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Representations and rates of approximation of real-valued
Boolean functions by neural networks

Abstract

We give upper bounds on rates of approximation of real-valued functions
of d Boolean variables by one-hidden-layer perceptron networks. Our bounds
are of the form c√

n
, where c depends on certain norms of the function being

approximated and n is the number of hidden units. We describe sets of func-
tions where these norms grow either polynomially or exponentially with d.

Keywords. Real-valued Boolean function, perceptron network, rate of ap-
proximation, variation with respect to half-spaces, decision tree, Hadamard
communication matrix.
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1 Introduction

The existence of an arbitrarily close approximation has been proved for perceptron
type and radial-basis-function networks with quite general activation and kernel
functions (see e.g. Leshno et al., 1993, Mhaskar & Micchelli, 1992, Park & Sand-
berg, 1993). The dependence of approximation error upon the number of hidden
units, i.e. the rate of approximation, has become better understood. Jones (1992)
introduced a recursive construction of approximants with “dimension-independent”
rates of convergence to functions in convex closures of bounded subsets in a Hilbert
space and together with Barron he proposed to apply this method to the sets of func-
tions computable by one hidden-layer neural networks. Applying Jones’ estimate,
several authors (e.g. Barron, 1993; Girosi & Anzellotti, 1993; Kůrková et al., 1997)
characterized sets of functions with d real variables that can be approximated by
networks with n hidden units of various types (perceptron or radial-basis-function)
within an error O

(
1√
n

)
. Using the construction of approximants based on a re-

arrangement of a fixed basis of a separable Hilbert space, Mhaskar and Micchelli
(1994) obtained characterizations of a different type also providing the approxima-
tion error within O

(
1√
n

)
.

In some applications, input data are represented using only binary values. When
computational units used in the hidden layer are continuous sigmoidal perceptrons
or when the output weights are real numbers, the input/output functions of such
networks are real-valued functions of several Boolean variables. A typical exam-
ple of an application of this type is Sejnowski and Rosenberg’s NETtalk (1987)
where a real-valued function with approximately two hundred Boolean variables is
approximated sufficiently well by a neural network with only eighty hidden units.

Motivated by these experimental results, we investigate both representation and
approximation of real-valued functions of several Boolean variables by one-hidden-
layer perceptron networks. In contrast to the case of functions of several real vari-
ables which can be implemented by such networks only approximately, all real-valued
functions of d Boolean variables can be computed exactly by perceptron networks
with any sigmoidal activation function (Ito, 1992).

We consider two such exact representations obtained by expressing functions
from two standard bases (the Euclidean and the Fourier one) as functions com-
putable by one-hidden-layer perceptron networks. Since both of these representa-
tions require networks with the number of hidden units growing exponentially with
the number of variables d, we examine the effect of reduction of the number of hid-
den units upon accuracy decrease. We estimate the rate of approximation in terms
of various norms of the function to be approximated, namely the standard l1, l2-
norms and the variation with respect to a set of functions (which is Kůrková’s, 1997,
generalization of Barron’s, 1992, concept of variation with respect to half-spaces).

We derive our estimates using two methods: In the first one, we directly ap-
ply Jones-Barron’s theorem (Jones, 1992, Barron, 1993) reformulated in terms of
variation with respect to a set of functions; In the second one, we derive a strength-
ening of Mhaskar and Micchelli’s (1994) bound on rate of approximation from an
orthonormal approximating sets and apply it to the Fourier basis with elements
represented as functions computable by perceptron networks.

We describe functions for which the second method gives considerably better
estimates. Moreover, we show that if only the l1 and l2-norm of the function being
approximated are known, then this method gives the best possible upper estimate
up to a constant factor. To illustrate the strengths and weaknesses of our estimates,
we give examples of functions with the norms involved growing both exponentially
and polynomially with d.

The paper is organized as follows. In section 2, we recall and extend estimates
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of rates of approximation applicable to the approximation from a general subset
of a finite dimensional Hilbert space (subsection 2.1) and their stronger version
for approximation from an orthonormal subset (subsection 2.2). In section 3, we
use these tools to obtain upper bounds on rates of approximation of real-valued
functions of d Boolean variables by one-hidden-layer perceptron networks (subsec-
tion 3.1). Further we investigate tightness of these estimates by applying them
to functions representable by polynomial size decision trees and to functions with
Hadamard communication matrices (subsection 3.2). In section 4 we discuss our
results and some open problems. All proofs are deferred to section 5.

2 Rates of approximation in finite dimensional lin-
ear spaces

The estimates of rates of approximation of real-valued functions of several Boolean
variables by functions computable by perceptron networks presented in this paper
are derived using quite general tools applicable to any finite dimensional Hilbert
space. We recall and extend these tools in this section.

Let R, N denote the set of real numbers, natural numbers, resp., and R+, N+

the set of positive reals, integers, resp.
In this paper, by a linear space we always mean a real linear space. For a

subset G of a linear space X we denote by spanG, convG the linear span of G, the
convex hull of G, resp., and by spannG, convnG the set of all linear, convex, resp.,
combinations of n elements of G.

For a subset H of a normed linear space (X , ‖.‖) and f ∈ X we denote the
distance of f from H by ‖f−H‖ = infh∈H ‖f−h‖ and call it error of approximation
of f by H; ‖f−H‖‖f‖ is relative error of approximation of f by H.

Rate of approximation of f by G is ‖f − spannG‖ as a function of n; relative
rate of approximation of f by G is ‖f−spannG‖

‖f‖ .
By a Hilbert space we mean a complete normed linear space with a norm induced

by an inner product (also including the finite-dimensional case). When (X , ·) is a
Hilbert space, we denote by ‖.‖2 the norm induced on X by the inner product, i.e.
‖f‖2 =

√
f · f .

2.1 Upper bounds for general approximating sets

The first tool we use is a reformulation of Jones’ (1992) estimate of ‖f−convnG‖2 in
terms of G-variation, a special case of Minkowski’s functional introduced by Kůrková
(1997). The following theorem is equivalent to Barron’s (1993) improvement of
Jones’ result.

Theorem 2.1 (Jones-Barron) Let X be a Hilbert space, b be a positive real num-
ber and G be a subset of X such that for every g ∈ G ‖g‖2 ≤ b. Then for every
f ∈ convG and for every positive integer n there exists fn ∈ convn G such that

‖f − fn‖2 ≤
√

b2 − ‖f‖22
n

.

Notice that the upper bound on the distance from convnG guaranteed by this
theorem to all elements of convG can be extended to cl convG (for which this
theorem is formulated in Barron, 1993) if we add to the upper bound an arbitrarily
small positive number.

To apply this theorem to functions in spanG consider for each f =
∑m

i=1 wigi,
where all wi ∈ R and all gi ∈ G, a representation f =

∑m
i=1

|wi|
a sgn(wi)agi, where
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a =
∑m

i=1 |wi| and sgn denotes the signum function. Thus any f ∈ spanG is for a
sufficiently large a in convG(a), where G(a) = {wg; w ∈ R, |w| ≤ a, g ∈ G}.

To derive estimates of rates of approximation by neural networks from Jones-
Barron’s theorem, Barron (1992) introduced a concept of variation of a function
with respect to a set of characteristic functions, in particular variation with respect
to half-spaces. Kůrková (1997) generalized this concept to variation with respect to
a set of functions in a normed linear space. For a subset G of a normed linear space
(X , ‖.‖) she defined G-variation of f ∈ X as

V (f,G) = inf{a > 0; f ∈ cl convG(a)}.
Using this notion and the considerations above, to each f ∈ ∪a∈R+cl convG(a)

we can apply Jones-Barron’s estimate with b = V (f,G) supg∈G ‖g‖.
It is straightforward to show that G-variation is a norm on {f ∈ X ;V (f,G) < ∞}

and that for every f ∈ X ‖f‖ ≤ V (f,G) supg∈G ‖g‖; notice that G-variation is the
Minkowski functional of the set cl convG(1).

For a nonzero f ∈ X let f0 = f
‖f‖ be the normalization of f and let G0 denotes

the set of normalized elements of G, i.e. G0 = {g0; g ∈ G}. We call V (f0,G0)
normalized G-variation of f . For every f ∈ X ‖f‖ ≤ V (f,G0), i.e. the unit ball of
G0-variation is contained in the unit ball of ‖.‖.

Since, clearly, V (f,G0) ≤ V (f,G) supg∈G ‖g‖, we use G0-variation in our esti-
mates.

The following result gives a geometric characterization of G-variation. Its proof
is based on separation of a point from a closed convex set by a hyperplane (see e.g.
Holmes, 1975). G⊥ denotes the orthogonal complement of G.

Theorem 2.2 Let (X , ‖.‖2) be a Hilbert space and G be its non-empty subset. Then
for every f ∈ X

V (f,G) = sup
h∈S

|f · h|
sup
g∈G

|g · h| ,

where S = {h ∈ X − G⊥; ‖h‖2 = 1}.
Hence in particular, V (f0,G0) ≥ 1

supg∈G |f0·g0| . Thus, functions that are “almost
orthogonal” to G have a large normalized G-variation.

When G is finite then the following simpler characterization of G-variation is a
straightforward consequence of the definition.

Proposition 2.3 Let (X , ‖.‖) be a normed linear space, G be its finite subset with
cardG = n and f ∈ spanG. Then

V (f,G) = min

{
n∑

i=1

|wi|; f =
n∑

i=1

wigi, (∀i = 1, . . . , n)(wi ∈ R, gi ∈ G)

}
.

Note that this characterization enables us to define G-variation for finite G inde-
pendently of the norm ‖.‖. Characterization of variation with respect to sets that
are larger than the dimension of the space can be further simplified. The following
lemma, proved using a technique from linear programming, shows that it is suffi-
cient to reduce the number of elements in a linear combination used to compute
variation to the dimensionality of the space.

Lemma 2.4 Let X be a finite dimensional linear space with dim X = m, G be its
subset, n be a positive integer and f ∈ spannG has a representation f =

∑n
i=1 wigi,

where for every i = 1, . . . , n wi ∈ R and gi ∈ G. Then there exists a representation
of f of the form f =

∑n
i=1 vigi such that at most m of the coefficients v1, . . . , vn

are non-zero and
∑n

i=1 |vi| ≤
∑n

i=1 |wi|.
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The following corollary is Jones-Barron’s theorem reformulated in terms of G0-
variation.

Corollary 2.5 Let (X , ‖.‖2) be a Hilbert space and G be its subset. Then for every
f ∈ spanG and for every positive integer n there exists fn ∈ spannG such that

‖f − fn‖2 ≤ V (f,G0)√
n

√
1− 1

V (f0,G0)2
.

In the next section, we will show that when G is an orthonormal set of functions
then the upper bound guaranteed by Corollary 2.5 can be slightly improved for
n ≥ 2.

Corollary 2.5 gives an upper bound on relative rate of approximation of the form

‖f − fn‖2
‖f‖2 ≤ V (f0,G0)√

n

√
1− 1

V (f0,G0)2
.

Thus, the number of elements of G needed to guarantee a given relative error depends
only on V (f0,G0).

If V (f0,G0) is large, then the factor
√

1− 1
V (f0,G0)2 is close to 1 and so its role

becomes negligible. Neglecting this factor, we get a relative error less than 1 only
for n > V (f0,G0)2. For n ≤ V (f0,G0)2 the upper bound implied by Corollary 2.5
becomes trivial.

On the other hand, if V (f0,G0) is close to 1 then the factor
√

1− 1
V (f0,G0) is

close to zero and it might outweigh the first factor V (f0,G0)√
n

. In such a case, even
approximation by only one element of G might be quite good. For example, if
V (f0,G0) ≤ 1 + δ then there exists f1 ∈ span1G such that ‖f−f1‖2

‖f‖2 ≤
√

δ(2 + δ).
Both Jones’ proof and its Barron’s modification are constructive – they are based

on an upper estimate of ‖f−fn‖2 expressed by a recursive formula. The same upper
bound on ‖f − spannG‖2 as is implied by Jones-Barron’s theorem was obtained by
Maurey using a probabilistic argument (see Barron, 1993).

Darken et al. (1993) extended Jones-Barron’s theorem to Lp-norms for p ∈
(1,∞) with a slightly worse rate of approximation – of the order of only O(n−

1
q ),

where q = max(p, p
p−1 ). They also described counter-examples showing that the

sequence of incremental approximants constructed by Jones may fail to converge in
normed linear spaces in which the unit ball has a sharp corner. In particular, Jones’
technique does not work for l1 and l∞-norms.

However, the probabilistic argument used by Maurey combined with Chernoff
bound (see e.g. Alon & Spencer, 1992) for estimating the probability of large
deviations from the expected value gives estimates even for rates of approximation
measured in l∞-norm (i.e. maximum norm). The following upper bound on uniform
approximation error is a straightforward generalization of Bruck and Smolensky’s
(1992) bound on rate of approximation by elements of the Fourier basis, see also
Siu and Bruck (1991).

Theorem 2.6 Let m be a positive integer and let G ⊆ {−1, 1}m. Then for every
f ∈ spanG ⊆ Rm and for every positive integer n there exists fn ∈ spannG such
that

‖f − fn‖∞ ≤ V (f,G0)√
n

√
2 ln(2m)

m
.

Notice that Theorem 2.6 implies that ‖f−fn‖2 ≤ V (f,G0)√
n

√
2 ln(2m). For spaces

of moderate dimension this estimate is only slightly worse than the direct estimate
of l2-error in Corollary 2.5.
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2.2 Upper bounds for orthonormal approximating sets

Mhaskar and Micchelli (1994) showed that when the set of approximating functions
is an orthonormal basis, then upper bounds on rates of approximation can be im-
proved and proofs can be simplified. We will strengthen their results to achieve
tight estimates for finite dimensional Hilbert spaces.

For an orthonormal basis A of a finite dimensional Hilbert space X , we denote by
‖.‖1,A, the l1-norm with respect toA, i.e. ‖f‖1,A =

∑m
i=1 |wi|, where f =

∑m
i=1 wigi.

It is easy to see that for every f ∈ X V (f,A) = ‖f‖1,A, i.e. A-variation is the
l1-norm with respect to A.

So Corollary 2.5 gives an upper bound on the rate of approximation from an
orthonormal setA in terms of the l1-norm with respect toA and the l2-norm, namely
‖f‖1,A√

n

√
1− ‖f‖22

‖f‖21,A
. Mhaskar and Micchelli (1994) obtained an upper bound on rate

of approximation from an orthonormal basis of a separable Hilbert space of the form
‖f‖1,A√

n+1
. The following theorem shows that in finite dimensional case their bound

can be improved.

Theorem 2.7 Let (X , ‖.‖2) be a finite dimensional Hilbert space and let A be its
orthonormal basis. Then for every f ∈ X and for every positive integer n there
exists fn ∈ spannA such that

‖f − fn‖2 ≤ ‖f‖1,A
2
√

n
.

The following theorem shows that when the only information available about f
is the value of its A-variation then this upper bound cannot be further improved.

Theorem 2.8 Let (X , ‖.‖2) be a finite dimensional Hilbert space, n be a positive
integer such that 2n ≤ dim X and let b ≥ 0 be an arbitrary real number. Then for
every orthonormal basis A of X there exists f ∈ X with ‖f‖1,A = b such that for
every fn ∈ spannA

‖f − fn‖2 ≥ ‖f‖1,A
2
√

n
.

However, if in addition to ‖f‖1,A also ‖f‖2 is known, then the upper bound
given in Theorem 2.7 can be improved.

Theorem 2.9 Let (X , ‖.‖2) be a finite dimensional Hilbert space and A be its or-
thonormal basis. Then for every f ∈ X and for every positive integer n there exists
fn ∈ spannA such that

‖f − fn‖2 ≤ ‖f‖1,A
2
√

n− 1

(
1− ‖f‖22

‖f‖21,A

)
.

Note that the upper bound implied by Jones-Barron’s theorem in this case is

‖f − fn‖2 ≤ ‖f‖1,A√
n

√
1− ‖f‖22

‖f‖21,A
.

If ‖f‖1,A is close to ‖f‖2 then the upper bound folowing from Theorem 2.9 may be
better by an arbitrarily large factor.

Theorem 2.9 yields a non-trivial upper bound on ‖f − spannA‖ only if

‖f‖1,A
2
√

n− 1

(
1− ‖f‖22

‖f‖21,A

)
< ‖f‖2.
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This is equivalent to ‖f‖1,A
‖f‖2 <

√
n +

√
n− 1. Otherwise, the trivial upper bound

that is equal to ‖f‖2 (which corresponds to the approximation of f by the constant
zero function) is better.

The following theorem shows that these two bounds together, i.e. the minimum
of ‖f‖2 and the bound from Theorem 2.9, yield a bound on ‖f − spannA‖ that is,
up to a constant factor, the best possible upper bound expressed in terms of only
‖f‖1,A and ‖f‖2.
Theorem 2.10 Let (X , ‖.‖2) be a finite dimensional Hilbert space, n be a positive
integer and b, r be positive real numbers such that r ≤ b and max{2n− 1, b2/r2} ≤
dim X . Then for every orthonormal basis A of X there exists f ∈ X such that
‖f‖1,A = b, ‖f‖2 = r and for every fn ∈ spannA

‖f − fn‖2 ≥ 1
2

min

{
‖f‖1,A

2
√

n− 1

(
1− ‖f‖22

‖f‖21,A

)
, ‖f‖2

}
.

3 Approximation of real-valued Boolean functions
by perceptron networks

Using tools derived in the previous section, we will estimate rates of approximation
of real functions of d Boolean variables by perceptron networks.

For a positive integer d denote by B({0, 1}d) the linear space of all real-valued
functions of d Boolean variables. It is easy to see that B({0, 1}d) is isomorphic to
R2d

. For any two functions f, g ∈ B({0, 1}d), the standard Euclidean inner product
is f · g =

∑
x∈{0,1}d

f(x)g(x) and ‖f‖2 =
√

f · f .

We study representations and rates of approximation of functions from B({0, 1}d)
by functions computable by networks with a single linear output unit and one-
hidden-layer containing perceptrons with signum activation function. Signum (de-
fined by sgn(t) = −1 for t < 0 and sgn(t) = 1 for t ≥ 0) can be obtained from more
common Heaviside activation function ϑ (defined by ϑ(t) = 0 for t < 0 and ϑ(t) = 1
for t ≥ 0) using a simple linear transformation: sgn(t) = 2ϑ(t) − 1. Thus any
function computable by a network with n Heaviside perceptrons can be computed
by a network with n + 1 signum perceptrons.

We use signum for technical reasons: since the absolute value of sgn is a constant
equal to 1, any function from B({0, 1}d) computable by a perceptron with signum
activation function, i.e. a function of the form sgn(v · x + b), has the l2-norm equal
to
√

2d, while the l2-norm of a function computable by a perceptron with Heaviside
activation function, i.e. a function of the form ϑ(v · x + b), depends on the size of
the half-space determined by the inequality v · x + b ≥ 0.

Let Hd denote the set of functions from B({0, 1}d) computable by sgn percep-
trons, i.e.

Hd = {f ∈ B({0, 1}d); (∃v ∈ Rd, b ∈ R)(∀x ∈ {0, 1}d)(f(x) = sgn(v · x + b)}.

Since ϑ(t) = sgn(t)+1
2 and sgn(t) = 2ϑ(t)− 1, it is easy to see that the variation of

any f with respect to halfspaces (Heaviside perceptrons) is at least V (f,Hd) and
at most 3V (f,Hd).

3.1 Upper bounds on rates of approximation

Both Corollary 2.5 and Theorem 2.6 imply upper bounds on rates of approximation
(measured in l2 and l∞-norm) of functions from B({0, 1}d) by signum perceptron
networks in terms of Hd-variation.
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Corollary 3.1 For every positive integer d, for every f ∈ B({0, 1}d) and for every
positive integer n there exist functions fn, f ′n ∈ spannHd such that

‖f − fn‖2 ≤ V (f,H0
d)√

n

and

‖f − f ′n‖∞ ≤ V (f,H0
d)√

n

√
(d + 1)2 ln 2

2d
.

To take advantage of this corollary we need to estimate H0
d-variation. Barron

(1993) used Fourier representation to estimate variation with respect to half-spaces
by a spectral norm for real domain functions and suggested its use also in the
Boolean case. Here we derive an estimate of ‖f− spannHd‖ based on spectral norm
of f and for comparison also an estimate based on l1-norm.

Let Fd denote the Fourier orthonormal basis of B({0, 1}d) (see e.g. Weaver,
1983) defined by Fd =

{
1√
2d

(−1)u·x;u ∈ {0, 1}d
}

. Every f ∈ B({0, 1}d) can be

represented as f(x) = 1√
2d

∑
u∈{0,1}d

f̃(u)(−1)u·x, where the Fourier coefficients f̃(u)

are given by the formula f̃(u) = 1√
2d

∑
x∈{0,1}d

f(x)(−1)u·x. The l1-norm with respect

to Fourier basis, ‖f‖1,Fd
= ‖f̃‖1 =

∑
u∈{0,1}d |f̃(u)|, is called the spectral norm.

The generalized parity functions are defined as follows. For a subset I ⊂ {0, 1}d,
I-parity is defined by pI(u) = 1 if

∑
i∈I ui is odd, and pI(u) = 0 otherwise. Notice

that the elements of the Fourier basis Fd are exactly the generalized parity functions,
if we interpret the output 1 as −1 and 0 as 1.

It is easy to verify that every function from the Fourier basis Fd can be expressed
as a linear combination of at most d + 1 signum perceptrons. Indeed, it is easy to
verify that for every u, x ∈ {0, 1}d (−1)u·x = 1+(−1)d

2 +
∑d

j=1(−1)jsgn(u ·x−j+ 1
2 ).

Moreover, any linear combination of n elements of Fd belongs to spandn+1Hd, since
all of the n occurrences of the constant function may be expressed by a single
perceptron.

Combining this representation with Theorem 2.7, we obtain the following upper
bound.

Corollary 3.2 Let d be a positive integer and f ∈ B({0, 1}d). Then for every
positive integer there exists fdn+1 ∈ spandn+1Hd such that

‖f − fdn+1‖2 ≤ ‖f̃‖1
2
√

n
.

Let Ed be the Euclidean orthonormal basis of B({0, 1}d), i.e. Ed = {eu; u ∈
{0, 1}d}, where eu(u) = 1 and for every x ∈ {0, 1}d with x 6= u eu(x) = 0.

It is easy to verify that for any u ∈ {0, 1}d eu(x) is expressible as sgn(v·x+b)+1
2

for an appropriate v and b. Analogously as above, adding several occurrences of the
constant function together, we obtain a representation of every linear combination
of n functions of the Euclidean basis as an element of spann+1Hd. This implies the
following corollary of Theorem 2.7.

Corollary 3.3 Let d be a positive integer and f ∈ B({0, 1}d). Then for every
positive integer n there exists fn+1 ∈ spann+1Hd such that

‖f − fn+1‖2 ≤ ‖f‖1
2
√

n
.
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Since it is usually easier to estimate the spectral norm of the function being
approximated than its Hd-variation, Corollary 3.2 gives a more feasible method
of estimation than Corollary 3.1. However, the set of characteristic functions of
half-spaces is much bigger than the set of parities and thus, for many functions,
Hd-variation might be considerably smaller than their spectral norm. For such
functions upper bounds derived using Corollary 3.2 might be too large. In the next
section, we will give examples illustrating the relationship between H0

d-variation
and the spectral norm.

3.2 Polynomial and exponential upper bounds

In this section, we discuss the strength and weakness of the above described method
of estimating rates of approximation of real-valued functions of several Boolean
variables by perceptron networks using Fourier representations of functions from
Hd. For this purpose, it is natural to compare relative errors of approximation.
Hence, we formulate our estimates in terms of normalized variation.

We describe functions for which the methods from the previous section give
tight estimates as well as functions for which they do not give good results. Finally,
we describe a set of functions with normalized Hd-variation growing exponentially
with d.

An easy example of a set of functions for which Corollary 3.2 guarantees small
relative error of approximation is the set of linear combinations of a “small” number
of generalized parities. Let f =

∑k
i=1 wigi, where gi ∈ Fd. By the Cauchy inequality

∑k
i=1 |wi| ≤

√
k

∑k
i=1 w2

i and hence ‖f̃‖1
‖f‖2 ≤

√
k. Thus for n ≥ k

4ε2 Corollary 3.2
guarantees approximation within a relative error not exceeding ε. Note however
that the guaranteed error for these functions is far from the true approximation
error, which is zero for n ≥ k.

A more interesting example of functions for which Corollary 3.2 yields a non-
trivial estimate of relative error of approximation are functions representable by
decision trees of certain type.

Recall that a decision tree that represents a function f : {0, 1}d → R is a
binary tree with labeled nodes and edges. Every internal node is labeled by one
of the variables x1, . . . , xd, and two outgoing edges are labeled by 0 and 1. The
leaves of the tree are labeled by real numbers. The computation starts at the root.
If the computation reaches an internal node labeled by xi, then the computation
continues along the edge, whose label coincides with the actual value of the variable
xi. Finally, a leaf is reached. Its label determines the value of the function. The
size of a decision tree is the number of its leaves. The following theorem extends a
result of Kushilevicz and Mansour (1991) (Lemma 5.1).

Theorem 3.4 Let d, s be positive integers, f ∈ B({0, 1}d) be expressible by a deci-
sion tree of size s such that for all x ∈ {0, 1}d f(x) 6= 0. Then

‖f̃‖1
‖f‖2 ≤ s

maxx∈{0,1}d |f(x)|
minx∈{0,1}d |f(x)| .

Thus for n ≥
(

s max
x∈{0,1}d |f(x)|

2ε min
x∈{0,1}d |f(x)|

)2

Corollary 3.2 guarantees relative error of
approximation at most ε. Hence for a function representable by a decision tree with
both the size and the ratio of the maximum and the minimum value of |f(x)| for
any x ∈ {0, 1}d bounded by a polynomial in d we can achieve approximation within
relative error ε by network with a polynomial number of hidden units.

To show limitations of the method of deriving estimates of rates of approximation
by perceptron networks via an orthonormal approximating set, we will describe sets
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of functions for which normalized Hd-variation grows linearly with d, while both
normalized Fd-variation and Ed-variation grow exponentially.

Recall that a bent function is a function f ∈ B({0, 1}d) such that for all x, u ∈
{0, 1}d |f(x)| = 1 and |f̃(u)| = 1. For any bent function f , we have V (f0,Fd) =
‖f̃‖1
‖f‖2 =

√
2d. Hence, relative approximation error ‖f−spannHd‖

‖f‖2 less than 1 is guar-
anteed by Corollary 3.2 only if the number n grows exponentially with d. Since
V (f0, Ed) = ‖f‖1

‖f‖2 =
√

2d, we do not obtain a good approximation error using the
Euclidean basis as well. Moreover, the approximation error for f using Fd or Ed is
indeed large. For any bent function f and any h ∈ B({0, 1}d) such that h ∈ spannEd

or h ∈ spannFd we have ‖f−h‖2
‖f‖2 ≥ √

1− n
2d , which is close to 1 unless n is expo-

nential.
In order to demonstrate an example of a bent function with small normalizedHd-

variation, we use symmetric bent functions. Recall that a function f ∈ B({0, 1}d)
is called symmetric if it does not depend on the order of input variables; more
precisely, for every x, y ∈ {0, 1}d w(x) = w(y) implies f(x) = f(y), where w(x) is
the weight of x defined by w(x) =

∑d
i=1 xi.

Any symmetric function f can be represented by a vector (c0, c1, . . . , cd) ∈ Rd+1

in such a way that for every x ∈ {0, 1}d f(x) = cw(x). Hence f can be repre-
sented by a linear combination of functions computable by signum perceptrons as
f(x) = cd+c0

2 +
∑d

j=1
cj−cj−1

2 sgn(
∑d

i=1 xi−j +1/2). It follows that f ∈ spand+1Hd.
Moreover, if |cj | = 1 for all j = 0, 1, . . . , d, we have V (f0,H0) = V (f,Hd) ≤ d + 1.

Examples of symmetric bent functions were given by Bruck (1990); Savický
(1994) gave a complete characterization of symmetric bent functions. An example
of a function of this type is φd : {0, 1}d → {−1, 1} defined for d even by φd(x) = −1
if w(x) ≡ 0 (mod 4) or w(x) ≡ 1 (mod 4), and φd(x) = 1 otherwise.

Since normalized Fd-variation (spectral norm) of any bent function grows ex-
ponentially, symmetric bent functions are examples of functions for which upper
bounds from Corollary 3.2 differ from upper bounds from Corollary 3.1 exponen-
tially.

Finally, we will describe functions for which normalizedHd-variation grows expo-
nentially with d. Since all the values of the functions are 1 or −1, their Hd-variation
and their normalized Hd-variation coincide.

For every a, b ∈ {0, 1}d/2, where d is even, let a ∗ b denote their concatenation.
Then for every even positive integer d every vector x ∈ {0, 1}d can be represented
in a unique way as x = xl ∗ xr, where xl, xr ∈ {0, 1}d/2.

Recall that a communication matrix of a function f : {0, 1}d → {−1, 1} is 2d/2

by 2d/2 matrix Mf with rows and columns indexed by vectors a, b ∈ {0, 1}d/2 in
such a way that Mf (a, b) = f(a ∗ b).

A matrix M with entries from {−1, 1} is called Hadamard matrix if every two
distinct columns (or equivalently rows) of M are orthogonal.

An example of a function with a Hadamard communication matrix is the “inner
product mod 2” βd : {0, 1} → {−1, 1} defined by βd(xl ∗ xr) = (−1)xl·xr for all
x = xl ∗ xr ∈ {0, 1}d.

The proof of the fact that theHd-variation of any function of d Boolean variables
with a Hadamard communication matrix grows exponentially is based on Lindsey’s
lemma that estimates the difference between the number of 1s and −1s in subma-
trices of a Hadamard matrix.

Lemma 3.5 (Lindsey) Let n be a positive integer and let M be an n by n Hadamard
matrix. Let A, B be subsets of the set of indices of rows, columns, resp., of M . Then

∣∣∣∣∣
∑

a∈A

∑

b∈B

M(a, b)

∣∣∣∣∣ ≤
√

n cardA cardB.
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Hajnal et al. (1987) used a special case of this lemma to derive an exponential
lower bound on the number of hidden units needed to compute βd by a one-hidden-
layer perceptron network with a single output Heaviside perceptron with all the
weights between hidden units and the output unit being integers bounded by a
polynomial in d. The following lemma is based on inspection of their proof.

Lemma 3.6 (Hajnal et al.) Let d be an even positive integer and f : {0, 1}d →
{−1, 1} be a function with Hadamard communication matrix Mf . Then for every
g ∈ Hd |f · g| ≤ O(25d/6).

Combining this lemma with the geometric characterization of variation (The-
orem 2.2) we get an exponential lower bound on Hd-variation for functions with
Hadamard communication matrix.

Theorem 3.7 Let d be an even positive integer and f : {0, 1}d → {−1, 1} be a
function with Hadamard communication matrix Mf . Then V (f,Hd) ≥ Ω(2d/6).

4 Discussion

In this paper, we considered two exact representations (obtained using the Eu-
clidean and the Fourier bases) of real-valued Boolean functions of d variables as
functions computable by one-hidden-layer perceptron networks. Since both of these
representations require networks with the number of hidden units growing expo-
nentially with the number of variables d, we examined the effect of the reduction of
the number of hidden units upon decrease of accuracy. We estimated rates of ap-
proximation in terms of various norms of the function to be approximated, namely
standard l1, l2-norms and variation with respect to a set of functions. To illustrate
the strength and weakness of our estimates we gave examples of functions with
these norms growing both exponentially and polynomially.

It is an open question whether one-hidden-layer perceptron networks with a
single linear output unit can represent the “inner product mod 2” using less than
an exponential number of hidden units. It is also not known whether this function
can be approximated within a small error by a network with linear output unit
with arbitrary real weights and with n Heaviside perceptrons for n bounded by a
polynomial in d. Since Theorem 3.7 gives an exponential lower bound on an upper
bound given in Corollary 3.1, our results show that this question cannot be solved
using Jones-Barron theorem.

5 Proofs

Proof of Theorem 2.2.
Let b = V (f,G). It is easy to see that f ∈ cl convG(b). Hence, for every ε > 0

there exists fε such that ‖f − fε‖ ≤ ε and fε =
∑m

i=1 wigi, where
∑m

i=1 |wi| ≤ b
and gi ∈ G for every i = 1, . . . ,m. For every h ∈ S we have |f · h| − ε ≤ |fε · h| =
|∑m

i=1 wigi ·h| ≤
∑m

i=1 |wi||gi ·h| ≤ b supg∈G |g ·h|. Since this holds for every ε > 0,
we have b ≥ suph∈S

|f ·h|
supg∈G |g.h| .

For the other direction it is sufficient to show that for every 0 < b < V (f,G)
there exists h ∈ S such that |f ·h|

supg∈G |g·h| ≥ b. Since f 6∈ cl convG(b), f can be
separated from cl convG(b) by a hyperplane (see e.g. Holmes, 1975). It follows that
there exists h ∈ S such that for every f ′ ∈ cl convG(b) we have f · h > f ′ · h. Since
G(b) is closed under multiplication by −1, we have for every g ∈ G f · h > b |g · h|.
Hence |f ·h|

|g·h| ≥ b. 2
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Proof of Lemma 2.4.
Let us prove the lemma by induction with respect to n. If n ≤ m, the conclusion

is trivial. For the induction step, it is sufficient to verify that any linear combination
of n > m coefficients may be replaced by a linear combination with at most n − 1
nonzero coefficients satisfying the requirements of the lemma.

Assume that f =
∑n

i=1 αigi for n > m, where αi 6= 0 for all i = 1, . . . , n. Since
n > dimX , there are numbers βi such that

∑n
i=1 βigi = 0 and βi 6= 0 for at least

one i. Then, for every t, we have f =
∑n

i=1(αi − tβi)gi. Moreover, the function
φ(t) =

∑n
i=1 |αi − tβi| is a piecewise linear function. It is easy to verify that there

exists i0 such that βi0 6= 0 and φ achieves its global minimum at t0 = αi0/βi0 . This
implies that f is a linear combination of {gi; i ∈ {1, . . . , n} − {i0}} with the sum of
absolute values of the coefficients equal to φ(t0) ≤ φ(0) =

∑n
i=1 |αi|. 2

Proof of Theorem 2.7.
Let A = {g1, . . . , gm}, let f ∈ X and let b = ‖f‖1,A. Using the same trick

as Mhaskar and Micchelli (1994), we assume, without loss of generality, that f =∑m
i=1 wigi, where |w1| ≥ |w2| ≥ . . . ≥ |wm| (otherwise we reorder the basis A). Let

hn =
∑n

i=1 wigi. Then, ‖f − hn‖22 =
∑m

i=n+1 w2
i ≤ |wn+1|

∑m
i=n+1 |wi|. Moreover,∑m

i=n+1 |wi| ≤ b− n|wn+1|. Denoting t = |wn+1|, we obtain ‖f − hn‖22 ≤ t(b− nt).
The last expression achieves its maximum for t = b/(2n). Since the maximum is
equal to b2/(4n), the required estimate follows. 2

Proof of Theorem 2.8.
Let f = b/(2n)

∑2n
i=1 gi. It is easy to see that ‖f‖1,A = b and for every h ∈

spannA, ‖f − h‖22 ≥ b2/(4n). 2

Proof of Theorem 2.9.
Let A = {g1, . . . , gm} and let f ∈ X . Assume, without loss of generality,

that f =
∑m

i=1 wigi, where |w1| ≥ |w2| ≥ . . . ≥ |wm| (otherwise we reorder the
basis A). Let f ′ =

∑m
i=2 wigi and A′ = {g2, . . . , gm}. By Theorem 2.7, there

exists a function h′ ∈ spann−1A′ such that ‖f ′ − h′‖2 ≤ ‖f ′‖1,A′
2
√

n−1
= ‖f‖1,A−|w1|

2
√

n−1
.

Since ‖f‖22 =
∑m

i=1 w2
i ≤ |w1|‖f‖1,A, we have |w1| ≥ ‖f‖22/‖f‖1,A. Denoting

h = w1g1 + h′ ∈ spannA and using the fact that ‖f − h‖2 = ‖f ′ − h′‖2, we obtain
the theorem. 2

Lemma 5.1 Let b ≥ r > 0, let b2/r2 ≤ k ≤ dimX and let 1 ≤ n ≤ k. Then, there
exists a function f ∈ X such that ‖f‖1 = b, ‖f‖2 = r and for every fn ∈ spannA,
we have

‖f − fn‖2 ≥
√

k − n

k

(
b−

√
kr2 − b2

k − 1

)
.

Proof.
Let A = {g1, . . . , gm} and let k ≤ m. Let

f =

(
b + (k − 1)

√
kr2 − b2

k − 1

)
g1

k
+

(
b−

√
kr2 − b2

k − 1

)
g2 + . . . + gk

k
.

By a direct calculation one can verify that ‖f‖1 = b and ‖f‖2 = r. Moreover, it
is easy to see that if h is a linear combination of at most n elements of A, then at
least k − n coordinates of f − h coincide with coordinates of f and hence

‖f − h‖22 ≥ (k − n)
1
k2

(
b−

√
kr2 − b2

k − 1

)2

.
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2

Proof of Theorem 2.10.
First, assume that b2/r2 ≤ 2n − 1. The lower bound from Lemma 5.1 may be

equivalently formulated as

‖f − h‖2 ≥
√

k − n

k − 1
b2 − r2

b +
√

kr2−b2

k−1

.

Since (kr2 − b2)/(k − 1) ≤ b2, this implies that

‖f − h‖2 ≥
√

k − n

k − 1

(
b2 − r2

2b

)
.

Substituting k = 2n− 1, we obtain

‖f − h‖2 ≥ b

4
√

n− 1

(
1− r2

b2

)
.

Now, let b2/r2 > 2n−1. The lower bound from Lemma 5.1 may be equivalently
formulated as

‖f − h‖2 ≥
√

k − n

k

(
b/r√

k
−

√
k − b2/r2

k(k − 1)

)
r.

Assume that b2/r2 ≥ n. Let k = db2/r2e. Since b2/r2 ≥ k − 1, we obtain

‖f − h‖2 ≥
√

1− n

k

(√
k − 1

k
− 1√

k(k − 1)

)
r ≥ (1− 2

k
)r

√
1− n

k
.

Since b2/r2 > 2n− 1, we have k ≥ 2n. Hence, for every h ∈ spannA, we have

‖f − h‖2 ≥ 1√
2
(1− 1/n)r ≥ r/2.

2

Proof of Theorem 3.4.
Denote the leaves of the tree by v1, . . . , vs and for j = 1, . . . , s let Dj be the

set of inputs x ∈ {0, 1}d for which the computation reaches the leaf vj and let
val(vj) be the value of f assigned to vj . Using the notation Dj also for the char-
acteristic function of the set Dj , we obtain f =

∑s
j=1 val(vj)Dj . It follows that

f̃ =
∑s

j=1 val(vj)D̃j .
By the definition of the Fourier transform, we have for any u

D̃j(u) =
1√
2d

∑

x∈{0,1}d

(−1)u·x

In order to calculate D̃j(u) for an arbitrary u ∈ {0, 1}d, consider the restriction
of the function (−1)u·x to the set Dj . Let us distinguish two possibilities. First,
assume that there is a variable xi that is not tested on the path from the root of
the tree to vj and, moreover, ui = 1. Then the Boolean vectors in Dj may be
partitioned into set of pairs in such a way that the vectors in each pair differ only
in the i-th coordinate. Since ui = 1, the sum of the values of the function (−1)u·x

at elements of any of the pairs is zero. It follows that D̃j(u) = 0.
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Second, assume that for all i = 1, . . . , d, if ui = 1, then xi is tested on the path
to vj and hence xi has the same value for all x ∈ Dj . This means that (−1)u·x is
constant on Dj . In other words, |D̃j(u)| = cardDj/

√
2d.

Let the number of variables tested on the path to vj be `j . Then, card Dj =
2d−`j and there are exactly 2`j vectors u for which the second possibility takes place.
For these vectors u, we have |D̃j(u)| = card Dj/

√
2d = 2d−`j /

√
2d. Altogether,

‖D̃j‖1 =
∑

u |D̃j(u)| = 2`j 2d−`j /
√

2d =
√

2d.
By combining the previous paragraph with the fact that for all j = 1, . . . , s we

have f̃ =
∑s

j=1 val(vj)D̃j , we obtain ‖f̃‖1 ≤ maxx |f(x)|s
√

2d. On the other hand,
‖f‖2 ≥ minx |f(x)|

√
2d. Combining these two estimates, the theorem follows. 2

Proof of Lemma 3.6.
Consider the communication matrices Mf and Mg. The function g is expressible

as g = sgn(h1 + h2 + b), where h1, h2, resp., is a weighted sum of the first, second,
resp., d/2 variables and b is a real number. Consider any ordering of 2d/2 assign-
ments to the first d/2 variables in which the value of h1 does not decrease. Reorder
the rows in both Mf and Mg according to this ordering. Analogously, reorder the
columns according to an ordering of the assignments of the second d/2 variables in
which h2 is non-decreasing. After this reordering, each row and also each column
of Mg starts with a (possibly empty) initial segment of −1’s followed by a (possibly
empty) segment of 1’s.

Consider a matrix M∗ defined by M∗(a, b) = Mf (a, b)Mg(a, b) (where Mf

and Mg are reordered as described above). It is easy to verify that f · g =∑
a,b∈2d/2 M∗(a, b). Let k = dd/3e and consider a partition of the matrix M∗

into 2d/2−k times 2d/2−k square submatrices of size 2k by 2k. Also, decompose both
matrices Mf and Mg into submatrices in the same way.

Call a submatrix of M∗ a positive, negative, resp., submatrix if all the corre-
sponding entries in Mg are 1, −1, resp. Call the submatrices that are neither positive
nor negative mixed submatrices. Let us consider separately the contribution of pos-
itive, negative and mixed submatrices into the absolute value of the inner product
f · g. Because of the monotone structure of Mg, there are at most 2 · 2d/2−k mixed
submatrices. Hence, the contribution of the mixed matrices is at most 2·2d/2−k ·22k.
In order to estimate the contribution of negative submatrices, we use the Lindsey’s
lemma. To this end, we combine all negative submatrices in one column into one
rectangle of size 2k times at most 2d/2. The contribution of all of these rectangles
together is at most 2d/2−k

√
2d/2 · 2k · 2d/2. Similarly, we get the same bound for

the positive submatrices. Altogether, we have |f · g| ≤ 2(2d/2+k + 2d−k/2). Since
k = dd/3e, we obtain |f · g| = O(25d/6). 2
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