
Towards a Framework for Detecting Containment
Violations in Service Choreography

Faiz UL Muram, Muhammad Atif Javed, Huy Tran and Uwe Zdun
University of Vienna, Faculty of Computer Science,

Software Architecture Research Group, Vienna, Austria

Email: faiz.ulmuram|muhammad.atif.javed|huy.tran|uwe.zdun@univie.ac.at

Abstract—In the design and development of service oriented
applications, service choreography models describe the interac-
tions between services at different abstraction levels. These mod-
els are usually created and evolved independently by different
stakeholders and consequently deviations occur among models
such as message not received and incompatible behaviours.
It is therefore crucial to detect and resolve the deviations
before actual implementation and deployment is undertaken. This
paper presents a containment checking approach that verifies
whether the behaviour (or interactions) described by the local
choreography models collectively encompasses those specified
in the global model. Previous studies have not considered the
containment relationship between global and local choreography
models. The proposed approach performs automated transfor-
mation of service choreography models into formal descriptions
and consistency constraints for leveraging the analytical powers
of model checking techniques for the containment verification.
The approach provides more informative and comprehensive
feedbacks to the stakeholders for identification of containment
problems and their resolutions. The applicability of the approach
is demonstrated through use case scenarios of ATM machine,
travel booking and order processing systems.

Keywords-containment checking; choreography; web services;
business process modelling; formal methods.

I. INTRODUCTION

In choreography-based service-oriented systems, a typical

design and development scenario is that the global model

(aka interaction model) is created by business analysts to

agree on interaction scenarios from a global perspective. The

global model will then be refined during detailed design

phase into the public visible behaviour and hence forms

a local choreography model (aka interconnection model) of

each participant. The local choreography model shows an ab-

straction of orchestration internal actions/activities. The local

choreography models often deviate from the global model due

to the involvement of different stakeholders and independent

evolutions. Hence, detecting model inconsistencies in early

phases of the service development life cycle is crucial to elim-

inate as many anomalies as possible before service-oriented

systems are actually implemented and deployed.

The literature discusses two possible ways to alleviate such

problems: (i) the local models (i.e., representing implementa-

tion of individual services) can be generated from the global

model [1]; (ii) the global and orchestration models can be

created separately and then checked against each other [2].

The former strategy, although helpful to certain extent, did

not prevent the overriding of manual changes that are made

to complete the models. The later strategy focuses on the

assessment of model inconsistencies that require formal de-

scriptions and consistency constraints of the models. However,

it is a challenging task to accurately and correctly express

such formal descriptions and consistency constraints due to

the substantial amount of knowledge and specialized training

required for the underlying formalisms and formal techniques.

In addition, the produced results are rather cryptic and verbose;

they are difficult to interpret and understand for software

architects/developers who often have limited knowledge of the

underlying formal techniques [3].

In this paper, we proposed a containment checking approach

that verifies whether the behaviour (or interactions) described

in the local choreography models collectively encompasses

those specified in the global model. This improves the quality

and correctness of the service oriented systems. To date,

however, previous studies have not considered the containment

relationship between global and local choreography mod-

els. Specifically, we have performed automated translation

of global choreography model into consistency constraints

i.e., linear temporal logic (LTL) [4] and local choreography

models into formal descriptions i.e., SMV language (sym-

bolic model verifier); whereas the NuSMV (new symbolic

model verifier) model checker [5] is used that supports the

verification of large systems up to 1020 states. This way, our

approach helps to alleviate the burden of manually encoding

consistency constraints, and therefore, increase productivity

and avoid potential translation errors. In order to facilitate

better feedback, we integrate the counterexample analysis

method for locating the cause(s) of containment violations and

presenting the appropriate suggestions to stakeholders for their

resolutions. Moreover, we investigated the performance of the

proposed approach on use case scenarios of ATM machine,

travel booking and order processing systems. This is done to

ensure whether the stakeholders are supported to verify the

containment relationship during their development tasks.

The rest of this paper is organized as follows: Section II

motivates the necessity of containment checking in service

choreographies and explains a running example modelled

using business process model and notation (BPMN) diagrams.

Section III describes a novel approach for assessment of

containment violations in service choreographies and recom-

mendations for their resolutions. Section IV describes the

performance evaluation of the proposed approach. Section V

presents the related work. Section VI concludes the paper.

II. MOTIVATION AND RUNNING EXAMPLE

Service choreography is a set of interrelated service interac-

tions at the high-level of abstraction, which represents message

exchanges, interaction rules and agreements between web

service partners. Figure 1 shows a global model of the Travel
Booking application modelled using the BPMN 2.0 choreog-

raphy notation [6]. The sender and receiver of a message are

collapsed into one choreography activity; the unshaded and

gray shaded bands represent the sender (initiating participant)

and the receiver (non-initiating participant) of a message,

respectively. The collaboration in travel booking choreography

process involves six partners/participants, namely traveller,

travel agency, acquirer, airline, hotel and rent a car agencies.

Traveller

Travel Agency

Booking Request

Travel Agency

Acquirer

Authorize Credit Card

Travel Agency

Traveller
Travel Itinerary

Acquirer

Travel Agency

 Failure

Travel Agency

Rent a Car

Rental Request

Acquirer

Travel Agency

Approved

Travel Agency

Hotel

Reserve Room

Travel Agency

Airline

Book Flight

Rent a Car

Travel Agency

Vehicle Assign

Hotel

Travel Agency

Confirm
Reservation

Airline

Travel Agency

Purchase
Confirmation

Airline

Travel Agency

e-Ticket

Is card valid?

No Yes

Travel Agency

Traveller

Unauthorized
Credit Card

Traveller

Travel Agency

Accept Offer

Travel Agency

Traveller
Booking Status

Check
availability?

Yes

No

Travel Agency

Traveller
Not Available

Traveller

Travel Agency

Credit Details

Fig. 1: Travel Booking System: Global Choreography Model

The local choreography models of all participants (i.e.,

pools) involved in the travel booking system are shown in

Figure 2. The message flow indicates the exchange of a

message between two participants; whereas the sequence flow

reflects the order in which activities are performed within

a pool. It is crucial to sequence the choreography activities

in such a way that the participants involved in the service

choreography know when they are responsible for initiat-

ing the interactions. For instance, the BookingRequest and

CreditDetails messages in the global model meant to be

received in a sequential order (i.e., CreditDetails message

follows BookingRequest message), as shown in Figure 1.

However, the local model of the travel agency participant

shown in Figure 2 specifies that the CreditDetails mes-

sage precedes BookingRequest message. Furthermore, the

sequential order of PurchaseConfirmation and e-Ticket

messages is replaced by the parallel order using fork and

join in the local choreography models, in particularly travel
agency and airline. Please note that the containment checking

not only deals with the missing participant or interaction

A
ir

li
n

e

T
ra

v
e
l

A
g
e
n

c
y

R
e
n
t

a
C

a
r

H
o
te

l

A
c
q
u

ir
e
r

T
ra

v
e
ll

e
r

 Booking Request

 Authorize Credit Card

Reserve Room

Booking Request

 Booking Status

 Travel Itinerary

Unauthorized Credit Card

 Booking Status

Unauthorized Credit Card

Purchase Confirmation

Failure

Approved

 Rental RequestBook Flight

Purchase Confirmation

Confirm Reservation

Vehicle Assign

 Travel Itinerary

 Failure

 Approved

Authorize Credit Card

Book Flight

e-Ticket

Accept Offer

Confirm Reservation Reserve Room

 Rental Request Vehicle Assign

Is card valid?

Yes

No

 Credit Details

Check availability? Yes

Not AvailableCredit Details

Not Available

Accept Offer

No

e-Ticket

Fig. 2: Travel Booking System: Local Choreography Models

but also misplacement of elements among the models. The

undesired containment violations would cause severe prob-

lems; for example, improper identification of services and

their corresponding service providers, and therefore affect the

delivery of services. In order to eliminate such problems,

containment checking shall be performed.

III. APPROACH

In this section, we address the problem of checking whether

the message exchange behaviour (or interactions) described

in the joint local choreography models encompasses those

specified in the global model. Formally, the containment

relationship between service choreographies is defined in such

a way that (GCM �→ LT L) ≺ (LCMi = (LCM1...LCMn) �→
SMV), where GCM denotes the global choreography model

that is mapped to LTL formulas and LCMi denotes a joint set

of local choreography models that is mapped to SMV descrip-

tions. An overview of our approach is shown in Figure 3. In

the following sections, we describe each step of our approach.

Global
Choreography

Model

Local
Choreography

Models

Transformation of
Global Model

Transformation of
Local Models

LTL Formulas

SMV
Descriptions

NuSMV Model
Checkingbusiness analyst /

software architect

Counterexample
Analysis

Containment
Resultsdesigner /

developer

Fig. 3: Overview of the Containment Checking Approach

A. Generating LTL Constraints from GCM
The section is concerned with the automated transformation

of global choreography model (GCM) into formal consistency

constraints. From the containment checking perspective, the

control flow relations between choreographic activities or

interactions need to be represented in an appropriate formalism

so that the execution order of interactions will become the

consistency constraints for all local choreography models. In

this context, a certain execution path is derived from the global

model for describing the temporal relationships among the

elements (e.g., choreography tasks, senders and receivers of

the interactions, and guard conditions) using LTL [4]. The

behavioural properties of the model can be easily expressed

in LTL. It is widely-used in formal verification tools [7].

LTL extends the classical propositional logic (¬, ∧, ∨, →)

with several future temporal operators such as F (“Finally”),

X (“neXt”), G (“Globally”) and U (“Until”), and past tem-

poral operators such as H (“Historically”), O (“Once”) and

Y (“Yesterday”). This research focuses on both future and

past temporal operators. The exclusive decision and merge

gateways are implemented as “(a ∧¬b)∨ (¬a ∧ b)” instead

of using logical “xor” operator. This is because, xor operator

yields true not only when one of its operands is true but

also when the odd numbers (i.e., n ≥ 3) of the operands are

true [8]. The generated formulas for different path constructs

i.e., fork and join are enclosed by the G and H operators to

express that all possible execution scenarios of the formulas

are satisfied.

Algorithm 1 Translate GCM into LTL Formulas

1: procedure TRANSLATE(GCM)
2: Q ← ∅ � Q is the queue of non-visited interactions
3: V ← ∅ � V is the queue of visited interactions
4: Q ← Q ∪ get_start_events(e)
5: for all i ∈ Q do
6: V ← V ∪ {i}
7: Q ← Q \ {i}
8: generate_ltl_code(i)
9: Isucceding_interactions ← get_interaction(i)

10: for all j ∈ Isucceding_interactions do
11: if (j �∈V) then
12: Q ← Q ∪ { j}
13: extracts interaction information;
14: binds input values and generates ltl formu-

las using the following templates:
15: for all (i ≥ 0) ∧ V ← V ∪ {i} do
16: if i ∈ AND− Join ∧ i ∈ Ipreceding_interactions_rec then
17: ���

18: (LTLSPEC G(«i» & «i» -> F « j») & H(« j»
-> O «i» & «i»))

19: ���

The construction of LTL formulas for containment checking

is a highly knowledge intensive endeavour. In this context, the

LTL-based transformation rules are defined to formally repre-

sent the constructs of GCM. Therefore, the input GCM is auto-

matically translated into corresponding LTL formulas using the

LTL-based transformation rules. In our formalisation, we map

a choreography interaction as a 3-tuple 〈participant_name,

msg,snd/rec〉; where (i) participant_name indicates the cor-

responding participant; (ii) msg represents a message that

describes communication contents between two participants;

and (iii) snd and rec describe the sending and receiving

actions of the corresponding message, respectively. However,

the initiating participants of the choreography activities must

have been involved in the previous activity (excluding first

activity).

The Eclipse Xtend1 framework is leveraged to trans-

late the GCM into LTL formulas. Specifically, the breadth-

first search algorithm is extended with three helper func-

tions, namely get_events(e), get_interaction(i) and

generate_ltl_code(i), as shown in Algorithm 1. The func-

tion get_events(e) returns a set of start events. A start event

indicates the starting point of a choreography. Hence, it has no

incoming sequence flow. The function get_interaction(i)
extract all interactions i. The choreography tasks along with

the senders and receivers of the messages, as well as the

message exchange dependencies (i.e., sequence flows or gate-

ways) are extracted. An interaction j is called “succeeding

interaction” of i if there is a control flow going from i to j.
Thus, a set of succeeding choreography activities of i can be

achieved by following all of its outgoing control flows.

The generate_ltl_code(i) function is responsible for

generating LTL formulas for each construct of a GCM. The

pair of triple apostrophes (���) represents the string templates

that are used for code generation based on Eclipse Xtend

framework. However, a pair of guillemots (« and ») is

used to represent the parametrised place-holders that will be

bound to and substituted with the actual values extracted

from the input model elements by the Xtend engine. The

generate_ltl_code(i) function is not realized as a single

function but rather a polymorphism of multiple functions. That

is, depending on the type of the input interaction i, a particular

function for generating LTL formulas for that interaction will

be invoked. The LTL-based transformation rules for Parallel

Join is presented in Algorithm 1. In particular, LTL formula

for Parallel Join requires visited predecessors that are joined

using the logical AND operator (“&”) and offered to Parallel

Join. The Parallel Join cannot execute until all incoming flows

have been received. Table I summarises the constructs of

choreography models along with their informal descriptions

extracted from the BPMN 2.0 specification [6] and LTL-based

transformation rules that constitutes the interactions between

participants.

B. Generating SMV Descriptions from LCMi
This section concerns the generation of formal SMV de-

scriptions from the local choreography models (LCMi). To

define the interactions within a BPMN 2.0 collaboration dia-

gram, 2-tuple 〈participant_name, task_snd/task_rec〉 is used

to represent the participant name and send task/receive task.

The mapping of (LCMi) into SMV descriptions is attained

using an extended version of the breadth-first search, as

shown in Algorithm 2. Similar to GCM, three helper functions

1See https://eclipse.org/xtend

TABLE I: LTL-Based Transformation Rules for BPMN Global Choreography Model

BPMN Choreography Modelling Notation LTL-Based Transformation Rules

Sequence: (i) The sending action of a choreography
task must exist before its receiving action. (ii) The
initiator of a choreography task (excluding first ac-
tivity) can not send a message to the receiver until
it has received the prior message.

Participant A

Participant B

Task1

Participant B

Participant C

Task2

1)G (ParticipantA_Task1_Snd -> F (ParticipantB_

Task1_Rec))& H (ParticipantB_Task1_Rec -> O (

ParticipantA_Task1_Snd))

2)F (ParticipantB_Task2_Snd)-> (! ParticipantB_

Task2_Snd U (ParticipantB_Task1_Rec))

Parallel Fork: The execution of a Parallel Fork
(AND-Split) leads to the parallel execution of subse-
quent choreography tasks. The initiators of all chore-
ography tasks immediately following the Parallel
Fork must be same as the common sender or receiver
of choreography tasks preceding the gateway.

Participant A

Participant B

Task2

Participant A

Participant B

Task1

G (Fork -> F (ParticipantA_Task1_Snd &

ParticipantA_Task2_Snd))& H ((ParticipantA

_Task1_Snd & ParticipantA_Task2_Snd)-> O Fork)

Parallel Join: The concurrent execution of multi-
ple interactions lead to the execution of a Parallel
Join (AND-Join) gateway. However, all incoming
branches have to be completed before the execution
of a Parallel Join.

Participant C

Participant B

Task2

Participant A

Participant B

Task1 G ((ParticipantB_Task1_Rec & ParticipantB_Task2

_Rec)-> F Join)& H ((Join)-> O (ParticipantB

_Task1_Rec & ParticipantB_Task2_Rec))

Exclusive Decision: The execution of an Exclusive
Decision (XOR-Split) is spawn in two or more
branches, which branch is actually traversed depends
on the evaluation of the guards on the outgoing
flows.

Participant B

Participant C

Task3

Participant B

Participant A

Task2

PB

Decision ?
Yes No

(ExclusiveDecision -> F ((ParticipantB_Task2

_Snd & ! ParticipantB_Task3_Snd)| (! Particip

antB_Task2_Snd & ParticipantB_Task3_Snd)))

Exclusive Merge: The execution of one of the
choreography receiving action among a set of al-
ternative receiving actions will lead to the execution
of an Exclusive Merge (XOR-Join).

Participant A

Participant B

Task2

Participant A

Participant B

Task1 (G (ParticipantB_Task1_Rec & ! ParticipantB

_Task2_Rec)| (! ParticipantB_Task1_Rec &

ParticipantB_Task2_Rec)-> F ExclusiveMerge)

Inclusive Decision: An Inclusive Decision gateway
(OR-Split) represents the execution of one or more
alternative branches. The traversal of branches de-
pend on the evaluation of the guard conditions. In
particular, all sequence flows with a true evaluation
will be traversed.

Participant B

Participant C

Task2

Participant B

Participant C

Task1

Decision?
Condition1 Condition2

G ((InclusiveDecision & Condition1)-> F (

ParticipantB_Task1_Snd))| G ((InclusiveDecision

& Condition2)-> F (ParticipantB_Task2_Snd))

Inclusive Merge: The alternative but also parallel
execution of two or more active interactions lead to
the execution of the Inclusive Merge gateway (OR-
Join).

Participant C

Participant B

Task2

Participant A

Participant B

Task1 (G (ParticipantB_Task1_Rec | ParticipantB_Task2

_Rec)-> F InclusiveMerge)

Event-Based: The execution of an Event-based gate-
way is spawn in two or more branches, which branch
is actually traversed depends on a specific Event that
occur. Usually, the receipt of a message or timeout
determines the path that will be taken rather than the
evaluation of the guards.

Participant B

Participant A

Task2

Participant B

Participant A

Task1

Decision?
G (Event-basedgateway & rec_msg1)

-> F (ParticipantB_Task1_Snd & (!

ParticipantB_Task2_Snd))| G (Event-basedgateway

& rec_msg2)-> F ((! ParticipantB_Task1_Snd)&

ParticipantB_Task2_Snd)

are created, namely get_events(el), get_interaction(i)
and generate_smv_code(i). The function get_events(el)
returns a set of start events concerning the input LCMi.
The function get_interaction(i) extracts all interactions

such as choreography tasks, control nodes and connecting

edges. In particular, given a certain interaction i, the outgoing

interactions (within pool) can be attained using the function

get_interaction(i). An interaction j is called “outgoing

interaction” of i if there is a sequence flow going from i to

j. In a similar way, communication between two participants

(pools) can be achieved. An interaction j is called “receiving

interaction” of i if there is a message flow going from i to

j. Thus, a set of receiving actions of choreography tasks and

outgoing interactions of i can be achieved by following all of

its message flows and outgoing sequence flows, respectively.

The function generate_smv_code(i) is responsible for

generating the SMV description for each interaction within

the LCMi. In particular, the aforementioned 2-tuple, control

node or event will be represented by a boolean state variable

in the section VAR and its corresponding state transitions

will be described in the section ASSIGN by a combination

of two functions given in NuSMV. The init() is used for

assigning the initial state of a variable and next() is used for

defining the transition to the next state. The function next()

is often combined with the branching structure “case/esac”

for selecting one of many possible choices. The state is

initially set to false. However, if the incoming condition(s)

are satisfied, it is changed to a true state (see Line 22 in

Algorithm 2). The incoming condition(s) would be a guard

expression and/or finishing of the preceding interaction(s).

The interaction’s state shall be switched back to false after

finishing the execution (see Line 23 in Algorithm 2). Note

Algorithm 2 Generating SMV Descriptions from LCMi
1: procedure TRANSLATE(LCMi)
2: Q ← ∅ � Q is the queue of non-visited interactions
3: V ← ∅ � V is the queue of visited interactions
4: Q ← Q ∪ get_start_events(el)
5: for all i ∈ Q do
6: V ← V ∪ {i}
7: Q ← Q \ {i}
8: generate_smv_code(i)
9: Ioutgoing_interactions ← get_interaction(i)

10: Ireceiving_interactions ← get_interaction(i)
11: for all j ∈ Isucceding_interactions| j ∈ Ireceiving_interactions do
12: if (j �∈V) then
13: Q ← Q ∪ { j}
14: extracts interaction information;
15: binds input values and generates SMV descrip-

tions using the following templates:
16:

17: VAR
18: «i» : boolean; � State variable declaration
19: ASSIGN
20: init(«i») := «interaction-initial-state»
21: next(«i») := case
22: «incoming-condition(s)» : TRUE;
23: «i» : FALSE;
24: esac;
25:

that the generate_smv_code(i) is not realised as a single

function but rather a polymorphism of multiple functions.

That is, depending on the type of the input interaction i, a

particular function for generating SMV descriptions for that

node type will be invoked. The subsequent sections discuss the

rules for generating SMV descriptions for each node type that

constitutes the individual function generate_smv_code(i).

1) Task, Fork, Join, End Event and Start Event: This

section focuses on a set of elements that are triggered with

respect to their incoming flows and are formalised rather

similar in SMV. Listing 1 illustrates the translation of Task,

Fork, Join and End Event into SMV descriptions based on

the translation template shown in Algorithm 2. If an interaction

has multiple incoming flows, the logical AND operator (“&”) is

used to represent the implicit “and-join” guard for all tokens

passing through the incoming flows. Note that none Start

Event is a special event that denotes the starting point of a

BPMN model. It does not have any incoming flows. Thus,

each none Start Event is represented by a boolean state

variable whose initial state would be assigned as true.

1 VAR
2 «interaction» : boolean;
3 ASSIGN
4 init(«interaction») := FALSE;
5 next(«interaction») := case
6 «incoming_1» & «incoming_2» & ... & «incoming_n» : TRUE;
7 «interaction» : FALSE;
8 esac;

Listing 1: Generic Rules for Generation SMV Descriptions

2) Branching: The Exclusive Decision, Inclusive

Decision, and Event-based gateways are the branching

constructs in BPMN specification [6]. The execution of the

Exclusive Decision will trigger one of the outgoing flows

according to the corresponding guard conditions. The ini-

tiating participant of the messages that follow the gateway

controls the decision. Figure 4 shows the rules for mapping

an Exclusive Decision into SMV descriptions whose guard

conditions is abstracted as boolean variables (Line 7). We

introduce a temporary variable named post_decision_i in

which i is an incrementally generated number for exclusively

choosing one of many alternative sequence flows. The variable

post_decision_i has an enumerated type which includes a

normal state “undetermined” and the values corresponding

to the sequence flows (Line 9). The choice among alternative

sequence flows is made using a “case/esac” construct (Line

16–20). In case none of the guard conditions is true, the

state transitions defined in Figure 4 will be stuck. This is

precise, but undesired behaviour. To avoid this stuck a “Default

Condition” for one of the outgoing sequence flows can be

used. The default condition is a complement of other guard

conditions and will be chosen when all other conditions turn

out to be false.

Pa
rti

ci
pa

nt
A

Pa
rti

ci
pa

nt
B Decision?

Yes

No

Yes

No

Task1

Task2

Task3

Task1

Task2

Task3

Decision?

1 VAR
2 «ExclusiveDecision»: boolean;
3 «ParticipantB_Task1_Rec» : boolean;
4 ...
5 «ParticipantB_Task3_Snd» : boolean;
6 -- abstraction of boolean expressions
7 «guard_1» : boolean;
8 -- temporary variable
9 «post_decision_i» : {undetermined, «out_yes», «out_no»};
10 ASSIGN
11 init(«ExclusiveDecision») := FALSE;
12 next(«ExclusiveDecision») := case
13 «ExclusiveDecision» : FALSE;
14 esac;
15 ... -- the initializations of guards are omitted
16 init(«post_decision_i») := undetermined;
17 next(«post_decision_i») := case
18 «ExclusiveDecision» & «guard_1» : «out_yes»;
19 «ExclusiveDecision» & «guard_2» : «out_no»;
20 TRUE : undetermined;
21 esac;
22 init(«ParticipantB_Task2_Snd») := FALSE;
23 next(«ParticipantB_Task2_Snd») := case
24 «post_decision_i» = «guard_1» : TRUE;
25 «ParticipantB_Task2_Snd» : FALSE;
26 esac;
27 init(«ParticipantB_Task3_Snd») := FALSE;
28 next(«ParticipantB_Task3_Snd») := case
29 «post_decision_i» = «guard_2» : TRUE;
30 «ParticipantB_Task3_Snd» : FALSE;
31 esac;

Fig. 4: SMV Generation Rules for Exclusive Decision

An Inclusive Decision represents the execution of any

number of branches instead of one or all. The translation rules

of Inclusive Decision are similar to Exclusive Deci-

sion; however, a “true” evaluation of one guard condition

does not exclude the evaluation of other guard conditions. All

sequence flows with a “true” evaluation will be traversed by

a token. The Event-based gateway represents an alternative

branching point where the decision is made by two or more

events; for instance, the choice for an outgoing sequence flow

is made when an event will occur on the particular outgoing

flow. When execution of process arrives at the particular point,

the execution stops until either the message event or the

timer event occurs. However, the occurrence of first event

will immediately continue its outgoing sequence flow by

disabling the other paths. In this case, a boolean variable

wait_event is used to indicate that the outgoing flows can not

be proceed until an event is occurred. The SMV descriptions

of Inclusive Decision and Event-based gateways can

be derived from the Exclusive Decision. The complete

translation details cannot be presented due to space reasons

and similar technical details.

3) Exclusive Merge and Inclusive Merge: An Exclusive

Merge brings together multiple alternative interactions and

exclusively accepts one among them. If an Exclusive

Merge has two incoming interactions, a straightforward

naive encoding strategy is to use the xor operator

“ParticipantB_Task1_Rec xor ParticipantB_Task2_Rec” to

express the incoming guard condition of an Exclusive

Merge. However, this strategy cannot be effectively

generalised for Exclusive Merge that has more than

two incoming sequence flows because the operator “xor”

with n operands (n ≥ 3) yields true not only when one

of its operands is true but also when the odd numbers

of the operands are true [8]. Exclusive Merge is

therefore implemented by its equivalent but longer form

“(ParticipantB_Task1_Rec ∧ ¬ParticipantB_Task2_Rec) ∨
(¬ParticipantB_Task1_Rec∧ParticipantB_Task2_Rec)”.

Pa
rti

ci
pa

nt
B

Pa
rti

ci
pa

nt
A

Task3

Task1

Task2

Task1

Task3

Task2

1 VAR
2 «ParticipantB_Task1_Rec» : boolean;
3 «ExclusiveMerge» : boolean;
4 «merge_flag_i» : {undetermined, «in_t1», «in_t2»}
5 ASSIGN
6 ... -- the initializations and transitions of tasks are omitted
7 init(«merge_flag_i») := undetermined;
8 next(«merge_flag_i»):= case
9 («merge_flag_i» = undetermined) & («ParticipantB_Task1_Rec»

| «ParticipantB_Task2_Rec»): {«in_t1», «in_t2»};
10 TRUE : undetermined;
11 esac;
12 init(«ExclusiveMerge») := FALSE;
13 next(«ExclusiveMerge») := case
14 «ParticipantB_Task1_Rec» & ! «ParticipantB_Task2_Rec» :

TRUE;
15 ! «ParticipantB_Task1_Rec» & «ParticipantB_Task2_Rec» :

TRUE;
16 «merge_flag_i» = «in_t1» | «merge_flag_i» = «in_t2» : TRUE

;
17 «ExclusiveMerge» : FALSE;
18 esac;

Fig. 5: SMV Generation Rules for Exclusive Merge

In order to avoid name conflicts, a temporary variable

merge_flag_i is introduced for each Exclusive Merge,

where i represents an incrementally generated number to avoid

name conflicts, as shown in Figure 5. This temporary variable

has an enumerated type that comprises “undetermined” and

“in_tx”. The former denotes the normal state; whereas the

latter represent the state values that correspond to the incoming

sequence flows (x = 1, ...,n). As we see in Line 9, one branch

will be non-deterministically and exclusively selected from the

activated branches. That is, in order to verify in case some

k (k ≤ n) incoming interactions are simultaneously activated,

NuSMV will bind merge_flag_i to a certain value “in_tx”

in the first place, to “undetermined” in the next transition,

then to another value “in_ty” in the subsequent transition,

and so forth. In combination with the branching construct

“case/esac” (Line 12–18), we can see that the Exclusive

Merge is activated if and only if either one of the incoming

interactions is true or the variable merge_flag_i is assigned

to a state value “in_tx”, where x = 1, ...,n.

An Inclusive Merge has similar semantics to Exclu-

sive Merge; however, it brings together not only multiple

alternatives but also parallel interactions and accepts one or

more among them. In the case of Inclusive Merge, we use

the logical OR operator (“|”) to express the incoming guard

condition instead of xor operator.

C. Containment Checking and Dealing with Violations

This section is devoted to the identification of containment

problems and their resolutions. The containment violations

may occur due to a variety of reasons, such as (i) missing

participant or interaction – a participant or interactions exist

in the global model may not exist in the local choreography

models; (ii) misplacement of elements – the local choreog-

raphy model contains interactions with participant specified

in the global choreography model but with different struc-

ture. To alleviate containment checking problems, an efficient

analysis of the generated counterexample is supported in the

proposed approach. The automated counterexample analysis

not only detects the actual causes of the unsatisfied contain-

ment relationship but also provides appropriate guidelines to

resolve the particular violations. Therefore, the output trace

file is scrutinised and parsed to determine the unsatisfied

LTL formulas. The extracted formulas and SMV descriptions

together with LTL-based transformation rules are traversed to

find out why the elements of the global choreography model

are not matched with their corresponding local choreography

counterparts. This is performed in two steps. Firstly, the

missing element cause (either one, multiple, or all elements

could be missing) is detected and the countermeasure (i.e.,

insert the missing element at a particular position in the model)

is suggested. Secondly, the sequence of elements from the

SMV descriptions is scrutinised and corresponding elements

(e.g., tasks, gateways and so on) causing the violation of the

LTL formulas are located (i.e., misplacement of elements)

and relevant countermeasures (i.e., add, delete or replace the

element after or before the particular element) are suggested.

The counterexample analysis results are presented in Fig-

ure 6. The gray boxes display the actual causes and potential

countermeasures of the unsatisfied formulas. Furthermore, the

elements responsible for causing the containment violation are

highlighted in red; whereas the elements that satisfied the

rule are highlighted in green. In this case, the containment

relationship is not satisfied due to the violation of sequential

rules. The receiving rule for the RequestBooking and Cred-

itDetails messages is violated because traveller invokes the

travel agency by sending RequestBooking message before

CreditDetails message; however, travel agency receives

the CreditDetails message before the RequestBooking

message. This implies that either receiving event of one

or both tasks are misplaced. It can be resolved by putting

the CreditDetails receive task after the RequestBooking

receive task in the local choreography model of travel agency.

T
ra

v
e
l

A
g
e
n

c
y

T
ra

v
e
ll

e
r

A
ir

li
n

e

 Booking Request

 Authorize Credit Card

Reserve Room

Booking Request

 Booking Status

 Travel Itinerary

Unauthorized Credit Card

 Booking Status

Unauthorized Credit CardFailure

Approved

 Rental RequestBook Flight

Purchase Confirmation

Confirm Reservation

Vehicle Assign

 Travel Itinerary

Accept Offer

 Credit Details

Check availability? Yes

Not Available Credit Details

Not Available

Accept Offer

No

e-Ticket

Purchase Confirmation

Book Flight

e-Ticket

Cause: (1) “TravelAgency_BookingRequest_Rec” does not follow “Traveller_CreditDetails_Snd”.
(2) “TravelAgency_CreditDetails_Rec” does not exist before “TravelAgency_BookingRequest_Rec”.
Countermeasures: (1) Swap the receiving task of “BookingRequest” message and “CreditDetails”.
(2) Add “CreditDetails_Rec” task after “BookingRequest_Rec” task in TravelAgency.

Cause: (1) “TravelAgency_PurchaseConfirmation_Rec”
does not exist before “TravelAgency_e-Ticket_Rec”.
Countermeasures: (1) Add “e-Ticket_Rec” task after
“PurchaseConfirmation_Rec” task in TravelAgency.
(2) Remove AND-Split and AND-Join.

Cause: (1) “Airline_e-Ticket_Snd” does not follow
“Airline_PurchaseConfirmation_Snd”.
Countermeasures: (1) Add “e-Ticket_Snd” task after
“PurchaseConfirmation_Snd” task in Airline.
(2) Remove AND-Split and AND-Join.

Fig. 6: Visual Support for Understanding and Resolving Con-

tainment Violations

Similarly, the primary root causes of other violations are

due to the execution of PurchaseConfirmation and e-

Ticket messages in parallel order instead of sequential order.

These violations can be resolved by deleting forks and joins,

and putting the e-Ticket message after the PurchaseC-

onfirmation message in the local choreography models of

travel agency and airline. Once the causes are located, they

are eliminated by updating the responsible elements of the

choreography models and rerunning the containment checking

process yielded no further violations. Without the counterex-

ample analysis, users would have to study and investigate the

syntax and semantics of the trace file in order to determine

the relationship between the execution traces and the service

choreography models, and then locate the corresponding vi-

olation within models, meaning that the complex matching

between the variables and states in the counterexample and

the elements of the choreography models is performed man-

ually. This is especially cumbersome for those having limited

knowledge of the underlying formal techniques.

IV. EVALUATION

We implement containment checking approach and con-

duct a preliminary evaluation of its performance. The main

idea is to validate whether the proposed approach performs

reasonably for typical models used in industry on typical

workstations used by developers. The workstation used for the

performance evaluation is running under Windows 8 on a 2.6
GHz i5 processor with 8GB of memory using NuSMV 2.5.4.

The evaluation is conducted through three behaviour models

of different sizes and complexity that are taken from our

previous industry projects. One of them is the Travel Booking
(TB) mentioned in the previous section. The other two are

Automated Teller Machine (ATM) and Order Processing (OP).

We omit the details of OP and ATM scenarios due to space

limitations. Table II shows the complexity of the input BPMN

model (GCM = global choreography model, LCMi = local

choreography models) with respect to their elements including

tasks, gateways, and edges (sequence and message flows).

TABLE II: Model Size and Translation Time
Input size OP TB ATM

GCM LCMi GCM LCMi GCM LCMi
Gateways 7 19 7 28 8 19
Interactions 16 32 17 34 22 44
Edges 25 72 27 83 32 89
Total Elements 48 123 51 145 62 152
Model Loading (ms) 2.351±0. 59 3.387±0. 65 3.215±0. 39 4.984±0.27 3.278±0. 14 5.620±0. 87
Translation Time (ms) 0.315±0.19 0.514±0. 98 0.541±0.05 0.784±0.44 0.596±0.22 0.861±0.07

Table III shows the total execution time of three models,

reachable states and violated formulas. The evaluation re-

sults indicate that the containment checking time spent by

NuSMV for the TB process is longer than the ATM and

OP. This is because NuSMV found violations between the

formal descriptions of the LCMi and LTL formulas of the

GCM and thus NuSMV needed to generate a counterexample

for violated LTL formula. The evaluation results demonstrate

that our approach efficiently translates service choreography

models into formal descriptions and consistency constraints

for supporting containment checking. In particular, all realistic

scenarios are handled in a total time around a second which is

quite reasonable for practical purposes. Our analysis and eval-

uation results based on the aforementioned use case scenarios

show the feasibility of our approach for larger systems.

TABLE III: Performance Evaluation Results
Containment checking OP TB ATM
Verification Time (ms) 265.0±11.952 816.25±7.440 463.75±13.025
Total Time (ms) 271.567 825.744 474.607
Violated Formulas 0 out of 34 4 out of 38 0 out of 47
Reachable States 5 (2ˆ2.32193) 1.87027e+015 (2^50.7322) 128 (2ˆ7)
Total States 2.15163e+023(2ˆ77.5098) 7.3584e+039 (2^132.435) 1.42772e+029(2ˆ96.8496)

V. RELATED WORK

Zaha et al. [1] propose the algorithms for generating local

models (i.e., provider behaviour) from global models and for

verifying the local enforceability of global models. Yu et al.

[9] propose an approach for the specification of properties

called PROPOLS and for verification of BPEL schemas. The

approach first translated the BPEL schemas and PROPOLS

into Finite State Automatas (FSAs), then compares these

FSAs. However, the approach does not deal with the service

choreographies. Kwantes et al. [2] present the translation of the

BPMN collaboration diagram into an LTL formula to check

conformance with local workflows as BPMN process diagrams

using GROOVE tool. However, the translation has been done

manually.

Poizat and Salaün [10] introduce the LOTOS NT process

algebra formalism for BPMN choreographies to validate the

realizability between models using the CADP state space ex-

ploration tools. In particular, the interactions produced by the

global choreography model and communicating peer processes

are compared. Fu et al. [11] present a formal specification,

verification, and analysis tool for web service compositions

based on guarded automata (GA). BPEL specifications are

translated to GA and then mapped to Promela, the input

language of the SPIN model checker. Solaiman et al. [12]

developed a BPMNverifier tool that automatically converts

BPMN choreography models into Promela. However, the LTL

properties are manually created or otherwise retrieved for the

generated Promela models; they are stored in a repository.

These approaches require a considerable amount of knowledge

of temporal logics properties.

In the course of our earlier research, we have investigated

the containment checking problem for activity diagrams [13]

and sequence diagrams [14]. In addition to the model checking

based techniques, a lightweight graph-based approach has

been proposed that verifies missing nodes, missing transitive

links, and missing cycles [15]. This research focuses on the

containment relationship between global and local choreogra-

phy models, which has not been considered in the literature.

The proposed approach not only provides formalisation for

automated transformation of global and local choreography

models into consistency constraints and formal descriptions,

but also gives more informative and comprehensive feedbacks

to developers/architects for identifying the causes of contain-

ment violations and their resolutions.

VI. CONCLUSION

Motivated by the need to support the containment checking

in service choreographies, we introduced a set of transforma-

tion rules to facilitate the automated transformation of global

and local choreography models into LTL constraints and SMV

descriptions, respectively. This provides efficient means for

automated generation of consistency constraints and formal

descriptions for large and complex choreography models. The

results produced by the model checkers (i.e., counterexamples)

are rather cryptic and verbose, and thus, tracking the entire

evidence is difficult for architects/developers. In order to

mitigate the need for strong background of formal techniques,

the counterexample analysis mechanism is integrated that

provides more informative and comprehensive feedbacks to the

stakeholders for identification of containment problems and

their resolutions. To illustrate the applicability of the proposed

approach, we realized use case scenarios of ATM machine,

travel booking and order processing systems; the performance

evaluation is also carried out in particular cases. By analysing

the evaluation results we found that our approach efficiently

translates choreography models into formal specifications and

works well for larger realistic scenarios. In the future, we

plan to conduct controlled experiments with participants from

industry and academia to empirically validate whether the

proposed approach significantly supports human analysts in

identification and resolution of containment inconsistencies.

ACKNOWLEDGMENT

This work is supported by the Wiener Wissenschafts-

, Forschungs- und Technologiefonds (WWTF), Grant No.

ICT12-001 and University of Vienna.

REFERENCES

[1] J. M. Zaha, M. Dumas, A. t. Hofstede, A. Barros, and G. Decker,
“Service interaction modeling: Bridging global and local views,” in
Proceedings of the 10th IEEE International Enterprise Distributed
Object Computing Conference, ser. EDOC ’06, Hong Kong, China,
2006, pp. 45–55.

[2] P. M. Kwantes, P. V. Gorp, J. Kleijn, and A. Rensink, “Towards
compliance verification between global and local process models,” in
Proceedings of the 8th International Conference on Graph Transforma-
tion, ser. STAF ’15, L’Aquila, Italy, 2015, pp. 221–236.

[3] F. U. Muram, H. Tran, and U. Zdun, “Counterexample analysis for
supporting containment checking of business process models,” in Busi-
ness Process Management Workshops - BPM 2015, 13th International
Workshops, Innsbruck, Austria, August 31 - September 3, 2015, Revised
Papers, 2015, pp. 515–528.

[4] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science, ser. SFCS ’77. IEEE Computer
Society, 1977, pp. 46–57.

[5] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: A
new symbolic model verifier,” in Proceedings of the 11th International
Conference on Computer Aided Verification, ser. CAV ’99, Trento, Italy,
1999, pp. 495–499.

[6] Object Management Group (OMG), “Business Process Model and
Notation (BPMN) Version 2.0.” http://www.omg.org/spec/BPMN/2.0,
last accessed: May 8, 2017.

[7] K. Y. Rozier, “Survey: Linear temporal logic symbolic model checking,”
Comput. Sci. Rev., vol. 5, no. 2, pp. 163–203, May 2011.

[8] F. Pelletier, “Ternary Exclusive Or,” Logic Journal of the Igpl, vol. 16,
no. 1, pp. 75–83, 2008.

[9] J. Yu, T. P. Manh, J. Han, Y. Jin, Y. Han, and J. Wang, “Pattern
based property specification and verification for service composition,”
in Proceedings of the 7th International Conference on Web Information
Systems, ser. WISE’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
156–168.

[10] P. Poizat and G. Salaün, “Checking the realizability of bpmn 2.0
choreographies,” in Proceedings of the 27th Annual ACM Symposium
on Applied Computing, ser. SAC ’12, Trento, Italy, 2012, pp. 1927–
1934.

[11] X. Fu, T. Bultan, and J. Su, “WSAT: A tool for formal analysis of
web services,” in Proceedings of the 16th International Conference on
Computer Aided Verification, ser. CAV ’04, Boston, MA, USA„ 2004,
pp. 510–514.

[12] E. Solaiman, W. Sun, and C. Molina-Jimenez, “A tool for the automatic
verification of bpmn choreographies,” in Proceedings of the 2015
IEEE International Conference on Services Computing, ser. SCC ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 728–735.

[13] F. U. Muram, H. Tran, and U. Zdun, “Automated Mapping of UML
Activity Diagrams to Formal Specifications for Supporting Containment
Checking,” in 11th Int’l Workshop on Formal Engineering approaches
to Software Components and Architectures (FESCA), Grenoble, France,
Apr. 2014, pp. 93–107.

[14] ——, “A model checking based approach for containment checking
of uml sequence diagrams,” in 23rd Asia-Pacific Software Engineering
Conference (APSEC). Hamilton, New Zealand: IEEE Computer
Society, 2016.

[15] H. Tran, F. Ul Muram, and U. Zdun, “A graph-based approach for
containment checking of behavior models of software systems,” in
Proceedings of the 2015 IEEE 19th International Enterprise Distributed
Object Computing Conference, ser. EDOC ’15, Adelaide, SA, Australia,
2015, pp. 84–93.

