-Gal-Oz 2012]; his patterns do not investigate message content and structure in depth.

Many other forms of interactions or message exchanges can be summarized by service interaction
patterns [Barros et al. 2005]. Basic and advanced conversations such as Polling are covered in the
ongoing work on a Conversation Patterns language [Hohpe 2007] that discusses stateful interactions
composed of multiple message exchanges between loosely coupled services. In addition, Pautasso et
al. [Pautasso et al. 2016] describe conversations specific to RESTful services. The application of the
interface representation patterns from this paper is closely related to the application of conversation
patterns and vice versa: Each message exchange in a conversation requires request and response
messages which need interface representations. Coarse-grained APIs often are used in simple conver-
sations, whereas fine-grained ones lead to more chatty conversations.

Emerging distributed system architectures like cloud computing and the microservices approach
to service-based systems [Lewis and Fowler 2014] require many distributed system patterns to build
remote APIs, but also bring their own patterns or flavors of related patterns with them [Richardson
2017]. The Data Abstractor pattern in [Fehling et al. 2014] is an example.

Complementary to pattern languages, platform-specific best practices and design guides have also
been published, e.g., recipes in a RESTful HTTP Cookbook [Allamaraju 2010] and decisions required
in Web services design and related best practices [Zimmermann et al. 2003].

3. LANGUAGE SCOPE AND ORGANIZATION

3.1 Motivation

When designing interface representations (i.e., request and response message content) to realize re-
mote APIs and SOAs, the required architectural decisions [Zimmermann et al. 2008] include:

1. Message exchange pattern: request-response vs. one way and request-acknowledge [Daigneau
2011; Pautasso et al. 2017].

2. Message exchange format: JSON, XML, or other [Pautasso et al. 2017].
3. Data contract to be exposed, i.e., Published Language in DDD terminology [Evans 2003].

In this paper, we concentrate on the exposed data contract (and underlying domain model). All pat-
terns are described to work with any textual message exchange format; our examples use JSON and
XML. We use the request-response message exchange pattern in our examples due to its widespread
usage; the patterns are written in such as way that they are also eligible when another message ex-
change pattern has been chosen. Designing under the specific constraints of particular integration
styles such as asynchronous queue-based messaging is covered by other pattern languages and addi-
tional knowledge sources (see Section 2).

During the architectural decision making, the following primary forces (i.e., decision drivers and
quality attributes) have to be taken into account and must be resolved:
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 5

• Latency (from API consumer/client point of view), influenced by network behavior (e.g., band-
width and low-level latency) and endpoint processing effort including (un-)marshalling of the
payload.

• Throughput and scalability (primarily an API provider concern), meaning that response times
do not degrade even if provider-side load grows because more clients use it, or because existing
clients cause more load.

• Learning effort and modifiability as an important sub-concern of supportability and maintain-
ability (e.g., backward compatibility to promote parallel development and deployment flexibility,
in particular).

• Security (e.g., confidentiality and integrity of sensitive information) and other quality-of-service
concerns such as data sensitivity, reliability, and manageability.

• Amount of coupling and knowledge that must be shared by provider and consumer, which has an
impact on changeability as another sub-concern of maintainability.

For some of these forces, their impact on representations appearing in interfaces is obvious; for others,
the relationship will become clear when taking a closer look. For instance, security and manageability
primarily are runtime concerns. However, there is a resulting need to configure monitoring/metering
and billing via API calls (or certain parameters in API calls), and providing security might require
certain credentials to appear in the messages.

3.2 Basic Abstractions and Concepts (Language Foundations)

In this paper, we will use the following terminology: A request message from an API client goes to an
API provider, which processes the request message and, if the message exchange pattern is request-
response, constructs a response message. If the difference between client and provider does not matter,
the generic term communication participant (or party) is used. If needed, the sender and the receiver
of a message are distinguished: request messages are sent by the client and received by the provider;
response messages are sent by the provider and received by the client. An API provider exposes one or
more API endpoints, each of which has a unique address (such as a Uniform Resource Locator, URL);
API endpoints expose one or more API calls.

The top-level data elements of request messages are called in parameters, and out parameters appear
in response messages (picking up terminology from programming and the Web); these parameters may
or may not be ordered and (statically or dynamically) typed. All parameters defined for a message
constitute its message signature, which becomes part of the technical API contract. API contracts are
accompanied by actionable Service Level Agreements (SLAs) that contain measurable Service Level
Objectives to govern and classify the API usage terms and conditions. API contract and SLA represent
the knowledge shared by provider and consumer that determines the amount of coupling between
them.

We call the wire-level equivalent of a program-level Data Transfer Object (DTO) [Fowler 2002;
Daigneau 2011] a Data Transfer Representation (DTR); DTOs and DTRs contain request and response
message content. Unlike DTOs, the DTR abstraction does not make any assumption about client- and
server-side programming paradigms (such as object-oriented, imperative, or functional programming);
the client-server interactions are plain messages (i.e., they do not contain any remote object stubs or
handlers). Two types of representations are distinguished, e.g., request representation and response
representation. The process of converting a programming language DTO into a DTR that can be sent
over the wire is called marshalling (also known as serialization); the opposite operation is called un-
marshalling (or deseralization). These terms are commonly used in distributed computing technologies
and platforms.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

6 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

Fig. 1 illustrates this setup of these basic remote messaging concepts in an architecture overview
diagram. The figure also shows the position of APIs in the overall integration architecture as well as
selected API client internals from a logical component point of view (e.g., context and error handling).

Fig. 1. Architecture of message-based remoting with key API design concepts

In SOA, the terms service consumer and consumer are synonyms for API client; the API provider
acts as a service provider.2 Depending on the integration syle that is used, the abstract concept of an
API call can be realized as (i.e., is refined into) remote methods, operations or resources. The detailed
API designs for specific technologies differ; for instance, when using a RESTful integration style, one
resource can return multiple representations, e.g., to satisfy the information need of different clients
(in terms of message syntax and verbosity) or to support backward compatibility and overcome inter-
operability issues.

3.3 Language Organization

To help integration architects make the decisions and resolve the forces identified in Section 3.1 in
a way that is appropriate for their given project context and requirements, and to help them orient
themselves in the language, we propose to organize it in seven categories (Fig. 2): foundations, iden-
tification, structure, interface responsibility, delivery quality, service evolution, and API management.
The core of the language is provided by the three categories in the circle in the middle of the figure,
Responsibility, Structure, and Quality (RSQ), answering “why”,“what”, and “how” questions about API
design, respectively3. The Foundations category establishes the language context and its vocabulary,
beginning with the concepts introduced above in Section 3.2, as well as coupling criteria such as those
compiled in [Gysel et al. 2016]. The Identification category contains process patterns that supports API
designers in finding well-suited API call candidates and service abstractions. The Evolution category
deals with lifecycle management concerns such as versioning and governance.

2In UML terminology, the API client requires a particular API provided by a component.
3It might be surprising at first glance that quality is a core topic in a language that deals with external service/data representa-
tions; however, such representations contain quality-related information and their size and structure has an impact on delivery

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 7

Fig. 2. Pattern language categories. The core focus of this paper is on structural representation patterns (highlighted in italics).

In this paper, we introduce basic patterns from the Structure category (Section 4) and outline addi-
tional patterns across categories (Section 5).

4. STRUCTURAL REPRESENTATION PATTERNS

This section introduces basic structural patterns that respond differently to the same overall design
concern in interface representation design:

What is an adequate amount and structure of the ‘in‘ parameters and the ‘out‘ parameters of API calls?

For instance, in a RESTful HTTP context: how many URI parameters should be defined and which
media types should be used to represent resources in request and response bodies, and how are these
parameters and media types formatted and structured (e.g., in JSON or another notation)? For in-
stance, in a WSDL/SOAP context: how should the message part(s) in the service contract be organized
and which data types are used to define the corresponding element(s) in XML Schema (XSD)?

The four patterns Atomic Parameter, Atomic Parameter List, Parameter Tree, and Parameter Forest
present alternative solutions to two fundamental questions that can be derived from the overall design
concern from above:

• Should simple atomic or structured data types be used to define the parameter(s)?
• Should one or more parameters be included in the request and response message contracts?

The four pattern names aim at sketching the message structure/call signatures that result from the
2x2 combinations of the outlined alternative representation design solutions (simple vs. structured

quality. For instance, security can only be achieved if certain security information is transported, and large and complex DTRs
may harm latency and throughput (two facets of performance).

Proceedings of the 22nd European Conference on Pattern Languages of Programs

8 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

data, single vs. multiple parameters). Each pattern has a problem statement derived from this overall
design goal, which is slightly adapted to its pattern context.

We also introduce a fifth pattern Pagination that leverages the four basic patterns to present how
to process queries and query responses efficiently in remote APIs. This recurring design concern has
been identified by members of our target audience as particularly important and promising; due to
its frequent use and technical complexity (i.e., advanced and challenging forces apply), related archi-
tectural knowledge, captured in pattern form, is expected to be a welcome contribution to the body of
integration design knowledge.

Figure 3 visualizes how the five structural representation patterns introduced in this section relate
to each other. Atomic Parameters can be part of Atomic Parameter Lists, which in turn can be refactored
into Parameter Trees. A Parameter Forest does not have a single root (unlike a Parameter Tree), but
contains multiple Parameter Trees and/or Atomic Parameter Lists.

Fig. 3. Relationships between structural representation patterns and pagination variants (UML class diagram)

Two governing top-level forces for the patterns in this category are: a) message size and verbosity
(due to impact on network resource consumption vs. network capability and b) security concerns. Gen-
eral decision drivers in service representation design include the functional requirements (e.g., use
cases or user stories, domain model), operational model (e.g., network topology and number of deploy-
ment artifacts per deployment unit), proxy code generation principles and policies, strong vs. weak
typing philosophy, and capabilities of XML and JSON processors ([Zimmermann et al. 2004]). Five
particularly important quality attributes are:

• Interoperability on protocol and message content (format) level, as influenced by the communica-
tion platforms and the programming languages used by consumer and provider implementations
(e.g., during parameter marshalling and unmarshalling).

• Performance (latency in particular), i.e., outbound processing (marshalling), network travel time,
inbound processing (unmarshalling) as influenced by message verbosity.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 9

• Developer convenience and experience (e.g., learning and programming effort) both on consumer
and on provider side; the wants and needs of these two sides often are conflicting. For instance,
a data structure that is easy to create and populate might be difficult to read; a compact format
that is light in transfer might be difficult to document, understand, and parse).

• Maintainability, especially extensibility of existing messages, ability to deploy and evolve API
clients and providers independently of each other. Loose coupling [Leymann 2016] is a related
internal quality of the structural design of a distributed system and its components; as an archi-
tectural principle, it can be seen to reside half way between a requirement (problem) and a design
element (solution). An API call by definition/inherently couples client and server; however, the
looser the coupling, the easier it is to evolve client and server independently from each other. Two
APIs from one provider should not be coupled unnecessarily, e.g., via hidden dependencies (they
may share design guidelines and use the same patterns, though).

• Security and data privacy in particular: data in transit should not be tampered with, and it should
not be possible to pretend to be somebody else when reading and writing messages. Requirements
such as Confidentiality, Integrity and Availability (also known as the CIA triad) [Julisch et al.
2011]; remote APIs may be subject to denial of service attacks.

Concrete, detailed forces differ for public APIs and APIs that are internal to a community or a solution
(e.g., a billable SaaS offering vs. a company-internal backend system integration). We will cover such
forces in the individual pattern texts that follow. Recipe 2.2 in RESTful Web Services Cookbook [Alla-
maraju 2010] also discusses decision criteria such as network efficiency, size of representations, client
convenience; cacheability, frequence of change, and mutability.

4.1 Atomic Parameter Pattern

also known as: Single Scalar Representation, Dot

Context. An API endpoint such as a REST resource or a WSDL/SOAP port has been defined and its
API calls (e.g., HTTP methods, WSDL operations) have been specified initially, possibly having applied
one or more service identification patterns such as Contract First and a message exchange pattern
such as Request-Response [Daigneau 2011]. However, API consumer and provider have not yet agreed
on the structures of request and response messages; the data contract between them has not been
specified.

Problem. How can an API provider define a single data unit for the in parameter in request mes-
sages and/or the out parameter in response messages?

Forces. The data structures of the request and response messages are an essential part of the techni-
cal service contract. All patterns dealing with structural interface representation design and technical
service granularity [Zimmermann et al. 2004] share the same high-level forces (as elaborated previ-
ously):

• Interoperability
• Performance (of network and endpoints)
• Processing effort (at development time and at runtime)
• Learning effort and maintainability (versioning and backward compatibility in particular)
• Security

In addition to the API/service endpoint address and call name (if any), the request message and re-
sponse message structures are important elements of the technical service contract between provider
and consumer; they contribute to the shared knowledge of the communication participants/parties.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

10 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

Fig. 4. Atomic Parameter pattern: single scalar parameter (here: in parameter in request message)

This shared knowledge contributes to the coupling between consumer and provider, which is discussed
as the format autonomy aspect of loose coupling [Leymann 2016]. If the contract is underspecified, in-
teroperability issues may arise, e.g., when dealing with optionality (which can be indicated by absence
but also by dedicated NULL values) and other forms of variability (e.g., choosing between different repre-
sentations). If the contract is over-specified, it becomes inflexible and backward compatibility becomes
hard to preserve. Simple data structures lead to fine-grained service contracts; complex ones are often
used for coarse-grained services (that cover a large amount of business functionality).

Sometimes, only little data has to be exchanged to satisfy the information need of the communication
(integration) partner, e.g., when checking the status of a processing resource (in the form of a distinct
value defined in an enumeration) by identifier (e.g., a number or a string). One could think of always
exchanging strings or key-value pairs, but such generic solutions increase the knowledge implicitly
shared between consumer and provider, which complicates testing and maintenance, or might bloat
the message content unnecessarily.

Solution.

How it works. To exchange only simple, unstructured data such as a number or plain text, define a
single scalar in and/or out parameter in the API contract. Give the parameter a name and specify a
value range for it. Make this type information explicit (statically or dynamically). When doing so, use
one of the primitive types provided and supported by the underlying application protocol and transport
infrastructure if possible (e.g. UTF-encoded strings to exchange plain text); define custom type exten-
sions and new types only if absolutely necessary (to minimize integration, testing, and maintenance
effort as well as implicit coupling).

Like in any integration effort that has to overcome heterogeneity, describe the meaning of the trans-
ported values at least informally (including, for instance, a unit of measure); optionally, provide data
provenance information in the API documentation (note that such information may increase coupling
because the message receiver might start interpreting and depending on it, which makes the API
harder to change). Test with valid and invalid data, with special emphasis on the edges of the value
range; validate received data.

Figure 4 visualizes a string parameter as a single instance of the pattern appearing in a request
message.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 11

Example. Our RESTful HTTP and JAX-RS examples4 use instances of this pattern, for instance in
the request message used to GET (and PUT) claims by ID:

@GET

@Path("/{claimId}")

public ClaimDTO getClaimById(@PathParam("claimId") UUID claimId) {

return claims.findById(claimId).map(ClaimDTO::create).orElseThrow(noSuchClaim);

}

curl http://localhost:8080/claims/a1e00494-e982-45f3-aab1-78a10ae3e3bd

In RESTful HTTP, HTTP headers are simple key-value pairs of Atomic Parameters (with some for-
mat, like Accept: application/json); hence, they are often used to exchange simple, unstructured
data (but may also carry more elaborate structures like an →Atomic Parameter List as seen in the
Accept-Language header). Both HTTP headers and body can be secured on the transport level (e.g.,
with TLS/SSL).

Implementation hints and pitfalls to avoid. Architects and developers that decide to apply and real-
ize this pattern should take the following advice into consideration:6

• Make sure to use an interoperable data type to define the single scalar parameter. This is less of
an issue when communicating over HTTP due to protocol-level Media Type Negotiation, captured
as a pattern in [Daigneau 2011]. However, date and time formats can still cause interoperability
issues. Hence, it is suggested to stick to standard formats such as those specified in standards
such as ISO 8601 and RFC 3339. Generally speaking, use common data types only, avoid defining
custom conventions for the meaning of the values because such conventions add to the coupling
between the communicating parties, and do not age well. Such shared knowledge might vaporize
over time, especially if its documentation is incomplete and not kept current.
• Specify any notion of “undefined” or NULL values explicitly, including their expression/operation

semantics (e.g., comparison, equality).
• Consider restricting the value range of the single scalar parameter; if you do so, make this re-

striction explicit in API documentation, sample code, and tests. Make sure that the API imple-
mentation obeys the same restrictions as its interface (validation, database schema, etc.).
• Do not use instances of this pattern to wrap binary data (such as zip files) or encode data struc-

tures (such as SOAP envelopes or base64 encoded URI parameters in REST) unless there is a
strong business or technical need for such tunneling (to be approved on a lead or even enterprise
architect level). Such encodings are wasteful (e.g., seven bits instead of eight bits). Generally
speaking, tunneling a complex data structure in a custom string is considered an integration
anti-pattern.
• Acknowledge that a resource URL in RESTful HTTP is an opaque identifier which should not

be used to embed parameters (except for identity information); additional parameters should be
made part of the query string (i.e., appear after the question mark ?).

4The example is publicly available on GitHub: https://github.com/web-apis/riskmanagement-server5.
6While some of the hints are rather generic and also apply to local, program-internal interfaces it is important to remember
in our remote messaging and contract design context and this basic pattern due to the remoting-specific forces at work (e.g.,
think of the fallacies of distributed computing, including assumptions about security and reliability) and the consequences of
forgetting about them.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

%5Bhttps://github.com/web-apis/riskmanagement-server

12 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

The API Stylebook7 collects additional nuggets of advice, e.g., about consumer input (for in parame-
ters in request messages).

Discussion. Simple scalars are easy to read, write and process in all programming languages. They
are also easy to secure due to their simplicity and intrinsic cohesion. Simple scalars are often seen to be
highly interoperable (assuming that common data types are used) and easy to consume (only little net-
work capacity unless very long strings are transferred). However, their impact on interoperability and
bandwidth consumption is not obvious on the platform-independent pattern level; see implementation
hints for some related plaform-specific thoughts (for HTTP).

However, the expressiveness of such simple scalars is limited; a rich Published Language [Evans
2003] cannot be exchanged easily this way, but would have to be encoded in the single scalar param-
eter (e.g., with base64 encoding). If many API calls (such as service operations) use this pattern, it
might be required to compose rather complex and chatty, stateful message conversations to achieve a
certain business (or integration) goal as expressed in a user story (or integration story). Consider to
switch to the →Atomic Parameter List or the →Parameter Tree pattern if this happens and becomes
unmanageable.

Not all of the general forces that apply to structural representation design can be resolved by this
simple introductory pattern; service contract design involves many additional concerns. For instance,
result customization has to be dealt with (e.g., using the Accept header in HTTP) and offset/limit
parameters be introduced if→Pagination is used.

Known Uses. Most if not all message-based remote APIs use this pattern frequently, for instance
when requesting the status of a long running business transaction (activity) by process id. For example,
the createBucket call in the Web API of Amazon Web Service (AWS) Simple Storage Service (S3) uses
this pattern to define a simple bucketName string as its in parameter (see the S3 API Console and
SDK8, the response message of the WSDL of S3 Web Service API9 and the XML Schema for S310).

In RESTful HTTP, URIs and in particular URI query strings can carry instances of this pattern
(particularly for GET method requests). For instance, the Facebook Graph API11 uses a single scalar
in parameter event-id in its endpoint URI; it also provides an example of an Atomic Parameter.

The scalar value types12 in/of messages created with the Protocol Buffers13 data interchange format
originally developed by Google and open sourced at GitHub14 can also be seen as instances of this
pattern. The same holds true for the primitive types in Apache Avro15, which are serialized into JSON.

Related Patterns and References. This pattern refines the three patterns Command Message, Doc-
ument Message, and Event Message in [Hohpe and Woolf 2003] by looking into the actual message
content (payload). It can also be seen as a building block of its sibling representation pattern→Atomic
Parameter List and may also appear as leaves of →Parameter Trees (which also introduce complex
types and parameter nesting).

7http://apistylebook.com/design/topics/guiding-input
8http://docs.aws.amazon.com/AmazonS3/latest/dev/create-bucket-get-location-example.html
9http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
10http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.xsd
11https://developers.facebook.com/docs/graph-api/reference/event
12https://developers.google.com/protocol-buffers/docs/proto3#scalar
13https://developers.google.com/protocol-buffers/
14https://github.com/google/protobuf
15http://avro.apache.org/docs/current/spec.html

Proceedings of the 22nd European Conference on Pattern Languages of Programs

http://apistylebook.com/design/topics/guiding-input
http://docs.aws.amazon.com/AmazonS3/latest/dev/create-bucket-get-location-example.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/create-bucket-get-location-example.html
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.xsd
https://developers.facebook.com/docs/graph-api/reference/event
https://developers.google.com/protocol-buffers/docs/proto3#scalar
https://developers.google.com/protocol-buffers/
https://github.com/google/protobuf
http://avro.apache.org/docs/current/spec.html
http://apistylebook.com/design/topics/guiding-input
http://docs.aws.amazon.com/AmazonS3/latest/dev/create-bucket-get-location-example.html
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.xsd
https://developers.facebook.com/docs/graph-api/reference/event
https://developers.google.com/protocol-buffers/docs/proto3#scalar
https://developers.google.com/protocol-buffers/
https://github.com/google/protobuf
http://avro.apache.org/docs/current/spec.html

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 13

The Web API specification language Swagger16 has the notion of a parameter object to “describe a
single operation parameter”.

4.2 Atomic Parameter List Pattern

also known as: Multiple Scalar Representations

Context. API consumer and API provider have not yet agreed on a data contract between them;
the structures of request and response messages have not been specified yet. In RESTful HTTP, the
parameters and request/response MIME types of HTTP methods (verbs) still have to be defined; in
Web services, the elements and parts of SOAP envelopes still have to be defined in WSDL and XML
Schema.17 More than one distinct information item might may have to be transmitted.

Problem. How can the API provider inform the API consumer about multiple primitive information
items it expects in request messages and/or supports in response messages?

Forces. The data structures of the request and response messages are an essential part of the techni-
cal service contract. All patterns dealing with structural interface representation design and technical
service granularity share the same high-level forces (as elaborated previously):

• Interoperability
• Performance (of network and endpoints)
• Processing effort (at development time and at runtime)
• Learning effort and maintainability (versioning and backward compatibility in particular)
• Security

In many scenarios, a single scalar piece of information is not sufficient to inform the provider about
the consumer’s need or to provide a meaningful response. The more information items are transmitted,
the more significant the forces become (for instance, multiple parameters expose security threats, both
in isolation and in combination).

One could send several messages each sending a single scalar →Atomic Parameter, but that would
lead to chatty conversations and waste of network capacity. Such approach would also waste server-
side resources if the server is stateless and has to restore the session state from the request message
and protocol headers each time. One could also think of always sending and returning a complex
data structure that leaves all fields empty that are not required in the current call; however, such
approach would lead to unnecessary interoperability and evolution issues, increased testing efforts,
and waste of processing capacity in the endpoints (because unnecessary, empty data structures have
to be marshalled and unmarshalled).

Solution.

How it works. To transmit two or more simple, unstructured information items, define multiple
→Atomic Parameters (e.g., numbers, strings, boolean values) in an ordered list. Populate and process
these items separately in sender and receiver. Name these parameters in an expressive way and,
optionally, order them logically for better human-readability (to indicate and promote high cohesion
within a parameter and low coupling between parameters). Mark optional parameters as such; provide
representative examples for the permitted combinations (i.e., instances of the parameter list).

16https://swagger.io/specification/
17This pattern and its sibling pattern→Atomic Parameter have very similar context sections and problem statements because
they provide alternate solutions to the same general design concern.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

https://swagger.io/specification/
https://swagger.io/specification/

14 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

Fig. 5. Iconic visualization of Atomic Parameter List pattern: multiple simple scalars are sent (here: in parameter of a request
message)

Figure 5 sketches an application of the pattern in a request message. The DTR has three →Atomic
Parameter entries, which form a list.

Multiple patterns and multiple instances of the same pattern can be applied in the same API call. For
instance, in RESTful HTTP, both the URI (in particular, URI parameters) as well as form parameters
can be used to realize the pattern. If both options are used in one API call, two Atomic Parameter Lists
can be observed.

Some integration platforms do not allow the communication parties to send multiple scalars in a
particular type of message, For instance, many programming languages only allow one return value or
object (i.e., out parameter) in the method signatures, and the default mappings from these languages
to JSON and XML schema follow this convention (e.g., JAX-RS and JAX-WS in Java). If this is the case,
you can define a message-specific sequence (a.k.a. record, associative array) of scalars as a variant of
this pattern, which may or may not require custom marshalling. This variant can also be seen as a
special, primitive variant of the→Parameter Tree pattern that only uses scalar leaves underneath the
root of the tree; therefore, we call it Atomic Parameter Tree.

Example. The in parameter of the getRiskReport operation in the insurance Web services example
that we adopt from [Zimmermann et al. 2003] is an instance of this pattern:

<xs:complexType name="getRiskReportViaMultipleScalar">

<xs:sequence>

<xs:element name="startYear" type="xs:int"/>

<xs:element name="numberOfYears" type="xs:int"/>

</xs:sequence>

</xs:complexType>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ns2:getRiskReportViaMultipleScalar xmlns:ns2="http://reports.insurance.irp.org/">

<arg0>2015</arg0>

<arg1>3</arg1>

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 15

</ns2:getRiskReportViaMultipleScalar>

</soap:Body>

</soap:Envelope>

The RESTful HTTP implementation of the risk management server18, implemented with JAX-RS on
the provider side, also applies this pattern in its request messages (and the→Parameter Tree pattern
in its response messages):

GET /riskreport?firstYear=2017&noOfYears=1 HTTP/1.1

[...]

HTTP/1.1 200 OK

Date: Tue, 14 Feb 2017 08:52:29 GMT

Content-Type: application/json

Vary: Accept-Encoding

Content-Length: 102

[{"year":2017,"policyCount":42,

"totalClaimValue":2000.0,"claimCount":1,

"totalInsuredValue":1000000.0}]

Implementation hints and pitfalls to avoid. Adopters of this pattern should take the following advice
into consideration:

• Minimize the size of the list and keep its elements consistent; make sure to include only scalars
for which clients have a need (i.e., apply a use case- and consumer-driven API design approach).

• Avoid semantic dependencies between different scalars. The value of one scalar should not
influence the meaning of another scalar with the exceptions of values and their units (e.g.,
{"amount"=123.00, "currency"="EUR"}). If such dependencies are inherent to the data ex-
changed (the published language), consider to switch to an implementation of the →Parameter
Tree pattern.

• Define a security protection level for each parameter and for the entire message (or API call) and
design security means that respond to related security threats in risk- and cost-driven manner.

The API Stylebook19 collects additional nuggets of advice, e.g., about consumer input (for in param-
eters in request messages).

Discussion. The solution balances the information need of the receiver with the desire to minimize
processing and communication overhead; since it uses base types, it has good interoperability char-
acteristics in most integration platforms and paradigms (e.g., WSDL/SOAP Web services, RESTful
HTTP). In some platforms, this pattern cannot be realized in its pure form, or its realization does not
differ significantly from its sibling pattern→Parameter Tree (e.g., if there is no notion of request mes-
sage parts or if there is a single response data element only, see introduction of Atomic Parameter Tree
variant above). In some technologies and platforms, such atomic parameter trees can be marshalled
automatically based on reflection; in others they require a customer marshaller.

18https://github.com/web-apis/riskmanagement-server
19http://apistylebook.com/design/topics/guiding-input

Proceedings of the 22nd European Conference on Pattern Languages of Programs

https://github.com/web-apis/riskmanagement-server
http://apistylebook.com/design/topics/guiding-input
https://github.com/web-apis/riskmanagement-server
http://apistylebook.com/design/topics/guiding-input

16 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

In some technologies, such as Web Sockets, there is no type system to be assumed (such as XML
Schema or MIME types); consumer and provider have to agree on data marshalling/unmarshalling
(details of which are out of scope here).

From a security standpoint, usage of this pattern may cause more design and processing work than
its →Atomic Parameter sibling; this depends on the security classification (level) of the different pa-
rameters and their semantic proximity as discussed in [Gysel et al. 2016].

Known Uses. Attaching multiple URI parameters to an HTTP GET method call in RESTful HTTP
can be viewed as an instance of this pattern, as well as URI Templates as defined in RFC 657020.
Multiple plain parameters in an HTTP POST request also qualify as pattern instances.

Facebook’s Graph API to GET information about events per user21 applies this pattern in its re-
sponse message.

Twitter heavily uses this pattern in its API, for example to post a new tweet22.

POST

https://api.twitter.com/1.1/statuses/update.json?status=Hi%20there&lat=47.2266&lon=8.8184

Messages created with the Protocol Buffers23 data interchange format (originally developed by
Google and open sourced at GitHub24) that only contain simple data types as field value types can also
be seen as instances of this pattern.

Swagger25 has the notion of a parameters definitions object to “to hold parameters to be reused across
operations”.

Related Patterns and References. This pattern has three siblings →Atomic Parameter, →Parameter
Tree, →Parameter Forest; these interface representation patterns continue the coverage of Command
Message, Document Message, Event Message in [Hohpe and Woolf 2003] by discussing the syntactic
structure of the content of such messages. The →Atomic Parameter pattern can be seen as a simpler
alternative to this pattern, but also as its building block. Once an →Atomic Parameter List becomes
too large, switching to an (atomic) →Parameter Tree often is the next step in the evolution of an API
call and its representations.

4.3 Parameter Tree Pattern

also known as: Single Complex Representation, Tree Representation, Bar

Context. A simple message format has been defined, consisting of one or more scalars that form an
→Atomic Parameter or an →Atomic Parameter List. However, this simple message format does not
fully satisfy the information need of the message receiver (i.e., the provider for request messages and
the consumer for response messages), or contains undesired semantic dependencies between the list
elements.

Problem. This pattern solves a variation of the general representation design problem also ad-
dressed by its sibling patterns→Atomic Parameter and→Atomic Parameter List:

How do you exchange repetitive or nested data between consumer and provider in a message-based
remote API? For instance, how to include such data in the in and out messages of WSDL/SOAP Web

20https://tools.ietf.org/html/rfc6570
21https://developers.facebook.com/docs/graph-api/reference/event/
22https://dev.twitter.com/rest/reference/post/statuses/update
23https://developers.google.com/protocol-buffers/
24https://github.com/google/protobuf
25https://swagger.io/specification/%3E

Proceedings of the 22nd European Conference on Pattern Languages of Programs

https://tools.ietf.org/html/rfc6570
https://developers.facebook.com/docs/graph-api/reference/event/
https://dev.twitter.com/rest/reference/post/statuses/update
https://developers.google.com/protocol-buffers/
https://github.com/google/protobuf
https://swagger.io/specification/%3E
https://tools.ietf.org/html/rfc6570
https://developers.facebook.com/docs/graph-api/reference/event/
https://dev.twitter.com/rest/reference/post/statuses/update
https://developers.google.com/protocol-buffers/
https://github.com/google/protobuf
https://swagger.io/specification/%3E

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 17

service operations and the parameters and body of requests/responses in RESTful HTTP (e.g., GET,
POST, PUT)?

Forces. All representation patterns dealing with technical service granularity and structural data
contract design share a common set of top-level forces (whose significance increases when the repre-
sentation structures become more complex):

• Interoperability
• Performance (latency in particular)
• Processing effort at development time and at runtime
• Learning effort and maintainability (versioning and backward compatibility in particular)
• Security is a concern of increasing importance as more data is exchanged (data privacy level,

attribute-based access control)

If repetitive or nested data is to be transmitted, the number of data items and its nesting depth are
particularly relevant; expressiveness and efficiency have to be balanced.

One could send several messages each sending a single or multiple scalar parameters, as described
in the →Atomic Parameter and →Atomic Parameter List patterns, but that would lead to chatty con-
versations and waste of network capacity if the information need of the message receiver exceeds the
expressiveness of such simple data formats (e.g., query results usually are repetitive and may consist
of structured information). It also runs the risk of violating the loose coupling principle due to the
semantic dependencies between calls and call parameters.

Solution.

How it works. Define a single root that contains one or more subordinate composite/aggregate data
structures such as tuples or arrays as available in the concrete syntax used as the message exchange
format (e.g., JSON objects or XML complex types using sequences). A tuple assembles data of differ-
ent types (e.g., the ZIP code and the name of a city in an address). An array is typically used if all
elements to be aggregated share the same structure; in JSON arrays are a first-class citizen of the
notation, and in XML repetitive sequences can be defined via cardinalities of complex type sequences
higher than 1 (e.g., maxOccurs="unbounded"). To structure the subordinate further, the pattern can be
applied recursively to create nested structures (if this can be justified in the domain model/data to be
exchanged).

Figure 6 sketches two different applications of the pattern, one in a request message and one in a
response message.

If all tree leaves on level 1 are →Atomic Parameters, the resulting Data Transfer Representation
(DTR) structure and pattern variant is called Atomic Parameter Tree.

Example. Our JAX-RS example available at GitHub26 uses an instance of this pattern when return-
ing updated claims in response to HTTP PUT requests:

public class ClaimDTO {

private final UUID id;

private final String dateOfIncident;

private final double amount;

private final List<Evidence> evidence;

[...]

26https://github.com/web-apis/riskmanagement-server

Proceedings of the 22nd European Conference on Pattern Languages of Programs

https://github.com/web-apis/riskmanagement-server
https://github.com/web-apis/riskmanagement-server

18 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

Fig. 6. Parameter Tree pattern with two variations, nested list and homogeneous, flat collection (iconic visualization)

}

@PUT

@Path("/{claimId}")

public ClaimDTO updateClaim(@PathParam("claimId") UUID claimId,

@NotNull @Valid Claim claim) {

boolean result = claims.update(claim);

if (!result) {

throw noSuchClaim.get();

}

return ClaimDTO.create(claim);

}

A sample GET request and instance of the ClaimDTO returned to the consumer looks like this:

GET http://localhost:8000/claims/0afeb849-6d63-40b6-b52f-21dee16fdda5

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 19

{"claim":

{"id":"0afeb849-6d63-40b6-b52f-21dee16fdda5",

"dateOfIncident":"2017-02-14",

"amount":2000.0,

"evidence":[],

"links":[{"uri":"http://localhost:8080/claims/0afeb849-6d63-40b6-b52f-21dee16fdda5",

"params":{"rel":"self"},

"type":null,

"rel":"self",

"uriBuilder":{"absolute":true},

"rels":["self"],

"title":null}]}}

The ClaimDTO with its attributes constitutes the Parameter Tree in the example. One of these at-
tributes (evidence) applies the pattern again. The resulting Parameter Tree is marshalled into a JSON
object that contains an array (which is empty in the above JSON/HTTP snippet).

Implementation hints and pitfalls to avoid. When applying and realizing this pattern, the following
advice should be taken into consideration (note that similar hints apply to the sibling patterns):

• “Be liberal in what you accept and conservative in what you do/sent” according to J. Postel’s ro-
bustness principle in RFC 76127 for network protocol implementations, which (like all principles)
should be applied with a sense of pragmatism in the given context [Allman 2011]; validate out-
going data according to a schema as/if defined by concrete syntax in use and validate incoming
data as lax as possible while still making sure that the request can be processed successfully.

• Specify the upper and lower boundaries, e.g., for arrays and elements of sequences; be explicit
about NULL values and optionality (just like when using more basic structures uch as→Atomic
Parameters).

• Resist the temptation to represent the real world exactly and completely (with all variations and
exceptions modeled explicitly) to minimize message verbosity; the general “if in doubt, leave it
out” rule for modeling (and other specification efforts) also applies to data modeling and interface
representation design. Consider using compression (as for instance supported in HTTP2). Avoid
overly deep nesting of data structures unless minimizing the number of calls has high priority
(e.g., in a mobile applications) and the API consumer is expected to follow domain model links to
reference data anyway (e.g., a customer is referenced in a contract or a purchase, and customer
details have to be displayed)

• Be reluctant to introduce fully generic data structures (e.g., key-value pairs to be built and in-
terpreted dynamically); the promised flexibility might backfire and cause difficulties in interface
comprehension by the developers that lead to additional debugging and testing efforts in the long
run. Flexibility comes at a price; domain-specific abstractions and names make tools such as code
completion and test automation more powerful.

• When dealing with an Object-Oriented (OO) domain model in the service implementation (back-
end), consider using an OO-to-XML mapper (but conduct a thorough proof-of-technology before
deciding for one strategically).

27https://tools.ietf.org/html/rfc761

Proceedings of the 22nd European Conference on Pattern Languages of Programs

https://tools.ietf.org/html/rfc761
https://tools.ietf.org/html/rfc761

20 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

While technically possible and suggested/considered by E. Wilde in a blog post2829, a Parameter
Tree contained in the request message of an HTTP GET is not supposed to have any effect on the
provider and is therefore useless according to the HTTP/1.1 specification (see a related Stack Overflow
discussion3031).

Discussion. Like the →Atomic Parameter List pattern, this solution balances the information need
of the client with the desire to minimize processing and communication overhead; it is more expressive
since it can be applied recursively. It is also more cohesive to due the presence of the single root. Learn-
ing and processing effort depend heavily on detailed design (e.g., depth and breadth of the tree) and
integration platform in use: For instance, in many frontend development Software Development Kits
(SDKs) such as those used to write mobile applications, JSON array processing is a native platform
capability that requires very little programming effort.

When being combined with the sibling pattern →Parameter Forest, highly expressive DTRs can be
created if complex or advanced information needs have to be satisfied. Such structures that might be
complex to process. Tree navigation comes in as an additional challenge; the breadth and the depth of
the data structures have to be decided carefully. Bloated data structures increase processing overhead
and might waste network capacity. For instance, data that is not needed by the client to perform its
task (e.g., to realize a certain user story) but still included in the data structure is unnecessarily sent
over the wire.

From a security standpoint, it is good that only a single data structure has to be analyzed and
possibly secured; however, its content may contain data with different protection needs (e.g., person
name and credit card number), which complicates the task of providing field-level security means
(e.g., attribute-based access control, encryption). Selective or declarative attribute-based access control
might be necessary to satisfy security requirements such as data privacy (confidentiality) and data
integrity (no tampering) as these requirements might differ by sub-tree or individual tree nodes.

Many additional data structures exist in XML schema, JSON schema and programming languages
(e.g., vectors, hash maps, and associative arrays); in order to minimize platform coupling, one should
stay away from proprietary and overly complex data structures (assuming explicit static typing here).

If the structure of the Parameter Tree (e.g., the amount and/or size of array entries and/or the number
of elements in record structures) increases beyond about five to seven top-level elements, consider split-
ting the tree structure and apply the→Parameter Forest pattern. You may also consider→Pagination
for selected sub-trees that have a repetitive structure; this might require refactoring the API into
several calls.

Known Uses. When JAX-RS is used to implement a message-based remote API, @Consumes and
@Produces annotations that refer to custom media types (e.g., nested JSON objects with a single root)
may indicate instances of this pattern.32

The JIRA Cloud REST APIs33 use this pattern in the requests of its issue-createIssue34 call; note
that it uses an →Atomic Parameter List for the corresponding responses. The JIRA Cloud REST API

28http://dret.typepad.com/dretblog/2007/10/http-get-with-m.html
29http://dret.typepad.com/dretblog/2007/10/http-get-with-m.html
30http://stackoverflow.com/questions/978061/http-get-with-request-body
31http://stackoverflow.com/questions/978061/http-get-with-request-body
32See this online tutorial for examples: http://www.mkyong.com/webservices/jax-rs/integrate-jackson-with-resteasy/. Note that
the tutorial does not feature all platform-specific design guidelines and recommended practices for REST (e.g., the URI should
not include an action code in verb form because this action code is already given by the HTTP methods such as GET and POST).
33https://docs.atlassian.com/jira/REST/cloud/
34https://docs.atlassian.com/jira/REST/cloud/#api/2/issue-createIssue

Proceedings of the 22nd European Conference on Pattern Languages of Programs

http://dret.typepad.com/dretblog/2007/10/http-get-with-m.html
http://stackoverflow.com/questions/978061/http-get-with-request-body
http://stackoverflow.com/questions/978061/http-get-with-request-body
https://docs.atlassian.com/jira/REST/cloud/
https://docs.atlassian.com/jira/REST/cloud/#api/2/issue-createIssue
http://dret.typepad.com/dretblog/2007/10/http-get-with-m.html
http://stackoverflow.com/questions/978061/http-get-with-request-body
http://www.mkyong.com/webservices/jax-rs/integrate-jackson-with-resteasy/
https://docs.atlassian.com/jira/REST/cloud/
https://docs.atlassian.com/jira/REST/cloud/#api/2/issue-createIssue

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 21

also uses concepts such as expansion and pagination, which are covered elsewhere in our pattern
language.

The API call GET collections/list in the Twitter REST API contains a single nested JSON object
called “objects” with subordinates that list users, timelines, etc.

The messages created with the Protocol Buffers35 data interchange format (originally developed by
Google and open sourced at GitHub36) can also be seen as instances of this pattern. The same holds
true for the complex types in Apache Avro37, which are serialized into JSON.

Related Patterns and References. This pattern has three siblings: →Atomic Parameter, →Atomic
Parameter List, →Parameter Forest, all refining Command Message, Document Message and Event
Message from [Hohpe and Woolf 2003]. An →Atomic Parameter List can be refactored into a Param-
eter Tree when it becomes too complex; a →Parameter Forest consists of multiple →Parameter Trees.
Content Enrichers and Content Filters as described in [Hohpe and Woolf 2003] operate on→Parameter
Trees.

A similar pattern called Single Message Argument38 appears in the Service Design Patterns book by
[Daigneau 2011] (making the point that parameter order should not be determined by the communi-
cations infrastructure).

Abstract Data Types are a closely related general concept in computer science.

4.4 Parameter Forest Pattern

also known as: Parameter Comb, Hybrid Parameter List

Context. An API endpoint such as a REST resource or WSDL/SOAP port has been defined and its
calls (e.g., HTTP methods, WSDL operations) have been specified initially. Requirements engineering
and business domain analysis efforts have unveiled that a rich set of information has to be exchanged
to process the API call (service operation/method) successfully.

Problem. How do you exchange rich repetitive or nested data between consumer and provider in a
message-based remote API?39 For instance, how do you exchange such deeply structured data between
message sender and message receiver in a SOA message exchange?

Forces. General forces for structural representation design were discussed on the category level,
and the forces section of the →Parameter Tree pattern covered additional forces that apply for more
complex data structures (assembled from atomic ones such as strings and integers, as well as other
complex ones):

• Interoperability
• Performance (latency in particular)
• Processing effort at development time and at runtime
• Learning effort and maintainability (versioning and backward compatibility in particular)
• Security is a concern of increasing importance as more data is exchanged (data privacy level,

attribute-based access control)

35https://developers.google.com/protocol-buffers/
36https://github.com/google/protobuf
37http://avro.apache.org/docs/current/spec.html
38http://www.servicedesignpatterns.com/WebServiceEvolution/SingleMessageArgument
39Another reason might be that you want to stress test the message processors in endpoints (JSON, XML, other).

Proceedings of the 22nd European Conference on Pattern Languages of Programs

https://developers.google.com/protocol-buffers/
https://github.com/google/protobuf
http://avro.apache.org/docs/current/spec.html
http://www.servicedesignpatterns.com/WebServiceEvolution/SingleMessageArgument
https://developers.google.com/protocol-buffers/
https://github.com/google/protobuf
http://avro.apache.org/docs/current/spec.html
http://www.servicedesignpatterns.com/WebServiceEvolution/SingleMessageArgument

22 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

Fig. 7. Parameter Forest pattern: message anatomy in iconic representation (here: response message consisting of three trees)

One could send several messages each sending a single complex parameter, as described in the
→Parameter Tree pattern, but this might still not be sufficient to satisfy the information need of the
message receiver.

Solution.

How it works. Send multiple simple and/or composite/aggregate data structure representations such
as tuples, arrays or other complex types defined in the concrete message exchange format that has been
decided upon (e.g., JSON or XML). Each of these structures qualify either as →Atomic Parameters or
as→Parameter Trees.

Figure 7 sketches an applications of the pattern (in a response message).

Example. The following interface demonstrates all four basic representation patterns using alias
names for the four patterns: Dot (for→Atomic Parameter), Dotted Line (for→Atomic Parameter List),
Bar (for→Parameter Tree), and Comb (for Parameter Forest):

@WebService

public interface IRPService {

boolean dotInDotOut(int singleScalarParameter);

int dottedLineInDotOut(String scalarParameter1, String scalarParameter2);

ResponseDTO barInBarOut(RequestDTO singleComplexParameter);

ResponseDTO combInBarOut(RequestDTO complexParameter1,

AnotherRequestDTO complexParameter2);

}

public class RequestDTO {

private float value;

private String unit;

[...]

}

public class AnotherRequestDTO {

private int id;

private NestedRequestDTO[] toothOfComb;

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 23

[...]

public class ResponseDTO {

private int id;

private String dataField1;

private String dataField2;

[...]

}

<xs:complexType name="combInBarOut">

<xs:sequence>

<xs:element minOccurs="0" name="arg0" type="tns:requestDTO"/>

<xs:element minOccurs="0" name="arg1" type="tns:anotherRequestDTO"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="requestDTO">

<xs:sequence>

<xs:element minOccurs="0" name="unit" type="xs:string"/>

<xs:element name="value" type="xs:float"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="anotherRequestDTO">

<xs:sequence>

<xs:element name="id" type="xs:int"/>

<xs:element maxOccurs="unbounded" minOccurs="0"

name="toothOfComb" nillable="true" type="tns:nestedRequestDTO"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="nestedRequestDTO">

<xs:sequence>

<xs:element minOccurs="0" name="key" type="xs:string"/>

<xs:element minOccurs="0" name="valie" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="responseDTO">

<xs:sequence>

<xs:element minOccurs="0" name="dataField1" type="xs:string"/>

<xs:element minOccurs="0" name="dataField2" type="xs:string"/>

<xs:element name="id" type="xs:int"/>

</xs:sequence>

</xs:complexType>

Proceedings of the 22nd European Conference on Pattern Languages of Programs

24 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

The in message of the combInBarOut call has two parameters each forming one “tooth” of the “comb”
(in the metaphor); both of these parameters are further structured into Data Transfer Objects (DTOs).

Implementation hints and pitfalls to avoid. Architects and developers that decide to apply and real-
ize this pattern should take the following advice into consideration (which picks up on that given for
→Parameter Trees):

• Limit the number of trees and leaves in the forest to a few (say three to five) unless minimizing
the number of calls has high priority (e.g., in certain mobile applications) and the API consumer
is expected to follow domain model links to reference data anyway (e.g., a customer is referenced
in a contract or a purchase, and customer details have to be displayed).40

• Just like for all nontrivial data structures (including standalone →Parameter Trees), provide
sample data and test cases, but also machine-readable specifications such as schemas (e.g., using
JSON Schema or XML Schema) to support regression testing and long-term maintenance.
• Be careful with optional “spikes” (i.e., trees degenerated to leaves or holes a.k.a. teeth in the comb

structure); particularly if placed somewhere in the middle (because such definitions complicate
the unmarshalling and security policy processing); in extreme cases, ambiguities and misinter-
pretations of the data may occur (leading to incorrect processing results and audit failures).

If the length of the Parameter Tree (or the size of the array/the number of elements in the record
structure) gets high, consider applying→Pagination.

Discussion. This pattern has similar forces resolution characteristics as its sibling pattern
→Parameter Tree, but takes the content structuring one step further by listing multiple scalars and/or
trees as message parameters. In some technologies and platforms such as JAW-WS, the applications
of these two patterns are hard to distinguish (depending on the way request and response messages
are realized in these platforms). Some readers might remember the rpc/encoded vs. (wrapped)

document/literal discussions in the early days of Web services [Zimmermann et al. 2003]: A wrapped
document/literal SOAP envelope qualifies as instance of →Parameter Tree (single root), while the
rpc/encoded style can also create in messages that contain Parameter Forests.

Depending on the breadth and depth of the trees in the forest (or “teeth” of the “comb” in the
metaphor used in the alias name), performance might be poor when applying this pattern (just like
its sibling→Parameter Tree); consider to simplify the structure via refactoring and/or applying perfor-
mance improvement concepts such as expansion as demonstrated by the JIRA Cloud REST API41 in
such cases.

Complex data structures are harder to maintain in public APIs than simple ones; once exposed,
existing contracts should not be broken to avoid an unnecessary coupling between consumers and
providers from a deployment and evolution perspective.

Complex data structures are also harder to secure against tampering and other security threats; on
the other hand, dedicated fields can be defined that contain signatures or public key information. If
this is done, the pattern can also be seen as a security enabler/facilitator, e.g., with one branch of a tree
(or a “tooth” of the comb) being dedicated to security information.

Known Uses. The response messages of the core banking integration solution described in [Brandner
et al. 2004] use this pattern by providing domain-specific complex types in XML Schema (XSD).

40Another reason might be that you want to stress test the message processors in endpoints (JSON, XML, other).
41https://docs.atlassian.com/jira/REST/cloud/

Proceedings of the 22nd European Conference on Pattern Languages of Programs

https://docs.atlassian.com/jira/REST/cloud/
https://docs.atlassian.com/jira/REST/cloud/

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 25

The Flickr App Garden42 uses combs in multiple calls, e.g., in the responses of its read access to
collections: flickr.collections.getInfo43. Note that the Flickr API and App Garden also use the
→Atomic Parameter List pattern, e.g. for Upload Photos44. The API supports multiple message ex-
change formats in its request and response messages, including SOAP, RESTful mime/media types,
and even XML-RPC.

The response structure used in the Twitter REST API also qualifies as a Parameter Forest, with one
tree containing an array of objects and a second one containing control information and metadata such
as cursors and page tokens (see→Pagination pattern).45

A message created with the Protocol Buffers46 data interchange format, originally developed by
Google and open sourced at GitHub47, that contains another message that is tagged with the keyword
repeated can also be seen as an instance of this pattern.

JSON API48 responses also qualify as instances of this pattern, with three mandatory members
(data, errors, meta) and three optional ones (jsonapi, links, included). Each one is a→Parameter Tree.

Related Patterns and References. This pattern refines Command Message and Document Message
from [Hohpe and Woolf 2003] . The pattern can utilize its sibling pattern →Parameter Tree to create
complex, deeply nested structures; however, some inhabitants of the forest (or “teeth” of the comb in
the alias name) might also be→Atomic Parameters (scalars).

A Parameter Forest can be refactored into a →Parameter Tree by introducing a single root when it
becomes too complex to prepare and process. If this happens at runtime rather than design time, a
Splitter can be used ([Hohpe and Woolf 2003]). As discussed already, a →Parameter Tree can not only
be seen as an alternative to a Parameter Forest, but also as a building block of instances of this pattern.

4.5 Pagination Pattern

also known as: Query with Partial Result Sets, Response Sequence

Context. API consumers often query (retrieve) data to display to the user or to be processed in other
applications. When processing such a consumer query, which may include query parameters, the API
provider often has to respond with a large data set that consists either of identically structured data
elements (e.g., rows fetched from a relational database or line items in a batch job executed by an
enterprise information system in the backend) or of heterogeneous data not adhering to a common
schema (e.g., parts of a document from a document-oriented NoSQL database such as MongoDB).

Problem. How can a provider progressively return large amounts of repetitive or inhomogeneous
data (in response to a consumer enquiry) if this data does not fit well in a single message?

Forces. Key design criteria when dealing with large amounts of repetitive response data include:

• Data set size and data access profile (user needs), especially number of data records required to
be available to a consumer (immediately and over time)

• Variability of data: Are all result elements identically structured? How often do data definitions
change?

42https://www.flickr.com/services/api/
43https://www.flickr.com/services/api/flickr.collections.getInfo.html
44https://www.flickr.com/services/api/upload.api.html
45https://dev.twitter.com/rest/collections/responses.
46https://developers.google.com/protocol-buffers/
47https://github.com/google/protobuf
48http://jsonapi.org/format/

Proceedings of the 22nd European Conference on Pattern Languages of Programs

https://www.flickr.com/services/api/
https://www.flickr.com/services/api/flickr.collections.getInfo.html
https://www.flickr.com/services/api/upload.api.html
https://developers.google.com/protocol-buffers/
https://github.com/google/protobuf
http://jsonapi.org/format/
https://www.flickr.com/services/api/
https://www.flickr.com/services/api/flickr.collections.getInfo.html
https://www.flickr.com/services/api/upload.api.html
https://dev.twitter.com/rest/collections/responses
https://developers.google.com/protocol-buffers/
https://github.com/google/protobuf
http://jsonapi.org/format/

26 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

• Memory available for a request (both on provider and on consumer side) and data currentness
requirements vs. change dynamics
• Network capabilities (server topology, intermediaries)
• Security and robustness/reliability concerns

Especially when returning data for human consumption, not all data may be needed immediately.
Network and endpoint processing capabilities should be used efficiently, but all results transferred and
processed accurately (consistently). A single large response message might be inefficient to exchange
and process.

Common text-based message exchange formats (e.g., expressively tagged XML, but also JSON) incur
high parsing cost and transfer data size due to verbosity and overhead of the textual representations
of the data. Some of this can be significantly reduced by using compact binary formats such as Apache
Avro, Protocol Buffers, etc. However, many of these formats require dedicated marshalling libraries
which may not be available in all consumer environments, for example Web browsers.

Underlying network transports such as IP networking transport data in packets, which leads to non-
linear transfer times with data size. For example, 1500 bytes fit into a single IP packet transmitted
over Ethernet.49 As soon as the data is one byte longer, two separate packages have to be transmitted
and coordinated on the receiver side.

Retrieving and encoding large data sets can incur high effort/cost on the provider side and can
open up an attack vector for a denial-of-service attack. Moreover, transferring large data sets across
a network can lead to interruptions as most networks are not guaranteed to be reliable, especially
cellular networks.

One could think of sending the entire large response data set in a single response message, but such
simple approach might waste endpoint and network capacity; it also does not scale well. Sending a data
query, which can result in a result set whose size is unknown in advance, can be too large to be pro-
cessed on the consumer/client or the provider/server side. Without mechanisms to limit such queries,
processing errors such as out-of-memory exceptions may occur and the client or the endpoint imple-
mentation may crash. Developers and API designers often underestimate the memory requirements
imposed by unlimited query contracts. These problems often go unnoticed until concurrent workload
is placed on the system and/or the database size increases. In shared environments, it is possible that
unlimited queries cannot be processed efficiently in parallel, which leads to similar performance, scal-
ability, and consistency issues – only combined with concurrent requests which are hard to debug and
analyze anyway.

Solution.

How it works. Divide large response data sets into manageable and easy-to-transmit chunks
(“pages”). Send only partial results in the first response message and use metadata and semantic links
(“hypermedia”) to inform the consumer how additional results can be obtained/retrieved incrementally.
The page size or limit, i.e., the number of data elements in a chunk, can be either a fixed size (which is
part of the service contract) or can be specified by the consumer as part of the request. Process some
or all partial responses on the consumer side iteratively as needed; agree on a request correlation
and intermediate/partial results termination policy (possibly requiring session state management).
Inform the client about the total and remaining number of elements in the result set. Provide optional
filtering capabilities. Allow consumers to request a random selection from the result set.

49Source: https://en.wikipedia.org/wiki/Maximum transmission unit

Proceedings of the 22nd European Conference on Pattern Languages of Programs

https://en.wikipedia.org/wiki/Maximum_transmission_unit

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 27

Fig. 8. Pagination: query and follow on request messages, response messages with filtered, partial result sets (pages)

Figure 8 visualizes a single instance of the pattern that results in a stateful conversation between
the communication parties. The server-side data storage (backend) is also shown; it is integrated with
the help of an Application Gateway here, one of the 65 Enterprise Integration Patterns (EIP) [Hohpe
and Woolf 2003].

The pattern has variants such as Offset-Based Pagination, Cursor-Based Pagination (also known as
Token-Based Pagination) and Time-Based Pagination, which differ in the way the consumer requests
partial results and navigates from chunk to chunk. For instance, the consumer by default may request
a certain “page number” to specify which data chunk the provider should return. Alternatively, the
consumer might be permitted to specify an offset, i.e., how many single elements to skip.

The default page-based Pagination and its Offset-Based Pagination variant are quite similar; in most
cases the basic pattern and its variant can be used interchangeably. Offset-Based Pagination is more
flexible when the number of requested results/the page size changes. If done incorrectly, enlarging the
page size while keeping the page index the same can cause missed entries. For example, when the
requested page size doubles, the page index must be halved to stay on the same page.

Cursor-Based Pagination and Time-Based Pagination are similiar in that they do not rely on an
element’s index. In Time-Based Pagination, the chunk size and the population of individual chunks
is driven by additional metadata to increase data currentness/liveness/freshness of the paginated re-
sponses.

Example. The insurance claim processing/reporting example50 illustrates the Pagination pattern in
its claims queries:

curl http://localhost:8080/claims?limit=10\&offset=0

50https://github.com/web-apis/riskmanagement-server

Proceedings of the 22nd European Conference on Pattern Languages of Programs

https://github.com/web-apis/riskmanagement-server
https://github.com/web-apis/riskmanagement-server

28 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

@GET

public ClaimsDTO listClaims(@DefaultValue("3") @QueryParam("limit") Integer limit,

@DefaultValue("0") @QueryParam("offset") Integer offset,

@QueryParam("orderBy") String orderBy) {

List<ClaimDTO> result = [...]

return new ClaimsDTO(limit, offset, claims.getSize(), orderBy, result);

}

Besides limits and offset parameters, the ClaimsDTO class also shows how HATEOAS-style link re-
lations [Allamaraju 2010] can be generated using Jersey annotations:

public class ClaimsDTO {

private final int limit, offset, size;

private final String orderBy;

private final List<ClaimDTO> claims;

public ClaimsDTO(int limit, int offset, int size, String orderBy,

List<ClaimDTO> claims) {

super();

this.limit = limit;

this.offset = offset;

this.size = size;

this.orderBy = orderBy;

this.claims = claims;

}

@InjectLinks({

@InjectLink(resource = ClaimManagement.class, method = "listClaims",

style = Style.ABSOLUTE,

bindings = {

@Binding(name = "offset", value = "${instance.offset}"),

@Binding(name = "orderBy", value = "${instance.orderBy}"),

@Binding(name = "limit", value = "${instance.limit}") }, rel = "self"),

@InjectLink(resource = ClaimManagement.class, method = "listClaims",

style = Style.ABSOLUTE,

condition = "${instance.offset + instance.limit < instance.size}",

bindings = {

@Binding(name = "offset", value = "${instance.offset + instance.limit}"),

@Binding(name = "orderBy", value = "${instance.orderBy}"),

@Binding(name = "limit", value = "${instance.limit}") }, rel = "next"),

@InjectLink(resource = ClaimManagement.class, method = "listClaims",

style = Style.ABSOLUTE,

condition = "${instance.offset - instance.limit >= 0}",

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 29

bindings = {

@Binding(name = "offset", value = "${instance.offset - instance.limit}"),

@Binding(name = "orderBy", value = "${instance.orderBy}"),

@Binding(name = "limit", value = "${instance.limit}") }, rel = "prev") })

private List<Uri> links;

[...]

}

The JSON API51 specification provides additional pagination examples.

Implementation hints and pitfalls to avoid. Architects and developers that decide to apply and real-
ize Pagination should take the following advice into consideration:

• The pattern should be used consistently throughout an API so that API consumers do not need to
learn multiple API styles and parameter sets. If consumers make incorrect assumptions because
of inconsistent use of the pattern, they will surprised by the results of their service invocations.

• The maximum page size should be carefully chosen, especially if the loaded data is hold in mem-
ory before it is written to the output message, which is the standard implementation in most
XML and JSON frameworks (session state management is required but difficult to scale and
maintain). The possibility of introducing a Discrete Web Data Stream as an alternative to, or
variant of, this pattern should be investigated.

• Pagination is of limited utility if the service implementation does not take advantage of it and
still fetches all data from the database, e.g., SQL LIMIT clauses should be used in the case of
relational database access.

• Pagination should be deterministic so that fetching the next page really fetches a different set
of records. SQL’s ORDER BY clauses are one possible way to achieve this (in server-side implemen-
tations of the pattern). If the data can change while the user is paging through it, offset-based
pagination can cause entries to be shown twice (if an entry is added before the current location)
or missed (if an entry is deleted before the current location). In such cases, a time- or token based
approach should be used to provide a robust view to the client.

• “Implement consistent pagination by providing links to additional pages that are timestamped
or versioned, such that you will never see duplicate results in pagination requests even if the
objects involved change.”52

• All platform-specific design guidance should be adhered to, e.g., proper URIs be defined in REST-
ful HTTP and hypermedia be used as the engine of application state (here: navigation within the
result set).53

Discussion. Delivering one page at a time allows the consumer to process a digestible amount of
data; a specification of which page to return facilitates remote navigation directly within the data set.
Less endpoint memory and network capacity are required to handle individual pages, although some
overhead is introduced because pagination management is required (see below).

The application of Pagination leads to additional design concerns:

51http://jsonapi.org/examples/#pagination
52Source: https://mathieu.fenniak.net/the-api-checklist/
53See for instance this online REST API tutorial http://www.restapitutorial.com/lessons/restfulresourcenaming.html.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

http://jsonapi.org/examples/#pagination
http://jsonapi.org/examples/#pagination
https://mathieu.fenniak.net/the-api-checklist/
http://www.restapitutorial.com/lessons/restfulresourcenaming.html

30 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

• Where, when, and how to define the page size (i.e., the number of data elements per page)? This
influences the chattiness of the API (in terms of number of messages and message size).
• How to order results, i.e., how to assign them to pages and how to arrange the partial results on

these pages?
• Where and how to store intermediate results, and for how long (deletion policy, timeouts)?
• How to deal with request repetition; for instance, do the initial and the subsequent requests have

to be idempotent to prevent certain errors and inconsistencies?
• How to correlate partial responses (with the original request, with the previous and the next

partial response)?

Additional design concerns include the caching policy (if any), the liveness (currentness) of results,
filtering, as well as query pre- and postprocessing (e.g., aggregations, counts, sums). Common data
access layer concerns (e.g., isolation level, locking in relational databases) come into play here as well
[Fowler 2002]. Consistency requirements differ by client type and use case: Is the client (end user)
aware of the pagination (i.e., virtual pagination vs. technical pagination)? The resolution of these con-
cerns is context specific; for instance, frontend representations of search results or product auctions
in vertical integration of public Web applications differ from bulk/batch master data replication in
backend-to-backend integration of enterprise information systems.

A correlation identification scheme is required so that the client can distinguish the partial results
of multiple queries in arriving response messages [Hohpe and Woolf 2003].

More than a single pattern is required to solve the pagination problem; future pattern mining and
writing work is required to address the above concerns.

A negative consequence is that pagination required more programming effort on the consumer side.
Sometimes this can be annoying for users (here: developers consuming the API), as they have to “click
through” even if there are a few results only, and they are not able to search the entire result set. All
functions requiring a full record set like searching don’t work (well) with Pagination or require extra
effort (such as intermediate data structures on the consumer side).

Known Uses. The roots of the pattern and its name go back to plain Web page design, e.g., when
displaying search or other query results on a series of linked Web pages. An early SOA and Web
services production references that uses Pagination is [Brandner et al. 2004]. While not being message-
based, remote JDBC applies sophisticated pagination concepts via its Result Set54 abstraction.

Many public Web APIs use Pagination; typically both Page-/Offset-Based and Cursor-Based Pagi-
nation are supported while the Time-based Pagination variant is less common. For example, Google’s
search results are paginated as well as GitHub’s Query API. Atlassian also features the concept of pag-
ination explicitly and prominently in its JIRA Cloud REST APIs55. Regarding correlation, the Twitter
REST API56 is an interesting example because the timeline often changes, simple page/offset therefore
does not work that well. Instead, a since id=12345 →Atomic Parameter can be used to only retrieve
tweets that are more recent than the specified id.

A Swiss software vendor specializing on the insurance industry describes two variants of Pagination
(page-based, offset-based) in its internal REST API Design Guidelines. Sorting and filtering of collec-
tion records is supported via operators that travel as HTTP parameters that contain control metadata.

54https://docs.oracle.com/javase/8/docs/api/java/sql/ResultSet.html
55https://docs.atlassian.com/jira/REST/cloud/
56https://dev.twitter.com/rest/public/timelines

Proceedings of the 22nd European Conference on Pattern Languages of Programs

https://docs.oracle.com/javase/8/docs/api/java/sql/ResultSet.html
https://docs.atlassian.com/jira/REST/cloud/
https://dev.twitter.com/rest/public/timelines
https://dev.twitter.com/rest/public/timelines
https://docs.oracle.com/javase/8/docs/api/java/sql/ResultSet.html
https://docs.atlassian.com/jira/REST/cloud/
https://dev.twitter.com/rest/public/timelines

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 31

An online API Stylebook website57 lists eleven Web APIs and/or API design guideline books/websites
that discuss Pagination.

Related Patterns and References. A paginated query typically defines an →Atomic Parameter List
for its in messages (containing the query parameters) and a →Parameter Tree or →Parameter Forest
for its out messages (i.e., the pages). A Message Sequence from [Hohpe and Woolf 2003] can be used
when a single large data element has to be split up. Finally, Incremental State Build-up58 in the cur-
rently emerging Conversation Patterns59 language has the inverse intent (how can a consumer create
a complex and/or large request message in multiple steps?), but a similar solution.

Chapter 10 of [Sturgeon 2016] covers the pagination types, discusses implementation approaches,
and presents examples in PHP; Chapter 8 in the RESTful Web Services Cookbook by [Allamaraju 2010]
deals with queries in an RESTful HTTP context.

The User Interface (UI) and Web design community has captured pagination patterns in/for different
contexts (i.e., not API design and management, but interaction design and information visualization).
See for example coverage of the topic at the Interaction Design Foundation60 and a UI Patterns web-
site61.

4.6 Pattern Implementation Examples

We have implemented the patterns presented in this paper in a self-contained Java API provider based
on Dropwizard and the Jetty Web server.62 The provider exposes REST resources via JAX-RS and
WSDL/SOAP Web services via JAX-WS; ones of the resources uses Pagination. Several illustrative
API consumers are available in Java and JavaScript. A subset of the code snippets and wire-level
data representations excerpts in the previous subsections stem from this sample implementation. The
sample implementation also features the realizations of multiple collaborating patterns.

5. ADDITIONAL CANDIDATE PATTERNS (ACROSS CATEGORIES)

The five structure patterns presented in Section 4 only provide an initial foundation for the broad
domain of the design and evolution of message-based remote APIs (which is the full scope of our future
pattern language). More patterns are required to complete the envisioned pattern language. High
priority candidates from our pattern backlog are listed in Table I.

Table I. : Overview of Candidate Patterns

Category
Foundations Vertical Integration Horizontal Integration Service Contract

Public API Community API Solution-Internal API

Identification Contract First Emergent Service Model Event Storming
Static Domain Analysis Dynamic Process

Analysis
Business Artifact

Analysis

57http://apistylebook.com/design/topics/collection-pagination
58http://www.enterpriseintegrationpatterns.com/patterns/conversation/IncrementalStateBuild.html
59http://www.enterpriseintegrationpatterns.com/patterns/conversation/
60https://www.interaction-design.org/literature/article/split-the-contents-of-a-website-with-the-pagination-design-pattern
61http://ui-patterns.com/patterns/Pagination
62The source code and related documentation is available at https://github.com/web-apis/riskmanagement-server.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

http://apistylebook.com/design/topics/collection-pagination
http://www.enterpriseintegrationpatterns.com/patterns/conversation/IncrementalStateBuild.html
http://www.enterpriseintegrationpatterns.com/patterns/conversation/
https://www.interaction-design.org/literature/article/split-the-contents-of-a-website-with-the-pagination-design-pattern
http://ui-patterns.com/patterns/Pagination
http://ui-patterns.com/patterns/Pagination
http://apistylebook.com/design/topics/collection-pagination
http://www.enterpriseintegrationpatterns.com/patterns/conversation/IncrementalStateBuild.html
http://www.enterpriseintegrationpatterns.com/patterns/conversation/
https://www.interaction-design.org/literature/article/split-the-contents-of-a-website-with-the-pagination-design-pattern
http://ui-patterns.com/patterns/Pagination
https://github.com/web-apis/riskmanagement-server

32 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

Table I. : Overview of Candidate Patterns

Category
Responsibility Master Data Resource Transactional Data

Resource
Command Service

Embedded Reference
Data

Linked Reference Data Reference Data Lookup

Business Activity
Service

Query Service Validation Service

Information Service Periodic Report Status Check

Id Parameter Link Parameter Entity Parameter
Metadata Parameter Control Metadata,

Provenance Metadata
Annotated Parameter

Collection

Quality API Key Rate Limit Service Level Agreement
Request Bundle Conditional Request Wish List/Template

Context Representation Metering and Billing Error Reporting

Evolution Semantic Versioning Version Identifier Two in Production
Eternal/Limited

Lifetime Guarantee
Aggressive Deprecation Experimental Preview

Management not actively worked on

These candidate patterns were mined from own system integration projects, 18 public Web APIs
(including Facebook, GitHub, Google Calendar, Heroku, Instagram, JIRA, LinkedIn, Microsoft Graph,
OpenWeatherMap, PayPal, Twitter, and Youtube) and supporting literature through a series of pat-
terns ”problem jams”, ”forces jams” and ”known uses jams” in which we asked participants questions
like:

• Candidate pattern (problem) identification:
– Which (architecture) design problems recur in service design and evolution and can be de-

scribed in a platform-independent fashion?
– Which patterns do you expect a pattern language for message-based remote APIs (e.g.,

RESTful HTTP, WSDL/SOAP Web services; no remote objects) to feature, in topic areas such
as message structure (syntax), message content (semantics), and message delivery quality?

• Forces (quality attributes, other decision drivers) elicitation:
– What are the main architectural decision drivers ([Zdun et al. 2013]) in API design and

consumption?
– Can you name your top three quality attributes, possibly with some refinements such as

quality attribute utility trees [Barbacci et al. 2002]?
– Which forces should the pattern language focus on?
– What are typical conflicts between these quality attributes and/or forces?
– Which tradeoffs should be discussed?

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 33

• Known uses and pattern sources scoping:
– Which pattern languages and APIs qualify as role models and sources of examples?
– Which best practices documents (white papers) for RESTful HTTP and Web services design

should be mined to generalize platform-specific into platform-independent advice?

We first answered these questions ourselves, followed by sessions with members of our professional and
academic networks. As part of our future work, we may continue these pattern problems, forces, and
known uses jams and review additional APIs such as those provided by cloud providers and enterprise
information systems to identify additional known uses, forces, and future pattern candidates.

In the remainder of this section, we introduce selected candidate patterns from three more cate-
gories: responsibility, quality, and evolution.

5.1 Responsibility Category

API design does not only deal with the syntax of the request and response messages. API designers also
need to address semantic concerns and find an appropriate business granularity for each API call. Sim-
plistic statements such as ”always prefer fine-grained over coarse-grained contracts” are insufficient
or even irresponsible as requirements and project contexts differ [Pautasso et al. 2017; Zimmermann
et al. 2004]; the architectural role and responsibility of each API call has to be specified.63

To satisfy the need for reusable knowledge about such content semantics and granularity, we dis-
tinguish between different types of service responsibilities and data access. For instance, master data
does not change often (and has many incoming references) in contrast to transactional data that is cre-
ated and changed frequently. This observation leads to patterns such as →Master Data Resource and
→Transactional Data Resource. Transactional data often references master data (e.g., orders and con-
tracts reference customers), and the decomposition mechanisms follow different patterns depending
on project contexts and requirements: →Embedded Reference Data, →Linked Reference Data. When
reference data is not embedded but linked, a →Reference Data Lookup service can be used to obtain
the reference data. References data may include dynamic and complex master data, but also rather
static, unstructured data such as country codes, currency information (e.g., in geographical informa-
tion systems and enterprise applications).

Once entity-level Create, Read, Update, Delete (CRUD) operations are available, these can be com-
posed into processing services of different types: we distinguish a data pushing →Command Ser-
vice (that has specializations such as →Information Service and →Business Activity Service) from a
data pulling→Query Service (with specializations/variants→Periodic Report and→Status Check) and
→Validation Service (with variant→Business Rule (Enforcement) Service; the validation may pertain
to the payload of the request message and/or the current internal state of the server). These services
may or may not cause a server-internal state transition when being invoked; this is an important
architectural decision to be made during API design (for each API call). Commands typically change
server state, while queries and validations do not. The amount of server-side processing caused by the
service invocations differs by service type as well.

5.2 Quality Category

The patterns in this category discuss how to achieve a certain level of quality of the offered services
(in API design and usage). An API provider has to perform the balancing act of providing a high-
quality service while at the same time having to use its available resources economically. The resulting
compromise is expressed in a provider’s →Service Level Agreement by the targeted service objectives

63The category name is inspired by the Responsibility-Driven Design method, CRC cards and the Single Responsibility Principle.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

34 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

and associated penalties. If the service is paid for or follows a ”freemium” model, the provider needs to
come up with one or more rate plans and pricing schemes; service usage has to be monitored. The most
common variations are a simple flat-rate subscription or a more elaborate consumption-based pricing
scheme, which is explored in the→Metering and Billing pattern.

A provider needs to identify the calls it receives to decide if a call actually originates from a customer
or some unknown client. An →API Key that identifies the client is a minimal, or even minimalistic,
solution to this problem. If security is an issue,→API Keys are not enough and should be complemented
by a proper authentication mechanism such as OAuth 2.0 (which are out of our scope).

Having identified its clients, an authenticated client could use too many resources, negatively im-
pacting the service for other clients. To limit excessive usage, a →Rate Limit can be employed to re-
strain overusing clients.

Basic representation patterns such as →Atomic Parameter and →Parameter Tree deal with struc-
turing the ‘in‘ and ‘out‘ parameters in request and response messages in message-based remote APIs.
Providers may offer rather rich data contracts in their responses; not all consumers might need all of
this information all the time. A→Wish List and a→Wish Template allow the client to request only the
attributes in a response data set that it is interested in. A →Conditional Request can be used to save
endpoint processing power and→Rate Limit usage. Building a singular→Request Bundle of multiple
requests further reduces latency and bandwidth usage.

The requests exchanged between client and provider often span different networks and transporta-
tion technologies. To make sure that no control- or meta information (such as a →Rate Limit) is lost
or needs to be reformatted on the way, a→Context Representation can be established. Finally, if some-
thing goes wrong, the provider needs to think about→Error Reporting to communicate any information
about incorrect requests or internal server errors.

5.3 Evolution (Lifecycle Management) Category

The evolution category deals with lifecycle management concerns. This includes aspects like versioning
and deprecation and how these concerns are reflected in the API design. Patterns in this category often
need to balance the following forces: compatibility and developer experience, decoupling of the life-cycle
of the consumer and provider, impact of changes on the consumer, freedom of the provider to change
the API, and maintenance efforts on both the consumer and provider side.

Different patterns are concerned with the management of the compatibility of an API, which is ex-
pressed by its versioning strategy. The →Version Identifier pattern introduces an explicit version tag
in the exchanged messages. Consumers and providers need to check whether they can parse and inter-
pret this particular version and fail if that is not the case. While this allows for semantic changes in
the API without risking that partners misinterpret messages, an explicit→Version Identifier imposes
frequent updates to consumers because they need to support the new version. A →Version Identifier
can for example be derived by using →Semantic Versioning, which uses a three-digit version number
that expresses the change impact (major, minor and fix version).

A converse approach is described in the→Eternal Lifetime Guarantee pattern: The provider promises
to make the API available forever and make updates either in another API or by making backwards
compatible changes only. This shifts all burden and associated effort from the consumer to the provider.
Because this extreme form of a compatibility guarantee is often not applicable in practice, a weakened
guarantee is provided in the→Limited Lifetime Guarantee pattern, in which the provider promises to
provide the API in its current or compatible form for a specified time. For example, consumers can rely
for two years on an API, but also have to plan to migrate to the newest API version during this period.
Another pattern that balances the effort for the provider and consumer more evenly is the →Two in
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Interface Representation Patterns — Crafting and Consuming Message-Based Remote APIs • 35

Production pattern. Instead of specifying a fixed time-frame, this patterns limits the number of API
versions that need to be maintained by the provider in parallel.

If not the whole API needs to be migrated but a finer-grained approach is better suited to the problem
and project context, a pattern to consider is→Aggressive Deprecation. By issuing deprecation notices,
the API provider can signal that certain capabilities of an API will be removed at a specified date or
with the next version.

Versioning and API Management can be a hassle, which is too complicated especially if an API
is not yet stable or released. The →Experimental Preview pattern describes a possibility to exempt
development previews, beta versions etc. from these restrictions and show early versions to possible
users without making any guarantees and reserving the right to revoke access to them at any time..

6. SUMMARY AND OUTLOOK

In this paper, we presented first versions of four plus one representation patterns for message-based re-
mote API design and evolution, Atomic Parameter, Atomic Parameter List, Parameter Tree, Parameter
Forest, and Pagination. We also outlined a number of additional pattern candidates in seven categories.
We have collected these patterns and candidate patterns in literature reviews and interactions with
practicing architects and developers. We are currently in the process of documenting them incremen-
tally and iteratively; about 40 pattern descriptions have already been drafted and partially reviewed.
The pattern mining continues at the time of writing.

ACKNOWLEDGMENTS

We want to thank our shepherds, students and members of our professional networks who helped
to investigate public Web APIs, donated candidate forces and patterns, and reviewed early drafts of
pattern candidates and language structure: Thomas Brand, Nicolas Dipner, Hugo Sereno Ferreira,
Alex Gfeller, Gregor Hohpe, Sebnem Kaslack, Oliver Kopp, Jochen Küster, Frank Leymann, Frank
Müller, Cesare Pautasso, Peter Sommerlad, and Veith Zäch.

REFERENCES

Subbu Allamaraju. 2010. RESTful Web Services Cookbook. O’Reilly Media, Inc, Sebastopol.
Eric Allman. 2011. The Robustness Principle Reconsidered. Queue 9, 6, Article 40 (June 2011), 8 pages.
DOI:http://dx.doi.org/10.1145/1989748.1999945

Jim Arlow and Ila Neustadt. 2004. Enterprise patterns and MDA: building better software with archetype patterns and UML.
Addison-Wesley Professional.

Mario R Barbacci, Robert J Ellison, Anthony Lattanze, Judith Stafford, Charles B Weinstock, and William Wood. 2002. Quality
attribute workshops. CMU/SEI-2003-TR-016. Software Engineering Institute, Carne- gie Mellon University, Pittsburgh, PA.

Alistair P. Barros, Marlon Dumas, and Arthur H. M. ter Hofstede. 2005. Service Interaction Patterns. In Business Pro-
cess Management, 3rd International Conference, BPM 2005, Nancy, France, September 5-8, 2005, Proceedings. 302–318.
DOI:http://dx.doi.org/10.1007/11538394 20

Michael Brandner, Michael Craes, Frank Oellermann, and Olaf Zimmermann. 2004. Web services-oriented architecture in pro-
duction in the finance industry. Informatik-Spektrum 27, 2 (2004), 136–145. DOI:http://dx.doi.org/10.1007/s00287-004-0380-2

Frank Buschmann, Kevlin Henney, and Douglas Schmidt. 2007. Pattern-Oriented Software Architecture: A Pattern Language
for Distributed Computing. John Wiley & Sons.

Robert Daigneau. 2011. Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and RESTful Web Services.
Addison-Wesley Professional. http://www.servicedesignpatterns.com/

Eric Evans. 2003. Domain-Driven Design: Tacking Complexity In the Heart of Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter Arbitter. 2014. Cloud Computing Patterns:
Fundamentals to Design, Build, and Manage Cloud Applications. Springer Publishing Company, Incorporated.

Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

http://dx.doi.org/10.1145/1989748.1999945
http://dx.doi.org/10.1007/11538394_20
http://dx.doi.org/10.1007/s00287-004-0380-2
http://www.servicedesignpatterns.com/

36 • O. Zimmermann, M. Stocker, D. Lübke, U. Zdun

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmermann. 2016. Service Cutter: A Systematic Approach to
Service Decomposition. In European Conference on Service-Oriented and Cloud Computing. Springer, 185–200.

David C. Hay. 1996. Data Model Patterns: Conventions of Thought. Dorset House Pub. https://books.google.ch/books?id=
a7VQAAAAYAAJ

Carsten Hentrich and Uwe Zdun. 2011. Process-Driven SOA: Patterns for Aligning Business and IT. Auerbach Publications,
Boston, MA, USA.

Gregor Hohpe. 2007. Conversation Patterns: Interactions between Loosely Coupled Services. In Proceedings of the 12th Euro-
pean Conference on Pattern Languages of Programs (EuroPLoP). Irsee, Germany.

Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

IERC. 2017. IoT European Research Cluster. (2017). http://www.internet-of-things-research.eu/
Klaus Julisch, Christophe Suter, Thomas Woitalla, and Olaf Zimmermann. 2011. Compliance by design–Bridging the chasm

between auditors and IT architects. Computers & Security 30, 6 (2011), 410–426.
James Lewis and Martin Fowler. 2014. Microservices. https://martinfowler.com/articles/microservices.html/, (2014).
Frank Leymann. 2016. ESOCC Keynote. (2016). http://esocc2016.eu/wp-content/uploads/2016/04/

Leymann-Keynote-ESOCC-2016.pdf
Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. 2016. A Pattern Language for RESTful Conversations. In Proceedings of

the 21st European Conference on Pattern Languages of Programs (EuroPLoP). Irsee, Germany.
Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai M. Josuttis. 2017. Microservices in Practice,

Part 1: Reality Check and Service Design. IEEE Software 34, 1 (2017), 91–98. DOI:http://dx.doi.org/10.1109/MS.2017.24
Richardson. 2017. Microservices Patterns. http://microservices.io/patterns/microservices, (2017).
Arnon Rotem-Gal-Oz. 2012. SOA Patterns. Manning.
Phil Sturgeon. 2016. Build APIs you won’t hate. LeanPub, https://leanpub.com/.
Markus Voelter, Michael Kircher, and Uwe Zdun. 2004. Remoting Patterns - Foundations of Enterprise, Internet, and Realtime

Distributed Object Middleware. J. Wiley & Sons, Hoboken, NJ, USA.
Uwe Zdun, Rafael Capilla, Huy Tran, and Olaf Zimmermann. 2013. Sustainable Architectural Design Decisions. IEEE Software

30, 6 (2013), 46–53.
Olaf Zimmermann, Pal Krogdahl, and Clive Gee. 2004. Elements of service-oriented analysis and design. IBM developerWorks

(2004).
Olaf Zimmermann, Mark Tomlinson, and Stefan Peuser. 2003. Perspectives on Web Services: Applying SOAP, WSDL and UDDI

to Real-World Projects. Springer Science & Business Media.
Olaf Zimmermann, Uwe Zdun, Thomas Gschwind, and Frank Leymann. 2008. Combining Pattern Languages and Reusable

Architectural Decision Models into a Comprehensive and Comprehensible Design Method. In Proc. of WICSA. 157–166.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

https://books.google.ch/books?id=a7VQAAAAYAAJ
https://books.google.ch/books?id=a7VQAAAAYAAJ
http://www.internet-of-things-research.eu/
https://martinfowler.com/articles/microservices.html/
http://esocc2016.eu/wp-content/uploads/2016/04/Leymann-Keynote-ESOCC-2016.pdf
http://esocc2016.eu/wp-content/uploads/2016/04/Leymann-Keynote-ESOCC-2016.pdf
http://dx.doi.org/10.1109/MS.2017.24
http://microservices.io/patterns/microservices

	Introduction
	Relations to other Patterns and Pattern Languages
	Language Scope and Organization
	Motivation
	Basic Abstractions and Concepts (Language Foundations)
	Language Organization

	Structural Representation Patterns
	Atomic Parameter Pattern
	Context
	Problem
	Forces
	Solution
	Discussion
	Known Uses
	Related Patterns and References

	Atomic Parameter List Pattern
	Context
	Problem
	Forces
	Solution
	Discussion
	Known Uses
	Related Patterns and References

	Parameter Tree Pattern
	Context
	Problem
	Forces
	Solution
	Discussion
	Known Uses
	Related Patterns and References

	Parameter Forest Pattern
	Context
	Problem
	Forces
	Solution
	Discussion
	Known Uses
	Related Patterns and References

	Pagination Pattern
	Context
	Problem
	Forces
	Solution
	Discussion
	Known Uses
	Related Patterns and References

	Pattern Implementation Examples

	Additional Candidate Patterns (Across Categories)
	Responsibility Category
	Quality Category
	Evolution (Lifecycle Management) Category

	Summary and Outlook

