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Abstract

We present some comparisons between the approx-
imation rates relevant to linear approximators and
the rates relevant to neural networks, i.e., nonlinear
approximators represented by sets of parametrized
functions corresponding to a type of computational
unit. Our analysis uses the concept of variation of
a function with respect to a set. The comparison
is made in terms of Kolmogorov n-width for linear
spaces and a proper nonlinear n-width for the non-
linear context represented by neural networks.

The results of this paper contribute to the the-
oretical understanding of the superiority of neural
networks with respect to linear approximators in
complex tasks, as is confirmed by a wide variety of
applications (recognition of handwritten characters
and spoken numerals, approximate solution of func-
tional optimization problems from control theory,
etc.).

1 Introduction

Artificial neural networks have greatly outperformed
with respect to linear approximators in complex ap-
plications such as recognition of handwritten char-
acters and spoken numerals [3], stabilization of high-
order strongly nonlinear dynamic systems [12], vo-
calization of text [15], etc. This performance brings
forward the need for theoretical comparison of the
approximation capabilities of linear and nonlinear
approximation schemes.

The universal approzimation property has been
proved by various authors (see, for example, [4],
[7], [13]), in many function spaces and for differ-
ent types of architectures and activation functions

of hidden units (e.g., radial-basis-functions and per-
ceptrons). Rates of approzimation express the re-
lationship between the accuracy of approximation
and the complexity of the approximators required to
achieve such an accuracy. The complexity is usually
expressed as the size of a properly defined parame-
ter vector: for example, the degree of a polynomial
or the number of knots of a fixed-knots spline in the
linear case, the degree of a rational function or the
number of hidden units of a neural network in the
nonlinear context.

To theoretically understand the superior experi-
mental performance of neural networks with respect
to linear approximators, it is important to study
the comparison of rates by linear and nonlinear ap-
proximation schemes in the same functional spaces.
What makes this comparison difficult is the fact
that each approximator proposed in the literature
has been developed to approximate functions from
different spaces, i.e., has been obtained under dif-
ferent assumptions on the functions to be approxi-
mated. It is then expected that each approximator
performs better than the others if such assumptions
are satisfied [5]. A better convergence rate for non-
linear approximators with respect to linear ones in
the same functional space has been proved by Bar-
ron in [1]. However, this comparison is again made
only for functions belonging to a particular space
and for a specific class of nonlinear approximators.
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In [9] Kurkové has defined a norm, called varia- =

tion of a function with respect to a set of functions,
which extends a concept introduced by Barron in [2]-
Such a norm is assigned to a given class of networks

and allows the comparison of rates of convergencé

within a common framework (see [9], [10]). In [6] we &

have used this norm as a tool for comparison of the
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optimal bounds on the approximation error achiev-
able by nonlinear approximators in certain spaces
of functions of finite-dimensional Hilbert spaces and
the rates obtained in the same spaces by linear ap-
proximators.

In this paper, we further develop the comparisons
started in [6]. Using the variation norm, we show
that, in some functional spaces, lower bounds on
the rates of linear approximation are greater than
upper bounds on the rates achievable by nonlinear
approximators represented by neural networks (i.e.,
sets of parametrized functions corresponding to a
type of computational unit).

The organization of the paper is the following.
Section 2 contains preliminary notations and defini-
tions. Section 3 presents the comparison of the op-
timal bounds and some final remarks are concluded
in Section 4.

2 Preliminary Notations and
Definitions

The following notations and definitions will be used
(see also [8] and [10]). We assume to work in a
normed linear space (X, ||.||); ||-||2 denotes the norm
induced by the inner product in case of a Hilbert
space.

The approximation is called linear approzimation,
when the approximating functions form a linear sub-
space of (X, ][.]|). On the contrary, the approximat-
ing functions can be members of unions of finite-
dimensional subspaces generated by a given compu-
tational unit. In other words,

G={g9(,0):Y > R;6 € © CRP} C(X,]II),

Y C R4 is a parametrized set of functions corre-
sponding to the computational unit represented by
the (activation) function g. The set of all linear com-
binations of n elements of G is considered. This set,
denoted by span,G, is the union of all linear sub-
spaces formed (spanned) by n-tuples of elements of
G, ie, span,G = {f € X;f = YL, wigi;w; €
R’gi € g} = U{Span{gh vises & ’gn};gi € gal =
1,...,n}. In this case, the approximation is called
nonlinear approzimation. Note that spanG =
Unen spannG. G° denotes the set of normalized el-
ement of a given set G, i.e. G° = {g° = 9 €9}

Let G(b) := {wg;w € R,|w| < b,g € G}. For
a subset G of a normed linear space (X, ||.||), G-
variation of f € X is

Ifllg :=inf{b > 0; f € cl conv G(b)}

Wwhere the notation is motivated by the fact that
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G-variation is a norm on {f € X;||f|lg < oo} [9].
Although in general the concept of G-variation de-
pends on the choice of the norm, to simplify the
notation we write | f|lg instead of ||f]/g,.)) (note
that when X is finite-dimensional, all norms on it
are equivalent, hence in such a case G-variation does
not depend on |[|.]|).

For a subset S of (X,].||), the n—width in the
sense of Kolmogorov (or the Kolmogorov n-width)
of Sin X [14] is

dn (S, X) = I}Ylnfd(S, X,) = ‘)?fi‘gg . lf = All

where the left-most infimum is taken over all n-
dimensional subspaces X, of X and

d(S,Y) == sup||f - V|
fes

Nonlinear n-width of S in X is defined as
0n(S, X) :=

irg;fd(S, span,G) = infsup inf |If— A
¥

€S h€span, G

where G is a member of a family of parametrized
subsets of X. Nonlinear n-width as the alternative
to the Kolmogorov linear n—width for nonlinear ap-
proximation was first suggested in [8].

We finally denote

dn(f, X) :=inf inf ||f — Al

and
d(f, span,G) = | _inf _If =

that correspond to d, (S, X) and d(S, span,G), re-
spectively, for S = {f}.

3 Comparison of Bounds on
Approximation Rates

The following is a reformulation of Jones-Barron’s
theorem in terms of G%—variation:

Theorem 1 [10] Let (X, ||.||2) be a Hilbert space, G
be its subset. Then for every f € X and for every
positive integer n

£ = 1715

I1f - span g < =
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It is easy to see that ||fll2 < | fllge holds for every
f € (X, |1 l2), 16 the unit ball of GO-variation i8
contained in the unit ball of |||l- Then there exists
a constant €5, = 1 such that crollflle = Il fllgo. We
then get the following corollary:

Corollary 1 Let (X, \-l2) be a Hilbert space and
G its subset. Then for every feX there ezists @
constant 5.6 2 1 such that for every positive integer

n
2. —1

1f — spanaGll < IF1BLE—

1t follows that Theorem 1 gives & “good” upper esti-
mate for the class of functions Fe := {f crgllfllz =
Ifllgo,1Serg S1F e}, € > 0.

Let us now consider the following result from
Pinkus:

Theorem 2 [14] Let Sn be the unit ball of any (n+
1) -dimensional subspace Xps1 Of @ normed linear
space &, - Then

(S, X) =1, E= 0,100

In the following, the unit ball of an (n + 1)-
dimensional subspace Xn+1 of a normed linear space
X, D will be denoted by Sn . Let B,(||-l) be the
ball of radius 7 in the metric |||l i-e-

B.(lI) = {f € X: Il = r}.

Then, Br(llllge) 18 the ball of radius T in G°-
variation. It follows from Theorem 1 that the ap-
proximation error € in the case of nonlinear approx-
imation by the paIametrized family G is

o Wi LI
n
On the other hand if, for a given 7 € R+, there
exists n € N such that Br(|l-llge) 2 S, then from
Theorem 2 we get

dn(Br(lllgo), X) 2 1
2 12
Gince a sufficient condition for M‘lﬂ"—n—mlﬁ <1lis
r < 4/nin B (|l-llgo), we obtain the following propo-
sition:

Proposition 1 Let (X,|lll2) be @ Hilbert space, G
its subset andn € N such that Bz(ll-llge) = {f e
XilIfllge < Jn} 2 Sn- Then the upper bound on
d(B\/ﬁ(\\-\\QO),sz)anng) is less than the lower bound

on dn(B /m(llIge), X)-

Now we focus on Kolmogorov n-width. We will
use the following characterization of Kolmogorov n-
width.

Theorem 3 [14] If K is a closed, conver, centrally
symmetric proper subset of an (n+ 1)—dimensional
subspace Xn+1 of a normed linear space X, 111D and
§K denotes the boundary of K, then

dn(K, X) = inf{IFN = f € 0K}

Note that, based on the properties of the Kol-
mogorov n—width [14], if K c (X0, and K is
a centrally symmetric set created from the closure
of the convex hull of K, then

4, (K, X) = dn(K, X)-

Given f € X, it follows from the definition of G-
variation that fe clconv(g(\\f\\g)) = an“g(l\.\lg)‘
1
If we denote b = SUPgeg llgll s lrll;]lg( o) =
Buﬂ\g(l\-\lg) N Xn+1 and apply Theorem 3 with K =
BIAL (o), we get

1fllgo < bllfllg = baa(Bi7 (H1gh )

and, using Theorem 1:

18 4. (B o), X)2 — 2
I — spanaGlla < w

This is concluded in the following proposition:

Proposition 2 Let (X, ]l-ll2) be @ Hilbert space, 9
its subset, b := SUPg4eg l\gl| and f € X . Moreover, let =

B, (llg) = Byso (Il-llg) N Xn+15 where Xnt+1 8 b
@

an (n + 1)—dimensional subspace of (X, II.ll2). Ther

= ¥

a(Br (1), spannd) < b

In other words, the upper bound on nonlinear ap-
proximation by a parametrized set G of functio
corresponding to a type of computational unit
better at least for a multiplicative factor 77

the upper bound on linear approximation in the s€

B"l';'ulg (I-llg)- 1t follows that linear approxlmationo. :

b

e
i
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functions in the intersection of G-balls whith (n+1)-
dimensional subspaces, is a weak tool in comparison
to nonlinear approximation for n >> 1.

Now, suppose that (X, ||.||) is a normed functional
space defined on R? and that linear approximators
in BI"‘;},L (Il.llg) suffer of the curse of dimensionality,
i.e. the number of parameters necessary to achieve a
given accuracy increases exponentially with increas-
ing dimension d. This is expressed by a factor of
the form Cn? in the approximation rate, where C
is a constant with respect to n. Note that Proposi-
tion 2 does not a priori imply that neural networks
corresponding to the parametrized set of functions
G avoid this problem, since the multiplicative factor
ﬁ can not cope with an exponential term.

For an orthonormal basis A4 of a finite-dimensional
Hilbert space (X, ||.||2) we denote the I;-norm with
respect to A by [, ie. [flha = S0, fui,
where f = > wig;. It easy to verify that, for
every f € X, ||flla = ||fll1,4, i.e. A-variation is
the l;-norm with respect to A4 [10]. The following
theorem holds.

Theorem 4 [10] Let
(X, [lll2) be a finite-dimensional Hilbert space and
A its orthonormal basis. Then for every f € X and
for every positive integer n there ezists f,, € span,A
such that

[1£1l1,4

17 = fullo < 5

This implies that VS C X , d(S,span, A) <
SUPfes g 7. If the only information available
about f is the value of its 4-variation, then this
upper bound can not be improved [10]. However,
the upper bound in Theorem 4 can be improved if
in addition to || f|[1,.4 also || f||> is known [10].

We are now interested in approximating functions
from the unit ball S,, of an (n + 1)-dimensional sub-
space X4 of a Hilbert space (X, ||.||2). It follows
from Theorem 4 that

1flls.a
sup {||f - spanndlls} < sup {— .
£ lla=1 " Ifle=1 | 2v/n

If A = & (the Euclidean basis of A;), where | > n,
we get

sup{||fllne, : Ifll =1} =
max {||fllie : I fllo =1} =

max{z [fil | fll2 = 1} =4

i=1
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Then

. 1 /1
d(Si—1, spany&)) = fsug) inf . I1f=gll2 < 5\/;:.

€S, 9€span,

If we use this for [ =n + 1, we get

1
d(Sn, spanp€nyi1) < s/ 1+ 1
2 n

On the other hand, we know from Theorem 2 that
dn(Sn, X) = glffsgg Jnf NI ~gll: = 1.

The above results can be summarized in the fol-
lowing proposition.

Proposition 3 Let (X,|.||2) be a Hilbert space
and Enyy the EBuclidean basis of its (n + 1)-
dimensional subspace X,.1. Then the upper bound
on d(Sy, span,€ni1) is less than dp(Sn, X).

In other words, the upper bound on nonlinear ap-
proximation by span,€,+1 of the unit ball S, of
Xny1 is better than the upper bound on linear ap-
proximation of the same ball for n > 1.

We finally make some remarks on the approxima-
tion of a single function. The above results on ap-
proximation are too general for this case and they
need not provide the optimal rates for approxima-
tion of a single function. We compare them with the
rates of approximation in Hilbert spaces achieved in
[11].

Let (X, ]|.]|2) be a separable Hilbert space with G
an orthogonal basis of X. Then every f € X can
be written in the form f = Y0 ax(f)gr, where
the series converges in the norm of X. Define G :=
{gk; k= 1,2,...} and Sg = {fe X;ZZil lax ()] <
1}. Let A C Zi (ZF represents the set of non-
negative integers) and Ux := span{gy,k € A}.
Let 7o denote the projection operator on 4, and
CA(f) = infgey, If — gll,g € G. It holds that
CA(f) = IIf = Ta(f)I]- Denote

An(Sg,X) = sup inf

Ca(f), n=1,2,....
FE€Sg ACZF |A|<n

We deal only with infinite dimensional Hilbert
spaces here as for X’ having a finite dimension we
get the rate A,(Sg,X) = 0. The following result
holds [11]:

Theorem 5

1
An(Sg,X) < ———, n=1,2,...
n

vn+1
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Moreover, if f € Sg then there is @ sequence{pn}
of numbers such that pn € 0,2, n = 1,205
limp—oco Pn = 0 and
. Pn
inf Ca §——-,n=:1,2,...
ACZ IAISn (< Tm ,

Then we get for f € Sg:

o An(f,X)= inf/\czg,l/q_gncl\(f) =
inf x, infgex If — 9l = dn(f, X)

e Linear approximation:
do(f,X) = infx, inf ge x,
an n-dimensional subspace of X

d(f, spanng)

1 gl|, where Xn is

¢ Nonlinear approximation:
infg&spanng \\f - g“

As for every X, © & also Xn C spann§,
a(f, spann@) is infimum over a "bigger’ set than in
the case of dn(fs X ). So it follows that, for an or-
thonormal basis G of (X, ||ll2), we have

Pn
n

d(f, spann9) < dn(f, X) = Bn(f, X) < Jn

and limp—co Pn = 0.

For functions f € S.NSe)
than the one given in Theore
especially for n >> 1.

4 Concluding Remarks
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