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ABSTRACT

RBF networks are widely used for the quasi non-parametric estimation of real-valued multi-
dimensional functions through a finite set of samples. However, there are numerous ways to
estimate the three types of parameters involved in RBF learning: the centers and widths of the
radial functions, and their weights. While the literature often deals with the problem of weight
computation, many assumptions are usually made on how to choose the center locations and
widths of the kernels. This paper shows adaptive ways to evaluate these parameters, based on
neural network and vector quantization techniques, and relying on different assumptions on the
function to approximate. It also shows the parallel between approximation of functions and
of probability densities by RBF networks, and how the techniques developed for one of these
domains may be extended to the other one.

1. Introduction

The use of Radial Basis Functions (RBF) for the approximation of real-valued multivariable functions
has become more and more popular in the recent literature. RBFs are feed-forward networks that have
universal approximation properties (see for example [3]); their main advantage compared to other neural
network paradigms is the simplicity of computation of the network parameters. In most methods indeed,
the three different types of parameters that can be identified in RBF networks are computed separately (and
sequentially), what greatly decreases the complexity of the learning process. In the next sections, we give
ways to estimate the three types of parameters, but the main results of this paper concern the important
problem of the choice of the widths of the Gaussian kernels used in the network.

2. RBF networks

The problem of interpolation of real multivariable functions can be expressed as follows. Let us consider a
set of N data points in the input space R, together with their associatied desired output values in R:

D= {(ei,u) ERI xR, 1< <N | flai) =wi} - (1)

This data set can be used to characterize a function with one-dimensional output values; multi-dimensional
interpolation can be done by generalizing the following equations and algorithms, while considering sepa-
rately each component of the output vectors. We consider only one dimensional output in the following.

The RBF approach to approximate function f uses P functions ¢;(u) = ¢;(||u — ¢;j)||), where ¢; are
radial functions ¢; : Rt - R, 1 < j < Pue R% c; € R The c; are the locations of the centroids (the
centers of the radial basis functions), while ||-|| denotes a norm on ®" (usually Euclidean).
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The approximation of function f may be expressed as a linear combination of the radial basis functions

P
flu) =2 A (llu=gll)- (2)
Jj=1
The most common radial function in practice is a Gaussian kernel given by
_ (llu-cill)2
¢j([lu—cjll)=e A (3)

where o is the width factor of kernel j.
Once the general shape of the ¢; functions is chosen, the purpose of a RBF algorithm s to find parameters

¢j, 0j and A; to best fit function f. Fitting means here that the global mean-square error between the desired

outputs y; for all data point z;,1 < ¢ < N and the estimated outputs f(z;) is minimized. This error is

given by

2

N ) N i 9
Ers =50 (w= @) =33 (f0) - fla) (4)
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3. Training of RBF networks

As pointed out in the previous section, training a RBF networks means to find parameters c;, o; and A;
used in equations 2 and 3 in order to get the best approximation f of the function f. In a conventional
RBF training (see [2, 1]), these three sets of parameters are succesively and independently computed.

While this splitting of learning into three successive phases is considered as “normal” in most of the
literature covering the subject, it must not be forgotten that this method does not find global optimum
with respect to all parameters c;, o; and A;. However, the splitting makes the learning much easier than
in multi-layer perceptrons for example, and this is certainly one of the major advantages of RBF networks.
Moreover, it is possible to reach a (local) minimum of the error function 4 with respect to all parameters
of the network by using a global gradient descent method which, while loosing the advantages of splitted
learning, only requires a few iterations (and usually converges to fairly “good” local minima) if the initial
conditions are taken as the result of a splitted learning (see section 3.4.

3.1. Locations of centroids

Locations of centroids are usually chosen according to the probability density of the input set z;; such choice
leads to more centroids, and so naturally to a better approximation of function f, in regions of the input
space covered by more input vectors, which seems a good heuristic in many applications.

Moody and Darken [2] proposed to use a k-means clustering algorithm to find the locations of the
centroids c;; as detailed in [1} and [4], we suggest to use a Competitive Learning (CL) method which leads
to similar results; with the advantages first of being adaptative (continuous learning, even with an evolving
input database), and secondly of helping to the choice of the width factors s explained in the next section.
The principle is thus to initialize the P centroids c; to the first P input patterns z;, 1 < ¢ < P. Next, input
vectors z;, 1 < i < N are sequentially or randomly presented to all centroids ¢;, and the centroid ¢ closest
to x; according to

lea = 24ll < llej —aill ¥V €{1...P},1<a< P (5)

is selected. Then, the selected centroid c, is moved in the direction of input z; according to the learning
rule
alt +1) = calt) + (1) 1z — eaD)] (©)

where a(t) is a time-decreasing adaptation factor, 0 < a(t) < 1. After convergence of this CL proced‘{fev
the probability density of the centroids will approximate the probability density of the input data, making
the regions of influence of all centroids equiprobable.
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Fig. 1: Illustration of two Gaussian functions in 1 dimension, and related notations.

3.2. Width factors

Moody and Darken [2] proposed to compute the width factors o; of the Gaussian RBF units by minimizing a
cost function measuring the overlapping between adjacent units; this function however includes a parameter
difficult to choose, what effectively thansfers the problem of choosing the o; to the choice of this parameter.

In [4] we proposed to use a measure of the dispersion of points in the clusters associated to the centroids
in order to fix the width factors 0. Keeping the method more general than in [4], an iterative estimation
of the width factors can be realized through a simple convex combination between the previous estimation
and a new value according to

galt+1) = (1= B(t))aa(t) + B(t)q ||zi — calt)]] (7)

and the width factors o, will converge to the mean value of ¢||z; — cq(t)]|. If ¢ is set to 1, o, will converge
to the standard deviation of cluster a: the choice of an optimum value for ¢ is explained below.

3.2.1. First case

We first consider that the true probability density of input vectors x; can be considered as constant on two
consecutive clusters, and also that the function f itself can be considered as constant in first approximation
on the same range; the first hypothesis leads to the constraint that we will choose the width factor of the
Gaussian function associated to each cluster in order to keep the estimate 2 of the density as constant as
possible over two consecutive clusters. Let us examine the one-dimensional example of figure 1. X and Z
represent the centers of two consecutive clusters A and B, 2R the distance and Y the midpoint between
them. The purpose of the method is to set the relation between R and the width factor h of the Gaussian
functions A and B, in order to have a constant approximate of the probability density over the segment
(X, Z]. We will simplify the computation of h by setting its value in order to have the same estimate of
probability density at points .X', }" and Z: we assume that the fluctuations inside the segments [Y, Y] and
[Y, Z] may be neglected. We will also neglect the influence of a kernel at a distance 2R of its center (which,
when verified a posteriori, will cause a maximum error of about 6% in the local value of the estimate).

With these hypotheses. we can evaluate the contribution of the Gaussian functions A and B respectively
at locations X (or Z) and Y:

F(X) = A (8)
f(¥) = 2a e (9)

The above two equations first suppose that we attributed the same width factor ¢ to the two clusters
centered on X and Z, and secondly that we suppose that the widths factors A which are respectively
associated to these clusters are equal too (which is natural since we consider the function as constant over
that range).

Making the estimates 8 and 9 equal to have an equal approximation of probability density at points X.
Y and Z leads then to

R:\/IH_QO' (10)

As explained in [4], a similar development which leads to the same result (independent of the dimension
of the input space) can be made in dimensions greater than 2.
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Now we have the relation between ¢ and R, we need a method to evaluate R. First, we will evaluate
the inertia of each cluster, by using an adaptive method exactly as the competitive learning does for the
locations of the centers. The inertia coefficient i(m) for each cluster is computed in the following way:

i(a) = i(a) + a(llz(n) - c(a)||? - i(a)) (11)

where a is the index of the closest centroid to a learning vector z(n). Equation 11 is a convex combination
at each iteration between the previously estimated value of i(a) and a new contribution ||z(n) — c(a)||? due
to the input vector z(n). After learning, parameters i(m), 1 < m < M;, will converge to the average inertia
of points in the clusters associated to c(m).

The last point to solve is the relation between the estimated inertia i(a) and the distance R. If we
consider that, under the locally uniform density approximation as above, the local arrangement of the
centers of consecutive clusters will be as the vertices of an hypercube with edges of length 2R, the relation
between the inertia of each cluster and R is:

. 1 9 dR?
i0) = 5 [, llstn) = c(@)Fav = &2 (12)

where d is the dimension of the space.
Combining equations 10 and 12 then leads to a width factor o given, in dimension d, by

_ [3i(a)
7=V dm2 (13)

Reminding that o is adapted according to equation 7, this leads to an optimal value of q given by

3
dln2 -

(14)

<
]

which is the main result of this paper.

3.2.2. Second case

We know consider a less restrictive case, where the density of input vectors z; can still be considered as
constant over two consecutive clusters, but where the function f to approximate is no more constant, but
can be linearly approximated over the range of two consecutive clusters.

In this case, it is not natural anymore to consider that the weight factor A associated to the two
consecutive clusters are equal; however, compared to the first case examined above, we can consider that
the linear approximation on function f only influences the computation of the width factors A proportionally
to the slope of function f, without any other influence on the computation of the centers and widths of the
Gaussian kernels.

It can easily be verified that adding the linear hypothesis on f instead the constant hypothesis in
equations 8 and 9 does not influence the result of equation 10. The main result of equation 14 is thus still
valid too.

Let us mention however that the above development is no more correct is the function f to approximate
greatly differs from its linear approximation on two sonsecutive clusters; rather than being a limitation on
the functions that can be approximated by this method, this fixes an upper bound (or at least an order
of magnitude) on the distance between two consecutive clusters or, in other words, a lower bound on the
number of clusters.

3.2.3. Third case

Let us consider even less restrictive case at last. We make now the hypothesis that both the function f a.nd
the density of input vectors z; can be linearly approximated on two consecutive clusters. This hypoth&m};
is not far from what can be found in real cases: again, such hypothesis fixes a lower bound on the number:
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of clusters (or Gaussian kernels) that must be used in the approximation, rather than being a limitation on
the function f itself.
The only relation where the density of points intervenes is equation 12 which must be changed into

. 1
@) = /V l2(n) — c(a)|I?p(z)dV (15)

where p(z) is the density of points z, in the cluster. However if this density is linear and if ¢(a0 is the
center of teh cluster, the previous result
ia) = °F
i(a) = =
Moreover, as in the second case, the multiplication of the Gaussian kernel outputs by different );
weight factors does not influence the computation of the centers and widths of the kernels. Finally, this
multiplication also does not influence the location of the borders between the clusters (which are still fixed
at equal distance between two consecutive centroids, or in other words as the Voronoi tesselation of the
centroids), which is a necessary hypothesis in the above developments. As a consequence, result 14 is still
valid in the third least restrictive case.

(16)

3.3. Weights

As in other methods to fix the parameters of RBF approximation networks, it can easily be seen that, once
the centers c; and the width factors o; are fixed, the problem of choosing the weight factors Aj associated to
the kernels in order to decrease the mean square error defined by 4 is purely linear, and can thus be solved
for example by a pseudo-inverse or gradient descent method (see for eample in [2] or [4]).

3.4. Optimization of the parameters

It has already been mentioned that the method of splitting the search for paramaters c(j),o(j) and A(j)
into three independent sets only leads to a minimization of error 4 with respect to parameters A(j), but
not with respect to the two other sets. To avoid this drawback and to find a (local) minimum of function
4 defined with respect to the three sets of parameters, one can perform a gradient descent on function 4
simultaneously on the three sets of parameters. Using this method however suppresses the advantage of
simplicity of learning which makes RBF so attractive in comparison with other neural network models. As
a compromise between precision and simplicity, a gradient descent can be performed on function 4 with
respect to the three sets of parameters, but taking as initial conditions the results of the splitted evaluation
of parameters in the previous sections. This will thus converge to a local minimum of function 4 defined
with respect to the whole sets of parameters, but one can expect that the number of iterations needed in the
gradient descent process will be small since the initial conditions will be close from the convergence point.
For details about this optimization procedure, see [4].

4. Conclusion

While RBF netzorks are now widely used for function approximation tasks, there is still no undisputed way
to best choose the parameters used in the model. Usually, the three sets of parameters, i.e. the locations,
widths and weight factors of the Gaussian kernels, are determined separately. This paper mainly addresses
the problem of best choosing the width factors of the kernels, based on strong to weak assumptions on the
function to approximate. A complete procedure for choosing the set of all network parameters is also given,
including a global optimization of the coefficients found by splitting this set into three parts.
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