
A containerized analytics framework for data and
compute-intensive pipeline applications

Yuriy Kaniovskyi
University of Vienna

Vienna, Austria
Yuriy.Kaniovskyi@

univie.ac.at

Martin Koehler
University of Manchester

Manchester, UK
Martin.Koehler@
manchester.ac.uk

Siegfried Benkner
University of Vienna

Vienna, Austria
Siegfried.Benkner@

univie.ac.at

ABSTRACT
The joint effort of scientific collaborations and the expanding
data market creates demand for high-performance and data-
intensive analytics infrastructures that can exploit the po-
tential of heterogeneous multi-core architectures with dy-
namic and scalable execution environments. Contemporary
approaches focus on developing efficient parallel applica-
tion models, but lack the flexibility of efficiently integrat-
ing and utilizing native or accelerator-based code. In this
work, we illustrate a novel approach on mending this short-
coming and offering seamless application integration into a
highly versatile execution infrastructure. The centerpiece
is a framework of containerized execution units and man-
agement thereof for satisfying the diverse requirements of
data analytics pipelines and its stages. Containers not only
ease distribution and deployment of applications, but, more
importantly enable an efficient synthesis of different stage
implementation variants aimed towards exploiting hetero-
geneous computing resources. Consequently, this approach
allows the infrastructure to utilize mainstream data and
compute-intensive techniques and paradigms to achieve the
goal of efficient pipeline execution. We present our approach
in form of a requirement analysis, a multi-tier architecture
description, and deployment scenarios based on our current
prototype implementation.

CCS Concepts
•Computer systems organization → n-tier architec-
tures; •Information systems → Data analytics;
•Software and its engineering → Application specific
development environments;

Keywords
Data Analytics, Data Pipeline, Framework Design, Archi-
tecture, Container Virtualization, Implementation Variants,
Optimization, Big Data, High Performance Computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BeyondMR’17 May 19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-5019-8/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3070607.3070613

1. INTRODUCTION
The efforts of contemporary scientific collaborations in

various research fields lead to a high demand for large-scale
computing and data-processing systems[17]. In recent years,
scientific applications, ranging from particle physics simula-
tions to high-throughput DNA sequence analysis, harnessed
the power of high performance computing for simulation of
complex formal models. These domains recently began lean-
ing towards data-intensive computing, as the available data
volumes outgrow computing capabilities [15].

The rapidly expanding scientific data market creates de-
mand for data-intensive computing paradigms that meet the
challenge of extracting knowledge from an ever-growing vol-
ume of data in a timely and useful manner, while supporting
the analytic complexity and the requirements of the associ-
ated applications [3]. In view of the nature of scientific do-
mains and their corresponding applications, there is a trend
for developing high-performance data analytics infrastruc-
tures that can exploit the performance potential of hetero-
geneous multi-core architectures with flexible and scalable
execution environments. Such environments provide scien-
tific applications with sufficient computing power by com-
bining conventional multi-core CPUs with various types of
accelerators, such as GPUs or co-processors, offering a high
degree of parallelism. Management and coordination of such
environments is not a trivial task. The next generation of
high-performance computing approaching exascale dimen-
sions (with its own extremes and challenges), and with a
growing demand for intensive data processing and analytics,
multi-core execution environments are additionally required
to cope with orchestrating data in relation to its distribu-
tion, storage and timely processing [12].

Many existing approaches and technologies tackle differ-
ent issues and challenges with regard to high-performance
data analytics. Stratosphere [2] enabled scalable data pro-
cessing and provided an efficient execution engine support-
ing automatic parallelization and optimization aiming to
maximize throughput and minimizing latency. Google’s
DataFlow [1] introduced a new programming model for effi-
cient and scalable data pipeline applications, while offering
on-demand resource provisioning and automatic orchestra-
tion of the pipeline execution tasks. Others, such as Intel,
focused their efforts on integrating high performance and
high throughput storage facilities [10] for Big Data applica-
tions, with the aim of minimizing bottlenecks and coordinat-
ing data movement and partitioning more efficiently. These
frameworks focus on developing efficient parallel applica-
tion models with trade-offs regarding, for example, replica-

tion and re-computation versus sharing of resources and the
granularity of tasks. While they focused on efficiently tam-
ing unbounded data sets and deliver results in an interac-
tive manner, we remark that such frameworks often require
to rebuild applications from scratch based on the provided
framework application model. While offering considerable
efficiency, such an approach demands detailed knowledge of
the model, the system and its underlying mechanics, making
it difficult to integrate existing and accelerator-based code
into the execution environment.

We offer a novel approach on improving flexibility, while
supporting seamless application integration. The center-
piece is a framework of integrated and containerized exe-
cution units and management thereof for satisfying the di-
verse requirements of individual pipeline stages. In this con-
text, lightweight virtualized Linux containers that already
made an impact on the HPC community [11, 13] are es-
sential to our approach. They not only accelerate devel-
opment, ease distribution and deployment of applications,
but enable an efficient synthesis of different pipeline stage
implementation variants required for tapping heterogeneous
computing resources. In addition, this containerization al-
lows integration of different programming paradigms, such
as MapReduce, OpenCL, MPI and CUDA, to achieve an
optimized and resource-targeted application execution. The
overall goal of the framework is to ease application deploy-
ment and management on heterogeneous architectures, and
provide means for achieving high throughput by covering
different requirements of individual data pipeline stages.

In this work, we illustrate the requirements, design and
the architecture, based on our early prototype implementa-
tion of the data analytics framework for data and compute-
intensive pipelines. The scope of challenges faced by such a
system include the need to

• utilize generic execution mechanisms for building a
flexible data analytics pipeline execution infrastruc-
ture;

• support the containerized integration of relevant
application stages, to

– enable use of a multitude of implementation vari-
ants and programming paradigms that satisfy
diverging software needs of individual pipeline
stages and

– isolate pipeline stages to achieve balancing
and sharing of computational resources across
modern and emerging parallel and heterogeneous
architectures;

• manage large-scale compute and data-distribution.

Contributions presented in this paper concern the design
and architecture of the compute and data-intensive ana-
lytics framework aimed towards addressing the challenge
of satisfying the diverging requirements of pipeline stages
and supporting their deployment on distributed heteroge-
neous resources. The framework tackles this challenge by
introducing generic mechanisms for native and accelerator-
based code integration and support for different program-
ming paradigms. These mechanisms encompass the con-
tainerization of pipeline stages and their runtime environ-
ments into isolated execution units. The goal is to realize

a dynamic data analytics infrastructure that is able to ef-
ficiently orchestrate pipeline stage executions based on the
stage’s requirements and overall system utilization. Addi-
tionally, we briefly touch upon our approach for adaptive
execution plan strategies and system descriptors required
for the purpose of efficient execution unit orchestration.

The remainder of the paper is structured as follows: in the
next section we describe the principal requirements of the
proposed framework outlining the integrated pipeline appli-
cation, the resource contention and application integration
problems, and our approach on solving them. Section 3 de-
picts the layered high-level architecture of the framework de-
scribing components and integrated frameworks, necessary
to satisfy the specified requirements. In Section 4 we illus-
trate concrete deployment and interaction scenarios based
on the early prototype implementation that showcase how
different components of the framework work in conjunction
to achieve the set goals of the framework. Finally, we wrap
up with concluding remarks, related work and future plans.

2. REQUIREMENTS
In the following, we discuss in detail the requirements of

our data analytics framework with regard to its integrated
application approach, execution environment and resource
management. In general, the aim of the framework is to
efficiently execute pipeline applications, taking into account
the cost of large-scale data processing while providing the
means to support flexible pipeline stage execution and uti-
lization of heterogeneous resources.

2.1 Pipelined approach
In context of this work, we consider data pipeline appli-

cations as our primary use-case, as this type of applications
is typically throughput-oriented and commonly used in the
field of data analytics. A data pipeline follows the assem-
bly line principle. It consists of a series of data processing
modules, each possibly retrieving input data from multiple
input pipes and providing results to several output pipes.
Modules are interlinked by their corresponding input and
output pipes. They thus form a workflow of data processing
stages. Achieving high throughput requires key design con-
siderations to focus on computational workload balancing of
individual stages and achieving a fast delivery of data to and
from them.

2.2 Diverging pipeline stages
A data pipeline may be composed of multiple, computa-

tionally highly divergent stages, each possibly utilizing spe-
cific programming frameworks and compute patterns. For
example, it is common to have time-critical stream process-
ing steps followed by data-cleansing and transformation, fol-
lowed by highly-parallel, long running data analysis batch
jobs. Each of these phases of a pipeline may employ its own
programming framework and computational patterns with
different resource demands. If multiple of such pipelines or
stages are executed in parallel on a given set of resources,
this poses a challenge for performance of individual tasks as
well as overall system utilization.

2.3 Resource isolation
It is important to note that many scientific applications

are designed for exclusive resource usage only. For exam-
ple, it is common to deploy scientific applications on clus-

ters or supercomputers, where a batch-scheduler reserves
the full range of the systems’ resources for a specific time-
frame. In case of data analytics pipeline applications (e.g.
as is the case with the integrated data analytics pipeline de-
scribed in Section 3.1), it is plausible to assume that a data
pipeline may reserve all available computational resources
and schedule them internally among its different stages.
However, since exclusive resource usage may be highly ineffi-
cient, resource sharing is a common technique for enhancing
performance and balancing system workload. We aim our
framework implementation towards a more holistic approach
of coordinated and efficient multi-framework and multi-task
execution. Consequently, the framework requires individual
data processing stages of a pipeline to be isolated as self-
contained execution units in order to address resource con-
tentions efficiently. This goal reflects the need for a flexible
and high-performance compute infrastructure, that leads to
interoperability, improved global system utilization, reduced
time-to-deployment, reproduceability and portability of the
given pipeline.

2.4 Implementation variants
The complexity of modern computing hardware entails

a staggering diversity in programming environments, pro-
gramming paradigms, libraries and supportive tools that
may be applied to a data pipeline and its stages. In ad-
dition to an increase in programming complexity, applica-
tion deployment as well as efficient execution on different,
often highly heterogeneous systems, is a great burden for ap-
plication developers. Hence, lightweight deployment mod-
els that encapsulate whole systems as self-contained exe-
cutable units are essential to this work. Lightweight con-
tainer virtualization can alleviate many of the challenges
and requirements with regard to portability, scalability, de-
ployment and optimization in resource utilization. The near
bare-metal performance [6] compared to conventional vir-
tualization techniques makes them suitable to be utilized
in HPC-oriented environments. Linux containers not only
provide the mentioned benefits to the framework and the
integrated pipeline, but, more importantly, enable a seam-
less integration of native code (even in different program-
ming languages) and use of different implementation vari-
ants of the pipeline stages optimized for different types of
execution units (e.g., multi-core CPUs, GPUs, accelerators).
The presented framework aims to adaptively optimize ana-
lytical pipeline jobs by evaluating efficient execution plans
based on performance-relevant aspects of stage-specific im-
plementation variants and their execution context, as well
as available resources. The most efficient implementation
variant may, however, imply a resource conflict that must
be resolved by the framework in a way that maximizes the
overall pipeline performance. To this end, we argue that it
is beneficial to offer several variants for each pipeline stage.
From a user’s perspective, containerization of pipeline stages
offers the means for specifying the pipeline sequence on an
abstract level, which is then mapped by the framework to a
concrete sequence of implementation variants of the pipeline
stages. The use of containerized execution units enables
the framework to decouple pipeline specification from its
concrete implementation variant use, which offers a greater
flexibility to the execution model.

In addition to supporting different implementation vari-
ants, we argue that some scenarios of the pipeline require

utilization of specific programming paradigms to achieve the
required efficiency. This is, for example, the case when there
is a global data filtering or transformation needed prior to
a complex computation of the available global data pool.
Due to the considerable size of available data in such sce-
narios, the framework requires to support data-intensive
processing techniques (e.g. MapReduce) for minimizing
costly data transfers by co-locating computational units in
the vicinity of the data (exploiting the data locality prin-
ciple). Additionally, the goal of supporting heterogeneous
architecture requires the framework to take benefit from
the diverse accelerators present in current and emerging ar-
chitectures. As such, HPC-bound programming paradigms
such as OpenMP, OpenCL and CUDA are to be supported
by the execution infrastructure.

2.5 Resource usage and optimization
Even for experts, the task of integrating, configuring,

orchestrating and optimizing data and compute-intensive
pipelines is a complex and time-consuming task that requires
detailed knowledge of the underlying hardware and software
resources. Consequently, current approaches are often static
(i.e. optimizations are performed at design time), restricted
to a single application or the pipeline layer only, and of-
ten assume a fixed execution environment. We therefore
argue, that the framework needs support of adaptive execu-
tion mechanisms that are able to automatically assess the
underlying computing and storage infrastructure, configure
the execution environment according to available system re-
sources and coordinate the execution of data pipeline stages
based on their computational complexity and data-intensity.

2.6 Compute and storage resources
The framework is designed to be deployed on top of cur-

rent and emerging distributed heterogeneous compute re-
sources. This implies it to be aware of a multitude of sys-
tem properties, including the amount of compute nodes and
their computing resource capacity (CPUs, GPUs, and accel-
erators), as well as storage. As is the case with implemen-
tation variants, decoupling data from its specific storage lo-
cation allows the integration of different storage platforms
for the purposes of constructing a systematic memory hi-
erarchy for the framework application in order to minimize
costly data transfers and enable a strong fusion between the
pipeline stages and its associated data sets. Large volumes
of data necessitate the use of a distributed file system or a
distributed data store, enabling support for data-intensive
processing techniques and supporting large-scale data stor-
age and data load balancing across the execution infrastruc-
ture. The local file system can be used to share local datasets
across multiple, possibly related, local execution units of the
job. Finally, in-memory storage can be used to either accel-
erate data passing between tasks running on the same com-
putational node or hold data required throughout multiple
pipeline stages. One of the objectives of the framework in
this context is to achieve the highest possible data locality
for a pipeline stage without neglecting its compute require-
ments. Consequently, the execution platform aims to place
containerized pipeline execution units in the vicinity of the
associated data sets.

The presented framework requirements allow scientists
and developers to deliver pipeline stages in a modularized
and self-contained manner. Through containerization, these

Figure 1: Framework architecture for data and
compute-intensive data analytics, depicting differ-
ent layers (left), their respective technologies, inte-
grated frameworks or components (middle) and the
associated system descriptors (right). The proposed
framework comprises of an application layer, where
the integrated data pipeline is staged; the orchestra-
tion layer, where the execution engine coordinates
local and remote stage executions; the higher-level
runtime layer, which integrates different execution
platforms; the resource management layer, which in-
tegrates a resource manager to negotiate for avail-
able resources; and the (hardware) resource layer.

modules may include all the necessary tools and environmen-
tal configurations required for their execution. The end-user,
shielded from concrete execution details and busy framework
interactions, has to provide the pipeline specification and its
data sets on an abstract level only in order to start an ex-
ecution. Mapping an abstract execution plan to a concrete
one is the responsibility of the framework. In order to ful-
fill these requirements, we illustrate the system architecture
with its associated layers and interaction in the following
section.

3. ARCHITECTURE
The high-level framework architecture for data and

compute-intensive analytics incorporates different layers de-
scribing the data pipeline specification and implementa-
tion, the orchestration of pipelines, the supported runtime
systems, resource management, and compute and storage
resources available in the system. Figure 1 provides an
overview of the architecture of the proposed framework. It
illustrates different layers (left), their respective technolo-
gies, integrated frameworks or components (middle) and the
associated system descriptors (right). In the following sec-
tions we discuss each layer, its responsibilities and core me-
chanics based on the specified requirements.

3.1 Application layer
Currently, the prototype integrates a generic and mod-

ular data pipeline used in the transportation domain [20]
as its application layer and aims to enable it for scalable
and responsive big data analytics. The pipeline provides a
variety of modules for data integration (to and from differ-
ent data sources), data transformation and data processing
functions, which can all be arranged as a sequence of piped

stages into a pipeline application. A modular plugin mecha-
nism supports the development and integration of different
implementation variants and additional application-specific
modules. This mechanism was used to add Import-Buffer
and Export modules enabling the pipeline to have access to
the distributed file system.

The application layer consolidates application knowledge
through the use of metadata descriptors. As part of the
description model (depicted on the right hand-side in Fig-
ure 1), the application description encompasses informa-
tion regarding available implementation variants (through
the Variant Descriptors) of individual stages and data set
mappings to the corresponding storage platform (through
Dataset Descriptors). A pipeline execution request is spec-
ified in a YAML format1, comprising a sequential chain of
stage descriptions. Each stage description includes the name
and the stage archetype tag (e.g. import, filter, transforma-
tion, function, custom), including a list of input and output
pipelines. The execution ordering is set through specifying
and linking input and output pipelines. Optionally, the user
can also specify application or stage specific (e.g. custom
computational weight) parameters and job priority.

The pipeline execution request is submitted using the
framework client, which passes it onto the next layer for
evaluation. The evaluation produces a concrete pipeline ex-
ecution plan, which is used to initialize the deployment of
the pipeline and its stages. An example of this process is
illustrated in Figure 4 and discussed in Section 4.

3.2 Orchestration layer
The adaptive execution engine coordinates the execution

of pipeline stages. This component of the framework bridges
the gap between the higher-level runtime environments (and
the associated task execution platforms) and the pipeline ap-
plication. The management and coordination of the pipeline
executions is facilitated through an execution plan compiled
and later on adjusted by the requirements of the stages by
the adaptive execution engine. An execution plan is charac-
terized by: (1) a deployment and execution plan for pipeline
stages and their implementation variants with respect to
their computational requirements, and (2) a data manage-
ment plan that evaluates the cost of data transfer based
on the execution plan. An estimation of trade-offs between
data transfer costs and performance and speedup penalties
would optimize the pipeline execution, if the data set is large
enough. While it may be debatable whether a global appli-
cation analysis and decision-making – as opposed to a more
dynamic stage-by-stage evaluation at runtime – may yield
a better performance, we argue that the latter option pro-
vides a far more flexible execution model, when it comes to
resource competition between stages, changing environmen-
tal (node-failure, accelerator availability) or stage-specific
(data input/output amount) properties at runtime.

The framework implements a description model, that sup-
ports the evaluation of execution plans within the adap-
tive execution engine. The description model represents
the main characteristics of system layers and components.
These include a description of the underlying hardware, the
execution platform and the respective pipeline variants, the
characteristics of the data sets and sources and the applica-
tion: the hardware descriptor comprises information about

1YAML Aint Markup Language (YAML) Version 1.2:
http://yaml.org/spec/1.2/spec.html

the systems’ compute and storage resources; the platform
layer comprises the available execution and storage platform;
and the application layer comprises descriptions discussed
in the previous section. By taking this knowledge into ac-
count, and by using historical data for evaluation, the execu-
tion engine compiles an execution plan by using performance
metrics that enable prediction of (relative) performance as-
pects of the execution units. These metrics can be provided
by models producing a performance description according
to environmental and execution specific characteristics, or
can be specified by system experts. Performance modeling
mechanisms can be implementation of a variety of different
evaluation approaches, including analytic methods, methods
that rely on historical performance data, heuristics, or any
combination of these approaches [9]. Ranking of different
execution solutions could be achieved through statistical es-
timation models. For example, in our previous work [14] we
used the utility function to determine performance ranking
of Hadoop job configurations based on a small set of system
properties.

Finally, when a concrete execution plan (comprising a
pipeline of stage implementation variants and their deploy-
ment assignments) is selected by the execution engine, it
initiates deployment of the data pipeline and starts the re-
source negotiation procedure with the resource management
layer.

3.3 Higher runtime layer
The higher runtime layer incorporates technologies and

frameworks that satisfy the requirements of supporting mul-
tiple implementation variants and the required programming
paradigms. On one end, the higher-runtime layer integrates
frameworks that support established data-intensive process-
ing techniques. One of the most important and well-known
approaches in recent years has been the MapReduce [5] pro-
gramming paradigm. MapReduce is typically utilized for
analyzing Big Data sets stored on a distributed file system
in a massively parallel and resilient manner. The exten-
sively evolved ecosystem around the open source framework
implementation Hadoop2 and its decoupled resource nego-
tiator YARN (Yet Another Resource Negotiator) [21], used
within the framework, allows for other data-intensive ana-
lytics frameworks, most notably Apache Storm and Spark
[23], to be integrated to provide additional data-intensive
stage variants.

Additionally, the framework integrates a container virtu-
alization platform for the purpose of bundling data pipeline
stages (and possibly other applications or components) and
their utilized runtime environment into self-contained, ex-
ecutable units. We chose to integrate the widely-used
Docker3 as our container platform. This choice is moti-
vated by proven success in HPC environments, low overhead
and easy integration with available resource management
and computational frameworks (see next section). In ad-
dition, the simple mechanics for building Docker container
images via the dockerfile not only allows developers of the
data pipeline to provide additional templates with ease and
on-the-fly, but its extensibility supports creation of modular
templates, which further eases stage creation and delivery.
For example, docker templates that are reserved for GPU
execution have a template that includes a device driver for-

2http://hadoop.apache.org/
3https://www.docker.com/

warding from the host. With the internal docker registry
made available to the execution engine and the resource
management layer, docker templates are deployed as self-
contained pipeline stage execution units.

3.4 Resource management layer
The resource management layer incorporates technologies

that ease the task of orchestrating complex pipeline execu-
tions for the adaptive execution engine. A resource negotia-
tor enables partitioning and allocation of available resources
required for a pipeline execution. The execution plan, com-
piled by the adaptive execution engine, is passed to the re-
source negotiator, which then starts the process of resource
negotiation and allocation, deployment and the execution.
After executing a specific pipeline stage, the resource man-
ager delegates performance-relevant information back to the
execution engine, in order for it to store this information for
future evaluation of pipeline executions.

We assessed two resource negotiators for this layer. As
mentioned above, YARN is a resource negotiator based
of Apache Hadoop. YARN decouples the programming
paradigm of MapReduce from its resource management ca-
pabilities, and delegates many scheduling functions (e.g.,
task fault-tolerance) to per-application components.

Mesos[8], similar to YARN, is a fine-grained resource ne-
gotiation engine that supports sharing and management of a
large cluster of machines between different computing frame-
works, including Hadoop, MPI, Spark, Kafka, etc.

The main difference between YARN and Mesos is the re-
source negotiation model. Whereas YARN implements a
push-based resource negotiation approach, where container
deployment requests specify their resource requirement and
deployment preferences, Mesos uses a pull-based approach,
where the negotiator offers resources to the container that
it can accept or decline. The Mesos model is arguably more
flexible, but requires more overhead due to its negotiation
procedure. Furthermore, YARN’s model for specification of
resource and deployment preferences provides a greater con-
trol over resource partitioning across the system. Thus, we
integrate Apache YARN to support the coordination and
execution of containerized pipeline execution units, in addi-
tion to the aforementioned benefits of integrating different
data-intensive frameworks.

The prototype implementation of the framework utilizes
Apache YARN’s resource and execution management mech-
anisms4 to deploy and start containerized execution units
on top of the infrastructure.

3.5 Resource layer
The resource layer comprises descriptors for compute

and storage resources. Compute resource descriptors cap-
ture topological characteristics of the available hardware re-
sources, including a description of compute nodes, their pro-
cessing power, I/O and network devices. Additionally, the
compute resource descriptor holds information about various
PCI devices such as GPUs, Xeon Phi and other accelerators.
Compute resource descriptors are specified using existing
approaches - PDL [18] and hwloc [7]. In addition, we ex-
plicitly represent storage resource descriptors complement-
ing compute resource descriptors with information about the

4https://hadoop.apache.org/docs/r2.7.2/hadoop-
yarn/hadoop-yarn-site/DockerContainerExecutor.html

Figure 2: The frontend represents the control node of the compute and data-intensive pipeline execution
framework. A client is used to upload new stage implementation variants and data sets, with their associated
descriptors. Stage variants are added to the implementation variant registry, while data sets to the speci-
fied storage platform (HDFS per default). The frontend deploys the framework’s execution engine, which
coordinates pipeline execution and remote stage deployment.

memory hierarchy, in particular on cache, memory, disk and
possible attached remote storage resources.

The storage resources may comprise a set of integrated
storage platforms annotated by their associated descriptors
to map access endpoints for the execution engine. Since we
chose to utilize YARN as our resource manager, it was ev-
ident to utilize HDFS as our distributed file system. As
such, we assume, that the bulk of the data is uploaded
to the HDFS. To provide Docker containers with their cor-
responding data, the prototype framework implementation
uses MountableHDFS and libfuse5 to mount the HDFS data
set structure (e.g. directory) to the local container file sys-
tem. Docker instances are configured to map their data
volumes6 to the mounted HDFS data structure.

Through subsequent dependencies of the descriptors we
are able to represent knowledge about the overall execution
infrastructure and navigate from a specific job execution to
its environmental characteristics.

4. DEPLOYMENT AND EXECUTION
SCENARIOS

Deployment and execution scenarios outline the capabil-
ities of the data analytics framework. Herein, we focus
on showcasing how stage implementation variants are inte-
grated, how a pipeline execution with different stage imple-
mentation variants is initiated, deployed and executed, and
how data is managed across the execution infrastructure.

4.1 Pipeline stage and data set integration
The data and compute-intensive pipeline execution frame-

work integrates the collections of pipeline stages and its im-
plementation variants in form of a registry, as depicted in

5https://wiki.apache.org/hadoop/MountableHDFS
6https://docs.docker.com/engine/tutorials/dockervolumes/

Figure 2. To add a stage variant, the user provides the
stage variant package, which either consists of a dockerfile
and its associated environmental setup or a YARN-native
application in form of a jar (java archive) to the client. In
addition, the Stage Descriptor, which annotates the stage
variant for evaluation and utilization within the framework
has to be provided. The descriptor consists of a stage group
tag denoting the stage archetype (e.g. filter, transforma-
tion, computation, etc.), its execution platform (YARN or
generic container-based), the variant paradigm or program-
ming language (OpenMP, CUDA, C++), a custom-set com-
putational weight (as opposed to the computational weight
evaluated by the framework), and any application-specific
parameters as key-value pairs. The implementation variant
registry, representing the range of supported execution plat-
forms, consists of two sub-registries: the first is the docker
registry, which holds generic execution container images con-
structed from the dockerfiles. The images include the stage
executable (in any native code) and the associated runtime,
as well as required third-party libraries. The second sub-
registry is the YARN application registry, which contains
YARN-native applications. While this registry is primarily
used for MapReduce-type stage implementations in our pro-
totype, as mentioned earlier, other YARN-based stage im-
plementations can be used here instead. Upon submission of
a new stage variant, the client uploads the stage package to
the corresponding registry and adds the new stage descrip-
tor to the variant descriptors. Finally, the stage descriptor
is mapped with an additional annotation to the location of
the stage variant for the execution engine to quickly find it
when required. The framework is then able to instantiate
the newly adopted pipeline stage via the YARN’s resource
manager mechanics.

Data sets follow a similar procedure when added to the
global data pool of the framework. A data set descriptor

Figure 3: The scenario showcases the deployment of three remote pipeline stage executions on top of dis-
tributed heterogeneous resources. YARN’s components aid in negotiating available resources for each in-
dividual pipeline stage, allowing their distribution across the compute nodes. The worker (NodeManager)
nodes pull required images from the implementation variant registry to the computational node as requested
by the ApplicationMaster - a controller for YARN tasks - and deploys them on the resources assigned by the
execution engine.

is used to specify the storage platform, as well as related
metadata such as size and location (e.g. path-to-dataset).
If no storage platform is specified, the framework will utilize
the HDFS as the global data pool, which is illustrated in
the following scenarios. Using generic data set and storage
platform descriptors supports the integration and utilization
of a multitude of different distributed and non-distributed
storage systems, such as HBase, RDBMS, in-memory DB,
or the local file system. Upon submission, the client uploads
the new data sets to specified storage platform and adds its
descriptor to the description model. The process of integrat-
ing stages and data is illustrated in Figure 2 and denoted by
interaction steps 1. to 4. and a. to b. accordingly.

The framework integrates a generic and modular data
pipeline that allows the execution engine to deploy pipeline
application instances. The execution engine uses a local
pipeline executor to initialize and start the pipeline appli-
cation locally, and a remote stage executor to deploy stages
on remote heterogeneous nodes. The Execution Planner
tries to optimize pipeline execution plans and coordinate
the deployment of the pipeline and its stages with the
support of the description model.

4.2 Deployment on remote computational
resources

A pipeline application execution can be initiated by sub-
mitting an abstract specification of the pipeline via the
client. Currently, this specification is a YAML file consisting
of a sequence of stage archetypes connected via input-output
pipes, the input data specification and optional application-
specific parameters. Upon the pipeline specification submis-

sion, the execution engine evaluates the pipeline application
in terms of its resource requirements as described in Section
3.2.

In the scenario depicted in Figure 3, the execution engine
concluded the deployment of three remote stages: the first
stage is deployed as a MapReduce application, the second
is deployed as an OpenMP variant (e.g. filtered data set
transformation) and the final one as CUDA (e.g. compute-
intensive function). This concrete pipeline execution spec-
ification induces the Remote Stage Executor, a component
of the execution engine, to issue YARN application deploy-
ment requests to the ResourceManager. Each stage of the
pipeline is treated by YARN as separate application and is
assigned to its own ApplicationMaster to negotiate for avail-
able resources. This allows for a greater resource isolation
(no interference with whatever is installed on the host) of
each stage, and a refined allocation based on priorities and
resource requirements. The priority for resource negotia-
tion can be influenced by the execution engine’s evaluation
or user specification (in the form of a custom computation
weight). The ApplicationManager, a component of the Re-
sourceManager, starts YARN’s ApplicationMaster on a com-
pute node. YARN’s ApplicationMaster, as is the case with
the default YARN setup, is responsible for deploying, exe-
cuting and monitoring distributed stage tasks. It will estab-
lish a connection to the ResourceManager to negotiate and
receive a set of resources for container deployment. In ad-
dition, the ApplicationMaster establishes a communication
channel with YARN’s NodeManager, which is essentially a
worker for the ResourceManager (master). The Application-
Master directs the NodeManager to download the applica-
tion container from the corresponding registry and deploy

Figure 4: This scenario showcases how the execution engine deploys a concrete pipeline and handles issues
related to data management. The initial pipeline execution plan dictates deployment of the first stage as
MapReduce and all consecutive stages in the local pipeline instance. Due to an unexpected amount of
data to be transfered to the local pipeline, the execution engine (prompted by feedback reports) initiates a
reevaluation of stage deployment at run-time and updates the deployment plan, with the effect that stage
two (unable to handle the amount of data efficiently in its initial state) is also deployed as a MapReduce.

it. In case of the first stage of this scenario, the MapReduce
Application is deployed on all nodes, since data blocks for
the computation can be co-located for processing on each
HDFS node. The other two stages are deployed on a lim-
ited amount of compute nodes, as their computation weight
supersedes their data-intensity. In this case nodes are cho-
sen according to their resource availability. Finally, running
stages are constantly monitored by the ApplicationMaster,
and together with the NodeManager ’s Resource Reports, the
ResourceManager receives constant updates on the state of
the stage execution in terms of resource allocation and task
status. This information is used as stage execution feed-
back and stored to a historical execution database within
the adaptive execution engine for evaluation of future stage
executions.

It is important to note that in the current release of
YARN, NodeManager uses a statically defined configuration
file7 that specifies the container type that the NodeManager
has to deploy. The framework, however, requires these prop-
erties to be set dynamically - upon stage deployment. To
work around this issue, we currently use a script to interrupt
the NameNode, change its configuration and restart it in or-
der to differentiate between Docker and YARN container
deployment. In future we aim to extend the NodeManager
in its capabilities of dynamically instantiating the requested
container type.

7Natively YARN NodeManager configurations are stati-
cally defined in yarn-site.xml configuration file, with the
following relevant properties: yarn.nodemanager.container-
executor.class and yarn.nodemanager.docker-container-
executor.exec-name

4.3 Dynamic data management
Figure 4 illustrates how the execution engine deploys a

concrete pipeline and handles data management issues. In
this scenario, the initial pipeline deployment plan foresees
the deployment of the first stage (e.g. filter) through a
MapReduce variant. Consecutive stages are to be deployed
on the local pipeline instance. The execution planner thus
provides the concrete pipeline execution plan to the local
pipeline executor, which instantiates the pipeline applica-
tion on the frontend. At the same time, the deployment
specification of the first stage is passed to the remote stage
executor, which submits application requests to YARN’s Re-
sourceManager. The Storage Manager is used to link the
input data set of the pipeline and assigns this data set to
the MapReduce job configuration. The special stages de-
ployed within the pipeline application Import-Buffer and
Export handle data transfer to and from the locally deployed
pipeline. Upon data transfer, these stages submit reports on
the amount of data to be transferred to the data manager.

In the scenario outlined in Figure 4, the processing of
the MapReduce stage yields a considerable amount of data
bound to be transfered to the next stage of the pipeline
(C++-variant). The Import-Buffer communicates a warn-
ing, denoted in Figure 4 as a warning sign regarding the
amount of data to be transferred. The Storage Manager,
having evaluated the time needed for the transfer commu-
nicates this to the execution planner, as this data transfer
may turn out to be excessive. The Execution Planner, be-
ing aware of the pipeline execution, concludes that the cur-
rently devised plan may impair the efficiency by this data
transfer and performance of the consecutive stage. Follow-
ing this reevaluation, the Execution Planner concludes that,

due to the availability of the second stage as MapReduce,
that stage should be deployed as such. This causes the re-
deployment of the updated execution plan at runtime. The
local pipeline executor is directed to re-instantiate the lo-
cal pipeline execution according to the updated deployment
plan, while the remote stage executor is directed to deploy
the MapReduce variant of the second stage. The redeploy-
ment and execution of the updated execution plan generates
no further warnings, as the amount of data can be handled
without further issues.

While our framework focuses on reducing costly data
transfer bottlenecks, we argue that the same technique may
be applied to reevaluate compute-intensive stages, e.g. when
accelerator resources on specific nodes become available.
Since the Execution Engine is aware of the Pipeline appli-
cation execution plan and the availability of resources, a
reevaluation based on the computational grade of the con-
secutive pipeline stages may result in outsourcing them to
more powerful compute resources. Such an evaluation has
to consider the specific trade-off between data transfer time
and computation time, while keeping the stage overall eval-
uation overhead to a minimum (using the aforementioned
statistical evaluation methods).

In Section 3.2 we argued that evaluating the appli-
cation stage-by-stage provides a more flexible execution
model. However, we emphasize that some decisions require
a broader scope of the execution plan. The framework pri-
oritizes effective execution of compute and data-intensive
stages, and deploys them on the appropriate resources if
possible. Non-intensive stages may be reevaluated and re-
deployed based on the current state of the pipeline execu-
tion, such as data transfer in this scenario. Thus, a hy-
brid approach of evaluating the most pressing stages of the
pipeline and run-time adaptation (depending on changing
environmental properties) of less intensive stages may be ap-
propriate. Such an approach may introduce additional and
possibly excessive overheads. However, we argue that fol-
lowing our evaluation approach for pipeline execution plans,
such redeployments may become less frequent as the frame-
work adapts to its execution environment and newly adopted
stage variants.

5. RELATED WORK
We have mentioned related approaches (Stratosphere,

Dataflow) in the field of data analytics as our motivating
example in Section 1. Here, we discuss a few of the other
relevant approaches that tackle the challenges related to
compute-intensive big data analytics.

KeystoneML [19] introduces an approach for large-scale
pipeline optimization. The authors focus on capturing end-
to-end pipeline application characteristics that are used to
automatically optimize execution at both the operator and
pipeline application levels. They enable their system to pro-
duce pipeline solutions that automatically adapt to changes
in data, hardware, and other environmental characteristics.

Marcher [24] - a heterogeneous system for high perfor-
mance computing and big data analytics applications sup-
ports for a wide range of mainstream parallel program-
ming models (including OpenMP, OpenCL, CUDA, MPI
and Map-Reduce) and diverse system resources on the basis
of an extensive API and numerous programming interfaces.
They focus their infrastructure towards energy-efficient low-
level task execution.

Apache Spark [23], mentioned in this work as one of
the possible integrated frameworks introduces resilient dis-
tributed data sets on top of Apache Hadoop. The frame-
work supports iterative tasks and improves performance by
explicitly specifying caching of distributed data sets. A wide
range of functions support categorization of application com-
ponents into data transformations and actions. In addition,
Spark provides stream processing functionality and a ma-
chine learning library mllib.

Another popular effort towards efficient compute and
data-intensive task execution is the MapReduce-MPI [16]
library. The authors implement the MapReduce paradigm
using MPI in order to achieve a scalable, data-intensive ex-
ecution for performance-oriented graph algorithms.

The European PEPPHER project [4] proposed a
component-based development approach for heterogeneous
parallel systems allowing to relieve application developers
of low-level implementation details, while providing means
for a seamless integration of different programming APIs, as
well as for dynamic code adaptation and optimization. Par-
allel applications are composed at a high-level of abstraction,
while providing implementation variants, optimized for dif-
ferent processing units. While some concepts of PEPPHER
are applicable in this work, such as utilization of different
implementation variants, the requirement of rewriting all
application modules to adhere to a high-level API is not
feasible. Another approach in a similar direction is Elastic
computing [22] for cloud computing. The work focuses on
the provisioning of function variants, called elastic functions,
among which the best combination is composed mostly by
static means, guided by performance profiles and models.

In contrast to the aforementioned technologies, we fo-
cus on integrating containerized implementation variants
to support mainstream parallel programming models and
paradigms to exploit heterogeneous architectures. Our
framework is designed to integrate different storage plat-
forms and utilizes concepts from autonomic computing to re-
alize efficient data analytics pipeline executions. In a broad
sense, we combine some of the mentioned approaches and
technologies and utilize their mechanics relevant for the re-
quirements of our envisioned system.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented requirements, architecture and

usage scenarios of the compute and data-intensive pipeline
execution framework. The framework design supports in-
tegration of a multitude of stage variants for the purpose
of optimizing pipeline applications with respect to data and
computational requirements of individual stages. The design
requirements include support for diverging pipeline stages,
which make it necessary to encapsulate them and their run-
time environment into containerized execution units. This
allows for a refined resource isolation and consequently an
efficient resource utilization. More importantly, containers
provide the means of supporting concurrent utilization of
different implementation variants based on a multitude of
programming languages and paradigms. The framework in-
tegrates a resource negotiator that aids in managing and
orchestrating a generic set of execution platforms. We illus-
trated three scenarios related to pipeline stage and data set
integration, deployment of remote pipeline stages and data
management. As such, our framework supports a generic
and flexible execution infrastructure based on container

technologies, able to exploit massively parallel data process-
ing techniques on one extreme, and HPC-bound tasks on
the other. Finally, the framework’s adaptive execution en-
gine, supported by the description model, which aggregates
information on the current system state, aims to evaluate
and coordinate execution with the main goal of achieving
efficient processing of data and compute-intensive pipelines.

The current prototype supports the execution of modular
data pipelines using different implementation variants. It
integrates Apache YARN as its resource negotiator, Docker
as its container platform and HDFS as its global data pool.
The early implementation of the execution engine selects
variants based on estimated (with regard to historic execu-
tion data) output data measurements. The framework pro-
totype has several construction areas, some of which where
mentioned in this work. Consequently, our main goal for
the future is to fully implement the execution engine and
provide a proper evaluation of pipeline stage executions on
heterogeneous many-core architectures.

Acknowledgment
This research has been supported by the Austrian Research
Promotion Agency (ICT of the Future) under grant agree-
ment #845606 (Retida Project).

7. REFERENCES
[1] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,

R. J. Fernández-Moctezuma, R. Lax, S. McVeety,
D. Mills, F. Perry, E. Schmidt, and S. Whittle. The
dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. Proc. VLDB
Endow., 8(12):1792–1803, Aug. 2015.

[2] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag,
F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser,
V. Markl, F. Naumann, M. Peters, A. Rheinländer,
M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and
D. Warneke. The stratosphere platform for big data
analytics. VLDB, 23(6):939–964, Dec. 2014.

[3] R. Arora. Conquering Big Data with High
Performance Computing. Springer, 1st edition, 2016.

[4] S. Benkner, S. Pllana, J. Traff, P. Tsigas, U. Dolinsky,
C. Augonnet, B. Bachmayer, C. Kessler, D. Moloney,
and V. Osipov. Peppher: Efficient and productive
usage of hybrid computing systems. Micro, IEEE,
31(5):28–41, Sept 2011.

[5] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51:107–113, January 2008.

[6] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An
updated performance comparison of virtual machines
and linux containers. IEEE ISPASS, 00:171–172, 2015.

[7] B. Goglin. Managing the topology of heterogeneous
cluster nodes with hardware locality (hwloc). In
HPCS’14, pages 74–81, July 2014.

[8] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In 8th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’11, pages 295–308, Berkeley, CA, USA, 2011.
USENIX Association.

[9] M. C. Huebscher and J. A. McCann. A survey of
autonomic computing - degrees, models, and
applications. ACM Comput. Surv., 40:7:1–7:28,
August 2008.

[10] Intel, High Performance Data Division. Whitepaper:
Big data meets high performance computing, 2014.

[11] D. M. Jacobsen and R. S. Canon. Contain this,
unleashing docker for hpc, 2015.

[12] S. Jha, J. Qiu, A. Luckow, P. K. Mantha, and G. C.
Fox. A Tale of Two Data-Intensive Paradigms:
Applications, Abstractions, and Architectures. In
BigData Congress, pages 645–652. IEEE, 2014.

[13] S. Julian, M. Shuey, and S. Cook. Containers in
research: Initial experiences with lightweight
infrastructure. In XSEDE’16, pages 25:1–25:6, New
York, NY, USA, 2016. ACM.

[14] M. Koehler, Y. Kaniovskyi, and S. Benkner. An
adaptive framework for the execution of data-intensive
mapreduce applications in the cloud. In DataCloud
2011, Anchorage, Alaska, May 2011. IEEE.

[15] R. T. Kouzes, G. A. Anderson, S. T. Elbert,
I. Gorton, and D. K. Gracio. The changing paradigm
of data-intensive computing. Computer, 42(1):26–34,
Jan 2009.

[16] S. J. Plimpton and K. D. Devine. Mapreduce in mpi
for large-scale graph algorithms. Parallel Comput.,
37(9):610–632, Sept. 2011.

[17] D. A. Reed and J. Dongarra. Exascale computing and
big data. Commun. ACM, 58(7):56–68, June 2015.

[18] M. Sandrieser, S. Benkner, and S. Pllana. Using
explicit platform descriptions to support programming
of heterogeneous many-core systems. Parallel
Computing, 38(1-2):52–65, 2012.

[19] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J.
Franklin, and B. Recht. Keystoneml: Optimizing
pipelines for large-scale advanced analytics. CoRR,
abs/1610.09451, 2016.

[20] J. L. Toole, M. Ulm, M. C. González, and D. Bauer.
Inferring land use from mobile phone activity. In ACM
SIGKDD’12, pages 1–8. ACM, 2012.

[21] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,
S. Radia, B. Reed, and E. Baldeschwieler. Apache
hadoop yarn: Yet another resource negotiator. In
SOCC ’13, pages 5:1–5:16, NY, USA, 2013. ACM.

[22] J. R. Wernsing and G. Stitt. Elastic computing: A
framework for transparent, portable, and adaptive
multi-core heterogeneous computing. SIGPLAN Not.,
45(4):115–124, Apr. 2010.

[23] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

[24] Z. Zong, R. Ge, and Q. Gu. Marcher: A heterogeneous
system supporting energy-aware high performance
computing and big data analytics. Big Data Research,
2017.

